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Maximization of a Second-Degree Polynomial
on the Unit Sphere

By James W. Burrows™

I. Introduction. Let A be a hermitian matrix of ordern, and a be a known vector
in C". The problem is to determine which vectors make ®(z) = z*Az — 2 Re {z%a}
(* denotes conjugate transpose) a maximum or minimum on the unit sphere
S = {z:2*x = 1}.
[1] considers finding the similarly constrained maximum or minimum of
(z — b)*A(x — b) where b is a known vector. We have

(z — b)*A(z — b) = 2™Az — b*Ax — z™Ab + b*Ab
= z*4z — 2Re {z*4Ab} + b*A4b

so with a = Ab, the problems are seen to be equivalent unless A is singular, in
which case our formulation is more general. This formulation also seems to lead to
simpler proofs.

II. Computation of Extremal Vectors. Let U be the unitary transformation which
diagonalizes A4, i.e., if = Uy, then

(2.1) z*4r — 2Re {z*a} = y* U AUy — 2 Re {y*U*a} = y*Ay — 2 Re {y*c},

where ¢ = U*a and A = diag {A1, - - -, A\,}, with real \; . It is thus equivalent to
find the maximum or minimum of

(2:2) Y(y) = g Nilyil" — 2 Re {é Ci??i}

with the constraint

(23) Sl =1

Construct

(24) X(@) = SNl = 2Re{ S e =2 3 i

where stationarity with respect to complex y requires that the Lagrange multiplier
X\ be real (cf. [1], p. 30). An extremal vector then satisfies the equation

0=131gradx(y) =Ay—c—Ny =0

(2.5) (M—)\)yi=ci, 1=1---,n.

If we solve this formally for y: and substitute into (2.3) we are led to consider the
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real roots of the equation

(26) 9(\) =
with

- o lctl
(27) o) = X s

A primed summation sign means terms with ¢; = 0 are dropped, whatever the value
of A — \; . Two cases can occur:

Case I. )\ is a real root of (2.6) and A 5 \; for all 2. Then (2.5) gives the compo-
nents of an extremal vector y, associated with \.

Case I1. For some k, g(\;) =< 1. This requires ¢; = 0 for all z such that A\; = A\, .
To obtain the components of an extremal vector y, associated with \; , solve (2.5)
for y: if \; % A , then select any y; for < such that \; = \; so that
(2.8) 2 sl =1 —=g0w).

TN =Nk
Then both (2.5) and the constraint (2.3) are satisfied.

TuEOREM. Let \; be the largest eigenvalue of A for which g(\;) = 1. Let \ be the
largest root of (2.6) with A # N\, % = 1, - -+, n. The quadratic polynomial ¥(y) s
maximized by a vector associated with the larger of A and \; .

Proor. For real A ¢ \;, ¢ = 1, -- -, m, let the components of ¥\ be given by
(2.5), then

n

Vi) = Zx “”x) 2R{Z ""“2}

i=1 Ai — A

=Xn3lcilz[ N 2]

v — A2 AN — A

2 n 2
ND P L1 N |e: ]

== )2 3EmN— N

(29)

_ leil®
Ag(N) + 2 o
If X is a root of (2.6), then
(2.10) ¥(pn) =\ + ZZ x‘f_’ .

If A = )\, and the other conditions of Case II are fulfilled, then the value of ¢ () for
N = A\ is calculated by priming the summation sign in (2.9) and adding

N o 2wl

TN =g

We then have

@10 9w =20 + 3150 b e a4 37,190

When )\ £ \; for all 7, (2.11) is the same as (2.10). Therefore, (2.11) is true for all
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extremal vectors. To complete the proof, let u, » be two values of X which satisfy the
conditions of either Case I or Case II, and suppose u > ». Then

2

W) — ) = u + > el s el

=1 m— Ag =1 v — A

=u—u+§'|cilz(#_l>\i—u—1xi>
— (a =) [1—4”?’ o }

i=1 (I~t - N’)(V - )\i)

b+ 1§ o]

1 oy 2 1 1 2
§(/J' —V); i [(u — )\i)2+(l'—)\i)2— (b = N)(» — M):I

(%

Y

1\%

0.

Therefore, ¥ (y») increases for increasing A which satisfy either Case I or Case II.
This proves the theorem; a similar statement about the minimum of the polynomial
is easily proven.

III. An Application. Let (z, y, 2) be the position vector of a target in a coordi-
nate system attached to a rolling ship and (&, , 2) the target’s inertial velocity
vector in the same coordinates. Consider the angular accelerations of a gun tracking
this target. The gun has the usual two degrees of freedom: a train axis perpendicular
to the deck and an elevation axis perpendicular to the train axis. Let 8 be the train
angle. The parts of the train angular acceleration § which contain the target velocity
are

6(2,7,2) = 2(a" + y") ay (¢’ — §°) — dy(a® — )
+ Rl(y’ — 2¥)s — 2oygl} + 2Ba(’ + )7

where R is the roll rate (assumed to be about the z-axis). The last term can be recog-
nized as a component of the Coriolis acceleration. The remaining terms can be com-
puted by considering the relative motion in a nonrotating system (i.e., take two
derivatives of y = z tan 8). The problem of maximizing the entire expression as a
function of #, g, 2 with &° + ¢* + 2° = 1 and fixed z, y, 2, R is of the type considered,
with A singular. In fact,

(3.1)

xy 3@ —9) 0
(3.2) A =20"+ )7 -1+ D) —xy 0
0 0 0
and
(3.3) a* = — (@ + )Ry — 2°), —2ayz, 2(2" + ¥)).

Further computation yields

(3.4) M=—GE 4T, e=E 4+, N=0
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=y x4y 0
(3.5) U =2+ y2)]—”2 x4y y—= 0 ;
0 0 [2(.”62 + y2)]1/2
(36) ¢ =a'U = =200 — ") R(—2(z + y), 2(y — 2),
2(2” + y)]").
Therefore,

(3 7) (x2 + y2)¢ — y22 _ y12 + ’[%(2)1/2(1:2 + y?)—l/?
' (=2(@ + Py + 2y — Dys + 2267 + 1))
After neglecting the fixed factor a* + 7,

29(\) _ Zx+y)’ L2
B @AM+ @+ A0 -1 N

In the general case, when none of the numerators are zero, the problem is solved by
finding the largest real root of (3.8) with g(A) = 1. Classical root calculation pro-
cedures, such as Newton’s method, should encounter no difficulty. If one or more of
the numerators are zero, the computation is simpler. For example, if z = 0,
g(\) = R**/\" and Case I appliesif \ = | Rz | = 1. Theny, = 5, = 0,53 = =*1;if
| Rz | < 1, then Case IT applies and 3, = 0, 5 = (1 — K*%*)"? y; = Rz. The geo-
metric interpretation of this is that the Coriolis term predominates for large x
values.

(38) 4 2y — )’ 27
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Questions Concerning Khintchine’s Constant
and the Efficient Computation of Regular
Continued Fractions

By John W. Wrench, Jr. and Daniel Shanks

Let z be a real number whose regular continued fraction is given by

) P at b a
with ao an integer, and a; , as, a3, - - - positive integers. Let
(2) Goz) = (a1 -az-as- -+ - a)’™
Then Khintchine’s famous theorem states that, for almost all z,
3 Lim G.(z) = K,
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