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Concerning the Numerical Solution
of Differential Equations

By H. P. Decell, Jr.,t L. F. Guseman, Jr.f and R. N. Leaf

Introduction. The stability region of a given difference equation, to be used in

the numerical solution of a differential equation x = fix,t),'\s a function of the

step size h and the partial derivative df/dx. Higher order methods usually have very

small stability regions and thus require very small step sizes. A method for in-

creasing the step size, without violating the stability region constraints, will be

developed in the text. The stability region of the difference equation is an interval

[a, b] such that, whenever h = h df/dx lies in the interval, the difference equation

yields a stable solution of x = fix, t) [1], [2]. The size of df/dx and h dictate the size

of h.

The Method. Suppose we desire to numerically integrate

(1) x  = fix, t),       xito) = a.

Stability considerations depend on dfix, t)/dx. We show that an alternate differential

equation

(2) y  = kiy, t),       yito) = a

may be developed such that numerical integration of (2) may be more favorable

than that of (l) in view of the comparative magnitudes of dfix, t)/dx and

dkiy, t)/dy, and further, the solution of (1) may be written as

(3) x = <p[yit), t).

We proceed to determine the functions <j> and k. Consider (1) in the form

(4) x  = gix, t) 4- Hx, t),       hix, t) = fix, t) — gix, t)

and suppose that the solution of

(5) z   = giz, t),       z(io) = a

is known analytically. Let us write this solution in the form

(6) z = <pia,t).

This function has the property that #(a, i0) = a for all a. Let us consider the func-

tion <t>iyit), t). Now

(7)       ^=^0| + ^.a*&0| + 5(,toi())().

We determine y so that x = <¡>iy, t). Thus

(8)    x' = *^i> = ,(*(„, j), t) 4- hiiiy, t), t) = *|jkí> | + gitiy, t), t)
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by (7) and (4), so that

(9)
dy
dt

d<pjy, t)

dy    _
[fi<piy,t),t) - gi<t>iy,t),t)],yito) a.

The latter boundary condition appears from (1) and the special properties of <j>,

that is

(10) <t>iyiU),to) = yiu) = xito) = a.

The basic idea in this type of construction is that dy'/dy may be much smaller

than dx /dx. This would allow the choice of a larger step size in the numerical

solution of Eq. (1) with the given difference equation, without violating the con-

straints of the stability region. The size of dy /dy will certainly depend upon the

choice of the function gix, t). It might also be noted that, \i<piy,t)\sa linear func-

tion of y, then

dj_

dy

dfix, t)      dgix, t)

dx dx

It should additionally be noted that, in obtaining from 4>iy, t) the solution of x =

fix, t), xito) = a, there is a possibility of amplifying numerical integration errors

due to the nature of <piy, t).

Table 1

h = .0005

/ Direct Alternate

.0000

.0080

.4505

.9505
1.4505
1.9505
2.4505
2.9505
3.4505
4.0050

0
0

.10 X

.98 X

.99 X

.53 X

.83 X

.12 X

.37 X

.58 X

io-13
10-h

lQ-14

10-14

10-i4
10"13

lQ-14

10-i4

0
.40 X
.38 X
.97 X
.97 X
.98 X
.97 X
.95 X
.98 X

1Q-15

io-)3
io-13
10"13

IO"13

io-13

10"13

IO"13

.93 X 10~13

Table 2

h =   .006

I

.0000

.0096

.5406
1.1406
1.6806
2.3406
2.9406
3.5406
4.0206

Direct

0
.33 X
.23 X
.10 X
.98 X
.20 X
.86 X
.38 X
.77 X

10-i5
10"9
io-2
10s
10u

1017

1024

1029

Alternate

0
.44 X 10"

10".62 X
.90 X 10-13
. 10 X 10 12
.98 X
.10 X
.98 X
.10 X

10"13

io-12
10"13

10"12
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Table 3

A = .01

t

.0000

.1600

.6500
1.1500
1.6500
2.1500
2.6500
3.1500
3.6500
4.1500

Alternate

0
.95 X
.52 X
.28 X
.17 X

10"16

10-15

10"1S

10"13

.17 X 10-13

.23 X 10-13

.22 X

.23 X
io-
io-

.32 X IO"13

Table 4

h = .1

t

.0000
1.0000
2.0000
2.4000
2.8000
3.2000
3.6000
4.0000
4.1000

Alternate

0
-.59 X
— .73 X

-.736612 X
-.736612 X
-.736612 X

IO"3
io-3
IO"3
IO"3
IO"3

.736612 X IO"3
-.736612 X
-.736612 X

io-3
IO"3

Note that in Table 4 we begin to see the effects of truncation errors in the
alternate solution.

Application. Whenever it is desirable to use higher order methods to control

truncation error in the numerical solution of x = fix, t), xito) = a, a small stability

region may force the use of an unreasonably small step size. The use of an alternate

equation may allow the choice of a larger step size. Consider the differential equa-

tion

x   = fix, t) = 15e! - 14a;,        x(0) = 1

whose solution is x = e*. Thus, with gix, t) = — lAx, it follows that

4>iy, t) = ye~ut

and

dy

dt
= 15e1 yiO) = 1.

In this case, dy /dy = 0 so that the only limitation in choosing h is that of trunca-
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tion errors of the difference method. Moreover, any error introduced in the numerical

solution of y = 15 exp [15<] will be damped by exp [—14£] in the substitution

into 4>iy, t) = y exp [—14f].

Tables 1, 2, 3, and 4 give comparisons of relative errors in the numerical solu-

tion of x = 15e — 14x obtained by direct integration, versus the solution obtained

by using the alternate equation. The method used is Adams-Bashforth 16th order

predictor and Adams-Moulton 15th order corrector. The region of numerical

stability (for one application of the corrector) is —.007 ^ h ^ .011. The tables

display results using step sizes that caused h to lie both inside (Table 1 ) and outside

(Tables 2, 3, 4) of the stability region for the direct integration. All integrations

connected with the solution using the alternate equation are within the stability

region.
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Some Fourth Order Multipoint Iterative Methods
for Solving Equations

By P. Jarratt

1. Introduction. Multipoint iterative methods find new approximations to a

zero of a function fix) by sampling / and sometimes its derivatives at each itera-

tion at a number of values of x. Although they have not been much used in practice,

one interesting class of formulae, investigated by Traub [1, pp. 197-204] is computa-

tionally attractive in problems where the evaluation of / ix) is rapid compared with

fix). Such cases arise, for example, when fix) is defined by an integral. Traub showed

that for iterative formulae of the type

avt-i = x„ — aiiviixn) — OîUhixn)    where

(1.1) fU)
Wlix)   = fix)/fix), W2ix)   =  w-f-¡r^- ,

f'[x 4- awiix)]

third order processes costing one evaluation oí fix) and two of/ ix) per iteration

could be constructed by suitable choices of the parameters ai, a^ and a. It was not

possible, however, to obtain fourth order formulae without increasing the number

of derivative evaluations. In this paper, a class of iterative methods of the form

Received October 5, 1965.


