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Maximization of a Second-Degree Polynomial
on the Unit Sphere

By James W. Burrows*

I. Introduction. Let A be a hermitian matrix of order n, and a be a known vector

in Cn. The problem is to determine which vectors make $(a;) = x*Ax — 2 Re [x*a]

(* denotes conjugate transpose) a maximum or minimum on the unit sphere

S = \x:x*x = 1}.
[1] considers finding the similarly constrained maximum or minimum of

(a; — 6) Aix — b) where 6 is a known vector. We have

(as - b)*Aix - b) = x*Ax - b*Ax - x*Ab + b*Ab

= x*Ax - 2 Re [x*Ab] + b*Ab

so with a = Ab, the problems are seen to be equivalent unless A is singular, in

which case our formulation is more general. This formulation also seems to lead to

simpler proofs.

II. Computation of Extremal Vectors. Let U be the unitary transformation which

diagonalizes A, i.e., if x = Uy, then

(2.1) x*Ax- 2Re{a;*aj = y*U*AUy - 2 Re {y*U*a\ = y*Ay - 2 Re [y*c],

where c = U*a and A = diag {Xi, • • • , X»}, with real X¡. It is thus equivalent to

find the maximum or minimum of

n f  n

(2.2) fiy) = ZXilî/,12 - 2-ReŒdy,
i=l {i-1

with the constraint

(2.3) ¿ i Vi r = i.
i=l

Construct

n (   n \

(2.4) xiv) = ZXily,!2 - 2Re^Zci£i   -xi |2
\Vi\

»=1

where stationarity with respect to complex y requires that the Lagrange multiplier

X be real (cf. [1], p. 30). An extremal vector then satisfies the equation

0 = | grad xiy) = Ay - c - \y = 0

or

(2.5) (X¿ — X)j/< = Ci ,       i = 1, • • • , n.

If we solve this formally for y i and substitute into (2.3) we are led to consider the
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real roots of the equation

(2.6) g{\) = 1

with

(2.7) Í7(X) = ¿'*=í (x - x¿)2 '

A primed summation sign means terms with c¡ = 0 are dropped, whatever the value

of X — Xi . Two cases can occur:

Case I. X is a real root of (2.6) and X ¿¿ X¡ for all i. Then (2.5) gives the compo-

nents of an extremal vector y\ associated with X.

Case II. For some fc, gi\k) g 1. This requires c; = 0 for all i such that X» = \k .

To obtain the components of an extremal vector y\k associated with \k, solve (2.5)

for y¡ if Xi í¿\k, then select any ?/i for i such that X,- = \k so that

(2.8) E    | Vi | = 1- ?(X*)-
i:\i=\k

Then both (2.5) and the constraint (2.3) are satisfied.

Theorem. Let X3- be the largest eigenvalue of A for which ff(Xy) ^ 1. Let X be the

largest root of (2.6) with X j^ X<, i = 1, • • • , n. The quadratic polynomial ^iy) is

maximized by a vector associated with the larger of X and \¡.

Proof. For real X ^ X¡ , i = 1, ■ • • , n, let the components of y\ be given by

(2.5), then

*(ffr) = ÈXi/x |C<1'     -2Re(¿

(2.9)

(Xi - X)2 {i=i X¿

h '    '  L(Xi-X)2      Xi-Xj
12

xEt^U + E
Í (X - X,)2       i=t\-\i

x<Kx) + Ê^4-
t'=l A  — Ai

If X is a root of (2.6), then

n

(2.10) *(îfc) = x + E
Xi

If X = \k and the other conditions of Case II are fulfilled, then the value of ^iyf) for

X = X4 is calculated by priming the summation sign in (2.9) and adding

|2x*  E  \yi
»:Xi=Xfc

We then have

-*--     'Cil2
(2.11)    tiyf) =Xg(X)4-E\|C>'     +XA    E    l2o|2 = X4-E\

i-i   A — Ai ^Xi-Xj i-i   A — Ai

When X ̂  X¡ for all ¿, (2.11) is the same as (2.10). Therefore, (2.11) is true for all
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extremal vectors. To complete the proof, let p, v be two values of X which satisfy the

conditions of either Case I or Case II, and suppose p > v. Then

HVß) - tiy>) = M 4- E'
i-l    P

i2 n i       i2

_c¿J_v -Yi 'c¿'
— Xi i-i  v — Xi

= p — v + E' | Ci
1=1

(_!_LA
\p — Xi       c — Xi/

i-E'

i

= (m - y)

Zin-p)

è je (m  - ") E' I Ci I2
2 i=i

^ 0.

í (ft — Xi)(v — X,)J

1 "')-E'
2div) + 2W

Ci

i=i  ip — Xi)(v — Xi)J

1 1
+

ip - Xi)2      iv - Xi)2      (m - Xi)(* - Xi)J

Therefore, <K2/x) increases for increasing X which satisfy either Case I or Case II.

This proves the theorem; a similar statement about the minimum of the polynomial

is easily proven.

III. An Application. Let ix, y, z) he the position vector of a target in a coordi-

nate system attached to a rolling ship and i±, y, z) the target's inertial velocity

vector in the same coordinates. Consider the angular accelerations of a gun tracking

this target. The gun has the usual two degrees of freedom : a train axis perpendicular

to the deck and an elevation axis perpendicular to the train axis. Let 8 be the train

angle. The parts of the train angular acceleration Ô which contain the target velocity

are

(3.1)
Hx, y, ¿) = 2ix2 -f 2/2) 2{xyix - y) - xyix2 - y2)

4- R[ziy2 - x2)x - 2xyzy\\ + 2Rxix2 + y2)~~lz
,

where R is the roll rate (assumed to be about the a;-axis). The last term can be recog-

nized as a component of the Coriolis acceleration. The remaining terms can be com-

puted by considering the relative motion in a nonrotating system (i.e., take two

derivatives of y = x tan 0). The problem of maximizing the entire expression as a

function of x, y, z with x -f- y2 4- z = 1 and fixed x, y, z, R is of the type considered,

with A singular. In fact,

(3.2)

/ xy
2     .        2\-2 / i / „2

A =2ix¿ + y¿r¿[ -hix+y2)
0

and

(3.3) a* = -ix2 + y2r2Riziy2 - x2), -2xyz, xix2 + y2)).

Further computation yields

(3.4) \i =  - (a;2 4- 2/T\        X2 = ix2 + y2)'1,        X3 = 0;
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(x — y    x + y

x + y    y-x

0 0

(3.6) c* = a*U = -i2)-wix2 - y2T3l2Ri-z

Therefore,

/   2     .        2\ , 2 2     ,      ó/n\l/2/    2     ,        2x—1/2
ix  4- 2/ H = 2/2  - 2/1  4- Ä(2) ' (a;  4- 2/ )

(3.7)
■(-«(as 4- y)yi + 2(2/ - *)»i + *[2(** 4- 2/2)]1/22/3).

After neglecting the fixed factor .t2 4- t/2,

/oSx 2g(X) a2(a: + 2/)2 z2(?/ - x)2 ,   2a;2

K ' } È2     ~ ix2 + 2/2)(X + l)2 ^ (a:2 + y2)i\ - l)2 "*" X2 '

In the general case, when none of the numerators are zero, the problem is solved by

finding the largest real root of (3.8) with gi\) = 1. Classical root calculation pro-

cedures, such as Newton's method, should encounter no difficulty. If one or more of

the numerators are zero, the computation is simpler. For example, if z = 0,

gf(X) = iJV/X2 and Case I applies if X = | Rx \ S; 1. Then 1/1 = 2/2 = 0,2/3 = ± 1 ; if

I Rx I < 1, then Case II applies and 2/1 = 0, y2 = (1 — R2x2)12, y% = Rx. The geo-

metric interpretation of this is that the Coriolis term predominates for large x

values.
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Questions Concerning Khintchine's Constant
and the Efficient Computation of Regular

Continued Fractions

By John W. Wrench, Jr. and Daniel Shanks

Let a; be a real number whose regular continued fraction is given by

(1) x = do 4-— , - , -  ,
01 4- a2 4- as 4-

with do an integer, and Oi, a2, o3, • • • positive integers. Let

(2) Gnix) = iai ■ a2 ■ az.a„)lln-

Then Khintchine's famous theorem states that, for almost all x,

(3) Lim Gnix) = K,
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