Maximization of a Second-Degree Polynomial on the Unit Sphere

By James W. Burrows*

I. Introduction. Let A be a hermitian matrix of order n, and a be a known vector in C^{n}. The problem is to determine which vectors make $\Phi(x)=x^{*} A x-2 \operatorname{Re}\left\{x^{*} a\right\}$ (* denotes conjugate transpose) a maximum or minimum on the unit sphere $S=\left\{x: x^{*} x=1\right\}$.
[1] considers finding the similarly constrained maximum or minimum of $(x-b)^{*} A(x-b)$ where b is a known vector. We have

$$
\begin{aligned}
(x-b)^{*} A(x-b) & =x^{*} A x-b^{*} A x-x^{*} A b+b^{*} A b \\
& =x^{*} A x-2 \operatorname{Re}\left\{x^{*} A b\right\}+b^{*} A b
\end{aligned}
$$

so with $a=A b$, the problems are seen to be equivalent unless A is singular, in which case our formulation is more general. This formulation also seems to lead to simpler proofs.
II. Computation of Extremal Vectors. Let U be the unitary transformation which diagonalizes A, i.e., if $x=U y$, then

$$
\begin{equation*}
x^{*} A x-2 \operatorname{Re}\left\{x^{*} a\right\}=y^{*} U^{*} A U y-2 \operatorname{Re}\left\{y^{*} U^{*} a\right\}=y^{*} \Lambda y-2 \operatorname{Re}\left\{y^{*} c\right\} \tag{2.1}
\end{equation*}
$$

where $c=U^{*} a$ and $\Lambda=\operatorname{diag}\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, with real λ_{i}. It is thus equivalent to find the maximum or minimum of

$$
\begin{equation*}
\psi(y)=\sum_{i=1}^{n} \lambda_{i}\left|y_{i}\right|^{2}-2 \operatorname{Re}\left\{\sum_{i=1}^{n} c_{i} \bar{y}_{i}\right\} \tag{2.2}
\end{equation*}
$$

with the constraint

$$
\begin{equation*}
\sum_{i=1}^{n}\left|y_{i}\right|^{2}=1 \tag{2.3}
\end{equation*}
$$

Construct

$$
\begin{equation*}
\chi(y)=\sum_{i=1}^{n} \lambda_{i}\left|y_{i}\right|^{2}-2 \operatorname{Re}\left\{\sum_{i=1}^{n} c_{i} \bar{y}_{i}\right\}-\lambda \sum_{i=1}^{n}\left|y_{i}\right|^{2} \tag{2.4}
\end{equation*}
$$

where stationarity with respect to complex y requires that the Lagrange multiplier λ be real (cf. [1], p. 30). An extremal vector then satisfies the equation

$$
0=\frac{1}{2} \operatorname{grad} \chi(y)=\Lambda y-c-\lambda y=0
$$

or

$$
\begin{equation*}
\left(\lambda_{i}-\lambda\right) y_{i}=c_{i}, \quad i=1, \cdots, n . \tag{2.5}
\end{equation*}
$$

If we solve this formally for y_{i} and substitute into (2.3) we are led to consider the

[^0]real roots of the equation
\[

$$
\begin{equation*}
g(\lambda)=1 \tag{2.6}
\end{equation*}
$$

\]

with

$$
\begin{equation*}
g(\lambda)=\sum_{i=1}^{n} \prime^{\prime} \frac{\left|c_{i}\right|^{2}}{\left(\lambda-\lambda_{i}\right)^{2}} \tag{2.7}
\end{equation*}
$$

A primed summation sign means terms with $c_{i}=0$ are dropped, whatever the value of $\lambda-\lambda_{i}$. Two cases can occur:

Case I. λ is a real root of (2.6) and $\lambda \neq \lambda_{i}$ for all i. Then (2.5) gives the components of an extremal vector y_{λ} associated with λ.

Case II. For some $k, g\left(\lambda_{k}\right) \leqq 1$. This requires $c_{i}=0$ for all i such that $\lambda_{i}=\lambda_{k}$. To obtain the components of an extremal vector $y_{\lambda_{k}}$ associated with λ_{k}, solve (2.5) for y_{i} if $\lambda_{i} \neq \lambda_{k}$, then select any y_{i} for i such that $\lambda_{i}=\lambda_{k}$ so that

$$
\begin{equation*}
\sum_{i: \lambda_{i}=\lambda_{k}}\left|y_{i}\right|=1-g\left(\lambda_{k}\right) \tag{2.8}
\end{equation*}
$$

Then both (2.5) and the constraint (2.3) are satisfied.
Theorem. Let λ_{j} be the largest eigenvalue of A for which $g\left(\lambda_{j}\right) \leqq 1$. Let $\underline{\lambda}$ be the largest root of (2.6) with $\underline{\lambda} \neq \lambda_{i}, i=1, \cdots, n$. The quadratic polynomial $\psi(y)$ is maximized by a vector associated with the larger of $\underline{\lambda}$ and λ_{j}.

Proof. For real $\lambda \neq \lambda_{i}, i=1, \cdots, n$, let the components of y_{λ} be given by (2.5), then

$$
\begin{align*}
\psi\left(y_{\lambda}\right) & =\sum_{i=1}^{n} \lambda_{i} \frac{\left|c_{i}\right|^{2}}{\left(\lambda_{i}-\lambda\right)^{2}}-2 \operatorname{Re}\left\{\sum_{i=1}^{n} \frac{\left|c_{i}\right|^{2}}{\lambda_{i}-\lambda}\right\} \\
& =\sum_{i=1}^{n}\left|c_{i}\right|^{2}\left[\frac{\lambda_{i}}{\left(\lambda_{i}-\lambda\right)^{2}}-\frac{2}{\lambda_{i}-\lambda}\right] \\
& =\lambda \sum_{i=1}^{n} \frac{\left|c_{i}\right|^{2}}{\left(\lambda-\lambda_{i}\right)^{2}}+\sum_{i=1}^{n} \frac{\left|c_{i}\right|^{2}}{\lambda-\lambda_{i}} \tag{2.9}\\
& =\lambda g(\lambda)+\sum_{i=1}^{n} \frac{\left|c_{i}\right|^{2}}{\lambda-\lambda_{i}} .
\end{align*}
$$

If λ is a root of (2.6), then

$$
\begin{equation*}
\psi\left(y_{\lambda}\right)=\lambda+\sum_{i=1}^{n} \frac{\left|c_{i}\right|^{2}}{\lambda-\lambda_{i}} \tag{2.10}
\end{equation*}
$$

If $\lambda=\lambda_{k}$ and the other conditions of Case II are fulfilled, then the value of $\psi\left(y_{\lambda}\right)$ for $\lambda=\lambda_{k}$ is calculated by priming the summation sign in (2.9) and adding

$$
\lambda_{k} \sum_{i: \lambda_{i}=\lambda_{k}}\left|y_{i}\right|^{2} .
$$

We then have

$$
\begin{equation*}
\psi\left(y_{\lambda}\right)=\lambda g(\lambda)+\sum_{i=1}^{n} \lambda-\left.c_{i}\right|^{2}+\lambda_{k} \sum_{i: \lambda_{i}=\lambda_{k}}\left|y_{i}\right|^{2}=\lambda+\sum_{i=1}^{n} \lambda-\left.c_{i}\right|^{2} . \tag{2.11}
\end{equation*}
$$

When $\lambda \neq \lambda_{i}$ for all i, (2.11) is the same as (2.10). Therefore, (2.11) is true for all
extremal vectors. To complete the proof, let μ, ν be two values of λ which satisfy the conditions of either Case I or Case II, and suppose $\mu>\nu$. Then

$$
\begin{aligned}
\psi\left(y_{\mu}\right)-\psi\left(y_{\nu}\right) & =\mu+\sum_{i=1}^{n} \frac{\left|c_{i}\right|^{2}}{\mu-\lambda_{i}}-\nu-\sum_{i=1}^{n} \frac{\left|c_{i}\right|^{2}}{\nu-\lambda_{i}} \\
& =\mu-\nu+\sum_{i=1}^{\prime}\left|c_{i}\right|^{2}\left(\frac{1}{\mu-\lambda_{i}}-\frac{1}{\nu-\lambda_{i}}\right) \\
& =(\mu-\nu)\left[1-\sum_{i=1}^{n} \frac{\left|c_{i}\right|^{2}}{\left(\mu-\lambda_{i}\right)\left(\nu-\lambda_{i}\right)}\right] \\
& \geqq(\mu-\nu)\left[\frac{1}{2} g(\mu)+\frac{1}{2} g(\nu)-\sum_{i=1}^{\prime \prime} \frac{\left|c_{i}\right|^{2}}{\left(\mu-\lambda_{i}\right)\left(\nu-\lambda_{i}\right)}\right] \\
& \geqq \frac{1}{2}(\mu-\nu) \sum_{i=1}^{n}\left|c_{i}\right|^{2}\left[11 \lambda_{i}+\frac{1}{\left(\nu-\lambda_{i}\right)^{2}}-\frac{2}{\left(\mu-\lambda_{i}\right)\left(\nu-\lambda_{i}\right)}\right] \\
& \geqq 0 .
\end{aligned}
$$

Therefore, $\psi\left(y_{\lambda}\right)$ increases for increasing λ which satisfy either Case I or Case II. This proves the theorem; a similar statement about the minimum of the polynomial is easily proven.
III. An Application. Let (x, y, z) be the position vector of a target in a coordinate system attached to a rolling ship and ($\dot{x}, \dot{y}, \dot{z}$) the target's inertial velocity vector in the same coordinates. Consider the angular accelerations of a gun tracking this target. The gun has the usual two degrees of freedom: a train axis perpendicular to the deck and an elevation axis perpendicular to the train axis. Let θ be the train angle. The parts of the train angular acceleration $\ddot{\theta}$ which contain the target velocity are

$$
\begin{align*}
\ddot{\theta}(\dot{x}, \dot{y}, \dot{z})=2\left(x^{2}+y^{2}\right)^{-2}\{ & x y\left(\dot{x}^{2}-\dot{y}^{2}\right)-\dot{x} \dot{y}\left(x^{2}-y^{2}\right) \\
& \left.+\dot{R}\left[z\left(y^{2}-x^{2}\right) \dot{x}-2 x y z \dot{y}\right]\right\}+2 \dot{R} x\left(x^{2}+y^{2}\right)^{-1} \dot{z} \tag{3.1}
\end{align*}
$$

where \dot{R} is the roll rate (assumed to be about the x-axis). The last term can be recognized as a component of the Coriolis acceleration. The remaining terms can be computed by considering the relative motion in a nonrotating system (i.e., take two derivatives of $y=x \tan \theta$). The problem of maximizing the entire expression as a function of $\dot{x}, \dot{y}, \dot{z}$ with $\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}=1$ and fixed x, y, z, \dot{R} is of the type considered, with A singular. In fact,

$$
A=2\left(x^{2}+y^{2}\right)^{-2}\left(\begin{array}{ccc}
x y & -\frac{1}{2}\left(x^{2}-y^{2}\right) & 0 \tag{3.2}\\
-\frac{1}{2}\left(x^{2}+y^{2}\right) & -x y & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and

$$
\begin{equation*}
a^{*}=-\left(x^{2}+y^{2}\right)^{-2} \dot{R}\left(z\left(y^{2}-x^{2}\right),-2 x y z, x\left(x^{2}+y^{2}\right)\right) . \tag{3.3}
\end{equation*}
$$

Further computation yields

$$
\begin{equation*}
\lambda_{1}=-\left(x^{2}+y^{2}\right)^{-1}, \quad \lambda_{2}=\left(x^{2}+y^{2}\right)^{-1}, \quad \lambda_{3}=0 \tag{3.4}
\end{equation*}
$$

$$
\begin{align*}
& U=\left[2\left(x^{2}+y^{2}\right)\right]^{-1 / 2}\left(\begin{array}{ccc}
x-y & x+y & 0 \\
x+y & y-x & 0 \\
0 & 0 & {\left[2\left(x^{2}+y^{2}\right)\right]^{1 / 2}}
\end{array}\right) ; \tag{3.5}\\
& c^{*}=a^{*} U=-(2)^{-1 / 2}\left(x^{2}-y^{2}\right)^{-3 / 2} \dot{R}(-z(x+y), z(y-x), \tag{3.6}\\
&\left.x\left[2\left(x^{2}+y^{2}\right)\right]^{1 / 2}\right) .
\end{align*}
$$

Therefore,

$$
\begin{align*}
\left(x^{2}+y^{2}\right) \psi=y_{2}^{2}-y_{1}^{2} & +\dot{R}(2)^{1 / 2}\left(x^{2}+y^{2}\right)^{-1 / 2} \\
& \cdot\left(-z(x+y) y_{1}+z(y-x) y_{2}+x\left[2\left(x^{2}+y^{2}\right)\right]^{1 / 2} y_{3}\right) \tag{3.7}
\end{align*}
$$

After neglecting the fixed factor $x^{2}+y^{2}$,

$$
\begin{equation*}
\frac{2 g(\lambda)}{\dot{R}^{2}}=\frac{z^{2}(x+y)^{2}}{\left(x^{2}+y^{2}\right)(\lambda+1)^{2}}+\frac{z^{2}(y-x)^{2}}{\left(x^{2}+y^{2}\right)(\lambda-1)^{2}}+\frac{2 x^{2}}{\lambda^{2}} . \tag{3.8}
\end{equation*}
$$

In the general case, when none of the numerators are zero, the problem is solved by finding the largest real root of (3.8) with $g(\lambda)=1$. Classical root calculation procedures, such as Newton's method, should encounter no difficulty. If one or more of the numerators are zero, the computation is simpler. For example, if $z=0$, $g(\lambda)=\dot{R}^{2} x^{2} / \lambda^{2}$ and Case I applies if $\lambda=|\dot{R} x| \geqq 1$. Then $y_{1}=y_{2}=0, y_{3}= \pm 1$; if $|\dot{R} x|<1$, then Case II applies and $y_{1}=0, y_{2}=\left(1-\dot{R}^{2} x^{2}\right)^{1 / 2}, y_{3}=\dot{R} x$. The geometric interpretation of this is that the Coriolis term predominates for large x values.

1. George E. Forsythe \& Gene H. Golub, Maximizing a second-degree polynomial on the unit sphere, Tech. Rep. CS16, Stanford University Computer Science Department, Stanford, Calif., 1965.

Questions Concerning Khintchine's Constant and the Efficient Computation of Regular Continued Fractions

By John W. Wrench, Jr. and Daniel Shanks

Let x be a real number whose regular continued fraction is given by

$$
\begin{equation*}
x=a_{0}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\ldots, \tag{1}
\end{equation*}
$$

with a_{0} an integer, and $a_{1}, a_{2}, a_{3}, \cdots$ positive integers. Let

$$
\begin{equation*}
G_{n}(x)=\left(a_{1} \cdot a_{2} \cdot a_{3} \cdot \cdots \cdot a_{n}\right)^{1 / n} . \tag{2}
\end{equation*}
$$

Then Khintchine's famous theorem states that, for almost all x,

$$
\begin{equation*}
\operatorname{Lim}_{n \rightarrow \infty} G_{n}(x)=K \tag{3}
\end{equation*}
$$

[^0]: Received November 12, 1965.

 * The author is with the Mathematical Analysis Staff, The Boeing Company, Seattle, Washington.

