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1. Introduction. The Riemann zeta-function t(s) is the analytic function of

s = o 4- it defined by the formula

n=l ns

for d > 1. It was conjectured by Riemann that all of the zeros of f(s), other than

the zeros at the negative even integers, lie on the line a = \. Extensive verifications

of the Riemann hypothesis using high-speed computers have been made by Lehmer

[1], [2], who established that the hypothesis holds for the first 25000 zeros in the up-

per half plane, and by Meiler [3], who showed that it holds for the first 35337 zeros.

In this paper we describe computations made with an IBM 7090 at the Computer

Center of the University of California at Berkeley which establish that there are

exactly 250000 zeros of f(s) for which 0 < t < 170571.35, all of which lie on the line

a = \ and are simple. The major part of the calculation was done using a program

which separates zeros of f(| 4- it) automatically in most cases. This program used

the Riemann-Siegel asymptotic formula with only the first term of the asymptotic

expansion retained so that the error bound derived by Titchmarsh [4] could be used.

An ALGOL version of the program is given in Section 7.

2. Error Analysis. In formulas for which numerical bounds are of importance

we shall use û to denote a number satisfying | û | ?£ 1. The number denoted will,

in general, be different for different occurrences.

If

(2.1) k(t) = (l/2x)Im{logr(i + «»} - frlogir,

then the function

(2.2) Z(t)  = exp (2TÍK(r))t(í + 2wir)

is real for real t (see [4, p. 235]). It can be shown [4, p. 247] that for r ^ S

(2.3) k(t)  = |(r log t - r - i) 4- #-0.0006 r~\

We remark that our notation follows that of Turing [5]. It differs from that of

Haselgrove [6] who uses / rather than t as the argument. Consequently, Hasel-

grove's Z(t) is denoted by Z(t/2ir) in our notation.

Theorem 2 of [4], when some minor numerical errors are corrected, states that

for t ^ 8

Z(T\ = 2 £ cos 2x(t logn — k(t))

(2.4) T «=i n112

4- (-ir~V"1/4A(f) exp {-í/96tt + co6 + ion] + R
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where

r i/2i ,.1/2 ri 7 ■        •    _       X
m = It   J,        £ =t     — m,        | w6 |   = ,„„ , , ,        I w7 | <

Mí)

160xV '        '      '      30irV

_ cos 2tt(|2 - t - 1/16)

cos 2x£

and the following inequality holds :

,     ,      /      0.4652 0.4168       \   _3/4     0969 in-o.«r«/«
1      '      \1 - 0.813t-"3      1 - 0.489t-1'2/ t      "*"  t5'12

0.456     n_o.26rl'3     ,     0.309      „-0.45r     ,    0.655  in-0.77r     ,     rv AA -   1 f\~s'+ -^TiT 10 + -¿¡T 10 + ^7T 10 + a0bo 10    •

For t è   1500 we obtain by a straightforward numerical calculation using

| A(£) | < 1 (which results from (2.6) and (2.7) below)

Z(r) = 2 ¿ cos2x(t logn - k(t))

n=l tt1/2

4- (-l)m-V1/4A(£) 4- #-0.929t~3'4.

Turing [5, p. 103] has shown that this formula holds with a slightly increased error

if m = [t1/2] — 1 and £ = t1/2 — to has a value slightly greater than 1. If 1 ^ £ < 2

then it suffices to increase the error term by

v-w/(É - I)3   ,     0.0006 \   ,   _/        14tt(to 4- ir,¿   07     ,   '   + ,      , \U + 2
^3(to 4-1)      (w + 1)2J l(m 4- l)"2      (m 4- I)1

Consequently

Z( ) = 2 ê cos2,r^T Iogn ~ *(T))

(2.5) —i n"2

+ (-l)m-V1/4A(!) + t?-0.93T_3/4

if t ^ 1500 and m is an integer such that

0g{= t1/2 - m < 1.0005.

For numerical purposes it is convenient to replace A(£) by a polynomial ap-

proximation. Turing [5] has given a quadratic approximation with a rigorously

determined error term, but we shall need a more accurate approximation. Let

(2.6) *(,) = A (L=l) = cos^2/2 + 3/8)
\      2       / COS 7TZ

Since <t>(z) is an even entire function, we have

Hz) = Zw*
71 = 0

with C2a+i = 0 (k = 0, 1, 2, • • • ). We obtain a polynomial approximation to 0(2)

by truncating the power series and estimating the remainder.

We have

c„  =   —;  /
2iri Jr2iri Jc z

+<s) dz
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where C is a positively oriented contour about the origin, which we shall take to

be the rectangle with corners at ±2 ± 2i. If z = x + iy with x and y real, then

| sinh iry | á | cos irz | ^ cosh iry

and

Im (z2/2 4-3/8) = xy.

Also, when x is an integer | cos w(x -f- iy) | = cosh iry. Hence on the vertical line

segments of the contour

,    , s |      cosh irxy _ cosh 2vy      cosh 4tt      cosh 4ir

cosh ir?/        cosh iry   := cosh 2ît      sinh 27r

while on the horizontal line segments

i    / \ i ^  cosh irxy      cosh 27rx   ^ cosh 4ir
I   <P(Z)   |    g    ,—^T--^    = .     ,     0 Ú

sinh iry \       sinh 2x   :    sinh 2tt

Thus

I      I <      16 cosh 4tt 700
|Cn| = 2a--2"+! sinh 2*-       2" '

The remainder when the series is truncated after the term c„z" is thus less than

700        | g 1/2
2"  ' 1 - | z 1/2 '

If £ = (1 - z)/2, then | z | < 1.001 when 0 < £ < 1.0005. It then follows that the
error made by omitting terms after c24Z24 is less than 5 • 10~6. We can estimate the

error committed by omitting additional terms of the series and by rounding the

coefficients to 5 decimal places by using the values of the coefficients c„ given by

Lehmer [2] and Miller in [6]. We find

<p(z) = 0.38268 4- 0.43724z2 + 0.13238z4
(2.7)

-   0.0136126  -   0.01357z8  -   0.00162z10  4-  #-4.9 10~4

provided | z | < 1.001.

Now let us estimate the error made when computing a value of Z(r) by means of

a digital computer using (2.3), (2.5) and (2.7). First, we shall carry out our analysis

without considering in detail the particular properties of the machine used, and

then we shall specialize our discussion to two methods used to compute Z(r)

with an IBM 7090.

We assume that r is given exactly as a digital number. Let ei be a bound for the

absolute error in computing log n, e2 a bound for the absolute error in computing

log t, «3 a bound for the absolute error in computing cos 27rrr when x is given exactly

as a digital number between 0 and 1, and €4 a bound for the absolute error in com-

puting n"112. The bounds ei, e2, e3, u and also e5, e6, and e7 which occur in the follow-

ing argument are all assumed to be constants independent of n and x. In order to

simplify the error analysis we shall assume that the sum in (2.5) is accumulated

using fixed-point arithmetic. We also assume that t1'2 is computed sufficiently

accurately so that an integer to can be determined for which 0 ^ t1'" — m < 1.0005
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so that (2.5) and (2.7) are valid. (Actually, it should be possible to assure that

0 íí t " — m < 1 but in our computation a programming error prevented this.)

First, from (2.3) we compute k(t) and then obtain t log n — k(t) with an error

less than

6iT 4- hïT + 0.0006t"1 4- 66

where e5 is a bound for the additional error due to rounding in performing the

arithmetical operations. We then obtain cos 2x(t log n — k(t) ) with an error less

than

27TeiT   4-   7TÍ2T  4-   0.00127TT""1   4"   2tTÍ5  +   63 •

Each term in the sum in (2.5) is then obtained with an error less than

(27T€iT -f vre2r -f 0.0012xt_1 + 27n=ä + e3)(n"1/2 + e4) 4-64 + 66

where e6 is a bound for the rounding error in the multiplication. Since the sum is

accumulated using fixed-point arithmetic, a bound for the error in the sum can

be obtained by summing these bounds. We have

m

2 £ (n"1/2 + e4 ) < 2é4TO + 4m1/2 < 4.02t1/4,
«=■1

provided e4 < O.OIto-1'2 as we shall assume. Finally, let (4.9-10~4 4- 67)t~1/4 be a

bound for the absolute error in computing t~1/4A(£) using a digital approximation

for the polynomial in (2.7). Combining the error estimates, we see that Z(t) is

computed with an error less than

(266l +  13e2)T6/4 +  (2«4 + 266)r1/2(4.l63 4- 26é5)t1/4

(2.8)
4- (4.9-ÎO-4 4- 67)t-1'4 + 0.95t~3'4.

In our computation with the IBM 7090 we used two different methods for com-

puting Z(r). The first was designed for maximum speed and in most cases was

sufficiently accurate to determine the sign of Z(t). Whenever that was not the

case, a slower but more accurate method was used. In the following discussion we

shall assume that 1500 < r < 100000.
We first sketch how error bounds for the slower method were obtained. Values

of log t were obtained by means of a standard double-precision subroutine. Be-

cause of complications in the error analysis of the double-precision subroutines,

the bound e2 = 5 • 10~14 which we obtained is probably quite conservative. The

same subroutine was also used to evaluate log n, but since in this case only 316

values are required, a comparison with a 16 decimal place table [7] was possible.

In this way it was shown that 6i = 3-10~   is permissible.

The cosines were computed by means of a single-precision fixed-point sub-

routine programmed by the author for which the error was proved to be less than

63 = 2 • 10~10. The values of n~112 were obtained by means of a double-precision

square root subroutine and then rounded to 27 binary places. Thus e4 = 3.8 -10-

is permissible. For bounds on the rounding errors we found that we could take

e5 = 2-85, 66 = 2~28 and e7 = 10~°. Substituting these values into (2.8), we obtain

the following error bound for the more accurate method :

(2.9)    7.3-10_1V/4 +  1.52-«TV1 +  1.6-10"V/4 + O.OOOot-1'4 + 0.95t"3/4.
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In the faster but less accurate method a table-look-up scheme was used to

compute cosines with the table occupying half of the memory of the computer.

The table of cos 2ttx for 0 ^ x ^ 1 contained 2 entries which were generated by

the previously mentioned subroutine. Since the value at the nearest tabulated

point was used, the error in computing a cosine could not exceed 2ir ■ 2~u 4- 2 • 10_1°.

Hence we let e3 = 1.92-10~ . The values of log n were obtained from those used in

the more accurate method by rounding to 32 binary places. Thus we let

ei = 1.2-10~10. The parts of the computation concerned with log t, ri~m and <b(z)

were the same as for the more accurate method. Hence we can take e2,64, t-0, e6 and

€7 the same as before. Substituting into (2.8), we obtain for the faster method the

error bound

(2.10)    3.2-10"V/4 + 1.52-10~V/2 + 8-10_V/4 4- 0.0005t_1/4 4- 0.95t_3/4.

3. The Verification Program. The method that we use for verifying the Riemann

hypothesis for 0 < t ^ T is the following: By counting sign changes of Z(t) for

0 < t < T/2ir we obtain a lower bound for the number of zeros of f (s) on the

line 0- = \ for which 0 < t < T. We then show that this lower bound is equal to

N(T), the total number of zeros of f (s) for which 0 < o < 1, 0 < t g T. In this

section we shall explain the design of the program for separating zeros. The method

for determining N(T) will be discussed in Section 5.

It is known [8, p. 179] that

(3.1) N(T) = 2k(T/2tt) 4- 1 + S(T),

where, if T is not the Ordinate of a zero of f(s),

(3.2) S(T) = (l/x)afgf(i + »T)

with the value of the argument obtained by continuous variation along the line

from 00  + iT to § -f- iT starting with the value 0.

If n is a nonnegative integer, then let t„ be the positive real number for which

2k (t„) = n. These points r„ are called the Gram points. The interval (t„ , t„+i),

which we also denote by 7„ , is called the nth Gram interval. The statement, that

there is exactly one zero of f (| 4- 2wít) in each Gram interval so that the nth

positive zero of f (J 4- 2«V) is in 7„_2, is known as Gram's law. This "law" holds

when n < 127 but fails for n = 127. It continues to hold in most cases as far as

calculations have been performed. Consequently, in designing a program to sep-

arate zeros of Z(t) it is advantageous to evaluate Z(t) at points g„ which are ap-

proximations to the Gram points r„ .

It is known (see [8, p. 189] or Section 5 below) that

Ï  S(t) dt = O(log T).

Using this fact, one can prove without difficulty that the number of successive

integers n for which 0 < 27rr„ < T and N(2tt„) ^ n + 1 is 0(log2 T). Thus we

expect a one-to-one correspondence between zeros and Gram intervals with the

zero corresponding to an interval located either in the interval or in a nearby Gram

interval. Consequently the verification program was designed so that when a

failure of Gram's law occurred, an attempt was made to find enough zeros nearby

to maintain the one-to-one correspondence.
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We shall say that a failure of Gram's law of type vqvi ■ ■ • vi occurs at n if the

following three conditions are satisfied:

(i) There are exactly vk zeros in the Gram interval In+k for k = 0, 1, • • • , I;

(ii) vo + vt + ••■ + vi = I + 1;

(iii) vo + vi 4- • • • 4- vk * k + 1 for 0 á k < I.
For example, the first failure of Gram's law occurs at 125 and is of type 0 2 be-

cause there are no zeros in 7i25 and two zeros in 7126 •

Before writing a program for verifying the Riemann hypothesis, we had con-

structed a table of the first 10000 zeros of f(s) giving the ordinates yn with about

7 decimal place accuracy and the corresponding values of 2k(7„/2x) to 4 decimals.

This table confirmed the result of Lehmer [1] that for the first 10000 Gram intervals

all failures of Gram's law are of the following five types:

0 2,    2 0,    0 3 0,    2 10,    0 12.

We note, however, that we found one more failure of each of the last two types

than Lehmer did. A failure of type 2 10 occurs at 9807, and one of type 0 12 occurs

at 9971. Also a failure of type 2 10 occurs at 6412 rather than at 6411 as reported

in [1].
We designed our verification program to handle automatically only failures of

Grain's law which are of the above types and are such that the zeros are far enough

apart to be separated by a calculation based on (2.5). For all other cases the

machine was instructed to print a report of the failure and then continue the

computation.

In Section 7 we give the complete text of our verification program in ALGOL.

The program is arranged so that the major part of the computation is performed

by the three procedures sign Z, Gram, and two zeros found. We shall first describe

these procedures briefly and then sketch how they are used in the verification

program.

The procedure sign Z is used to determine the sign of Z(r). It returns the value

4-1 if Z(r) is shown to be positive, — 1 if it is shown to be negative, and 0 if the

procedure is unable to determine the sign. Z(t) is first computed using the faster,

less accurate method of Section 2, and then the computation is repeated with the

more accurate method if the first one is unable to determine the sign with cer-

tainty. In order to leave some margin for safety the procedure was constructed to

return the value 0 if the value computed was not greater in absolute value than

twice the error bound obtained in Section 2. The mathematics concerned with

error analysis for computations seems to be especially liable to error. If a program

is run with an error bound which is later found to be incorrect, then the entire

computation will be wasted. (Such a misfortune was reported in [5].) We chose the

above device to give some protection against this possibility. It should perhaps be

noted here that there is a second order error in the computation due to errors in

computing the error bound. These errors are all quite small and in fact it is easy

to show that the error bounds (2.9) and (2.10) are large enough to cover these

additional errors.

The procedure Gram is used to obtain points gn which are approximations to

the Gram points t„ . If we consider the transformation <t>(r) = (n-\-\)/(log t — 1 ),

then it is easily shown that for n ^ 7 the iterates defined by t„(*+1   = #(t„* )
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(k = 0, 1, 2, • • • ) converge to the fixed point t„ of the transformation provided

t„<0) is sufficiently near t„*. Also, by (2.3) we have t„ = t„* 4- 0(l/n). For n ^ 30

it is also easy to verify that 0 < <t> (t) < K for §r„ á t < <» where 7C is a con-

stant less than 1. Consequently, if t„<0> is chosen in this interval, then the iterates

will converge to t„* and the absolute value of the difference between successive

iterates will decrease. In the procedure Gram this iteration scheme is employed with

<7„ used as an initial approximation to gn+i ■ The iteration is discontinued when

because of round-off error the distance between successive iterates ceases to de-

crease. An exact error analysis of this procedure was not undertaken because all

that is necessary for our verification is that it furnish a monotone increasing se-

quence of points gn .

Given an interval (a, c) with Z(a) and Z(c) having the same sign, the proce-

dure two zeros found is used to try to show that Z(t) has at least two zeros in the

interval (a, c). This is done by a bisection process which splits the interval into

a maximum of 28 subintervals. At each stage a search is made for a point where Z(t)

has the opposite sign. If such a point is found, the bisection is discontinued and the

value true is returned. If the bisection process fails to locate a point where Z(t)

has the opposite sign, then the value false is returned.

Now we shall sketch how these procedures are used. The strategy used by the

verification program is to set up a one-to-one correspondence between approximate

Gram intervals and located zeros. At each approximate Gram point g„ , the procedure

sign Z is used to determine the sign of Z(gn). If the value 0 is returned, which means

the sign is in doubt, then a new approximate Gram point is chosen nearby where

the sign can be determined with certainty.

Because of the heuristic assumption that all failures of Gram's law are of the

five types found in the first 10000 Gram intervals, the program proceeds with the

assumption that each failure begins with a Gram interval where the sign of Z(t)

is the same at both end points. Consequently, as long as the sign of Z(t) alternates

at successive approximate Gram points, the one-to-one correspondence between

Gram intervals and real zeros of Z(t) is maintained; and the program proceeds

ignoring the possible existence of additional unlocated zeros.

If at the points gn , gn+i, gn+2 the sign distribution is 4—I—h or — — —, then

the procedure two zeros found is used to try to show that there are two zeros in

the interval (gn , gn+i) and thereby maintain the one-to-one correspondence. If

at the points gn , gn+i, gn+2, gn+z the sign distribution is 4—I-— or— — 4—K

then the sign of Z(r) is determined at q = (gn+i + gn+s)/2 (or at a nearby point

in exceptional cases). Then two zeros found is used to try to show that there are

two zeros in (g„ , q) if Z(t) has the same sign at gn and q and two zeros in (q, gn+i) in

the other case.

In all cases where two zeros found fails to prove the existence of two zeros in a

specified interval and also in all cases where the sign distribution does not follow

one of the patterns described, a special report is made which indicates the type of

failure. In each such case where the verification program has failed to maintain

the one-to-one correspondence between zeros and Gram intervals, enough informa-

tion is printed to determine how many zeros are missing and then the verification

is resumed. The treatment of these exceptional cases will be discussed in Section 4.

In addition to reporting on exceptional cases the program keeps a count of
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failures of Gram's law. Instead of counting the failures directly, a count was kept

of the number of displacements of zeros across Gram points required to obtain

the actual distribution from one in which there is exactly one zero in each Gram

interval. Thus the count of displacements was increased by one for each failure of

type 0 2 or 2 0 and by two for each failure of type 0 3 0, 2 1 0 or 0 1 2. It should be

noted, however, that this displacement count is not exact because in our com-

putation instead of using the Gram points t„ we use approximate Gram points gn .

For another machine, or even for the same machine with a different logarithm

subroutine, the count of displacements could be expected to differ slightly.

In writing the verification program the innermost loop of the program, which

occurs in the evaluation of the sum

vp cos 2tt(t log n — k(t))

Ùi ~ ^~rü^~

was first written directly in the machine code of the IBM 7090 with attention given

to minimizing execution time. Next, the entire program was written in ALGOL and

tested with the BC-ALGOL interpretive system, an implementation of ALGOL

(developed at the University of California, Berkeley) which, although it is too

slow for production running of large computations, is useful for testing programs.

The procedure for determining the sign of Z(t) was then translated into machine

code using a symbolic assembly language. The remainder of the program, for which

running speed was of less importance, was translated into FORTRAN IV and then

compiled to obtain the final version of the program.

4. Results of Computations. Except for some runs which were made to test

it the verification program was not used to investigate the first 10000 Gram in-

intervals because they had already been studied in more detail earlier. The pro-

gram was run for blocks of 1000 Gram intervals for 10000 ;£ n < 50000 and for

blocks of 5000 Gram intervals for 50000 g n < 250000. The results of these runs

are summarized in Table 1 for sets of 10000 successive Gram intervals. The number

of failures of Gram's law, as indicated by the column labeled "Displacements",

shows only a slow increase within the range of the computation. The column

labeled "Sign doubtful" records the number of times the procedure sign Z was

unable to determine the sign of Z(r) at an approximate Gram point. When this

happened, a new approximate Gram point was chosen nearby. The comparatively

large number of such cases at the top of the table occurs because the truncation

bound 0.93t~3/4 of (2.5) is relatively large there.

The program encountered a total of 104 cases which it was not able to handle

automatically. In each of these cases one or more reports were printed indicating

the type of failure and the number of missing zeros. These cases were then examined

with the aid of further programs. The last six columns of Table 1 give information

about these cases.

The verification program will look beyond the last Gram interval of a block to

find a missing zero, but it never looks before the first interval of a block. Thus,

if N(2irgn) y¿ n -f- 1 at the beginning of a block, a report of a special case may

occur even though the failure is of a type which ordinarily is handled automatically.

The column labeled "Out of phase" records the number of these cases. Each of these
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Table 1

Index of
initial
Gram

interval

10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000
140000
150000
160000
170000
1S0000
190000
200000
210000
220000
230000
240000

Dis-
place-
ments

1013
1102
1115
1161
1120
1142
1198
1204
1178
1211
1192
1208
1237
1200
1262
1195
1265
1223
1285
1264
1277
1226
1260
1259

Sign
doubt-

ful

32
23
16
13
12
11
12
10
15
8
8
8

11
7
4
7
5

11
7
1
7
5
6
2

Failure types

Out of
phase

2
1
2
1
1

0 13 0

2
1

1
1

2
1

1
4
1
2
1
1

0 3 10 0 112

2
1
2

1

•>

2 110

1
2
1
1
1

3
2

Miscel-
laneous

1
2

Totals 28797 241 14 23 20 14 18 15

14 cases was handled by running the verification program for a small block of 20

intervals overlapping the beginning of the larger block.

Of the 90 remaining cases 75 correspond to failures of types 0 1 3 0, 0 3 1 0,

0 112 and 2 110. We shall give detailed information on the 15 cases classified as

"Miscellaneous" below. In all but 9 of these 90 cases the zeros could be separated

by using values of Z(t/2ir) tabulated with steps of 0.1 in t. (In particular, all cases

for which t > 80000 were handled in this way.) The other cases required a finer

mesh.

In five cases failures occur in which the program fails to find three zeros in

(gn , gn+i) even though the failures are of the types 0 3 0, 0 1 2 or 2 1 0. This happens

because the program was not designed to handle automatically a case in which all

three zeros are on one side of the point (gn+i 4- gn+i)/2. These failures occur at

171382, 206715, 209783, 233173, and 234500. In one other case a failure of type
2 10 occurred which was not handled automatically. This failure actually occurs

at 25094, but a report was made for 25093 because of the presence of a zero near

enough to the right end point of 725093 so that the sign was indeterminate at g2mt ■

A new approximate Gram point was then chosen to the left of the zero in /25093 •
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A failure of type 0 3 110 occurs at 243021, and at 68084 a failure occurs which

is either of type 0 1 1 2 or 0 1 1 3 0.
In five cases there were pairs of zeros which could be separated by the verifica-

tion program if the error bound (2.9) was used but not if twice the error bound was

used. These close pairs are located in the Gram interval In for n = 24198, 73996,

82551, 87759, 106071.
Finally, there were two cases where the formula (2.5) with the error bound

(2.9) did not have enough accuracy to separate a close pair of zeros. In order to

handle these cases we constructed a subroutine to compute Z(r) with an absolute

error of less than 10~6 for 10 < t < 40000 which used the Euler-Maclaurin sum

formula (see [2, pp. 102-103]) together with the formulas

| Z(r) |2 = ¡Re f(| + 2«t)}2 + {Im f(| + 2«V)}2,

sgn Z(t) = (-I)"-1 sgn {Im f(| + 2irir)}    for    t in 7„ .

In each case it was sufficient to calculate Z(t) at one point to establish that a

sign change occurs. The first of these close pairs, which is located in 7i8858, has been

reported by Lehmer [2] and Meiler [3]. The second pair is probably the closest pair

among the first 250000 zeros. The zeros are located at about

\ -f- 71732.9012z    and    \ + 71732.9159z'.

The maximum value of | f (s) | on the line <x = § between these two zeros is about

0.0005. The first zero is located in 795246 while the second is in 795247, and these are

the only zeros in these Gram intervals. Thus, unlike the close pairs which have

been noticed previously, there is no failure of Gram's law in connection with this

pair.
The Euler-Maclaurin formula was also used to separate the close pairs of zeros

in 78255i, 787759 and 7io607i, giving an additional check of the computation in these

cases.

The total machine time used in production runs was about 125 minutes. Of

this, 100 minutes were used in running the main verification program while about

24 minutes were used in handling the 90 special cases discussed above. Less

than one minute was used in carrying out the computation described in Section 5

to complete the verification. The main verification program was still quite efficient

at the upper end of the range of the computation. For the 25000 Gram intervals

beginning with the 225000th the running time required was 12.42 minutes, so that

about 33 zeros were separated per second. On the other hand an evaluation of

Z(t/2ir) by means of the Euler-Maclaurin formula for t of the order of magnitude

70000 required about one minute of machine time.

5. Completion of the Verification. In order to gather additional information,

a modified version of the verification program was run for 249900 ^ n S 250100

with information printed out each time Z(t) was evaluated. This information

included the value of k(t) at each of the points. Taking into account the computa-

tional error, we established in this way that for the approximate Gram points gn

(5.1) | 2K(g„) - n \ < 0.01        (249900 ^ n ^ 250100).
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We shall now describe how the information from this run was used to complete

the verification that if

To = 2x^0000 = 170571.358

there are exactly 250000 zeros of f (s) for which 0 < t < T0, all of which lie on the

line a = § and are simple. That there are at least 250000 zeros of f (s) for which

o = |, 0 < t < T0 follows from the results of Section 4 together with a small amount

of information about the zeros found in the last few approximate Gram intervals

before feoooo • To complete the verification of the Riemann hypothesis for 0 < t á To

we shall prove that N(T0), the total number of zeros in the rectangle 0 < a < 1,

0 < t á To, is equal to 250000. The method that we use is due to Turing [5].

Theorem 4 in [5] would be adequate for our purposes, but, unfortunately, although

the theorem is correct, the proof given in [5] contains several mistakes. Consequently,

we shall use the following weaker theorem which will be proved in Section 6.

Theorem 1. If

(5.2) Si(T) = [   S(t)dt
Jo

and T2> Ti> 100, then

I Si(T2) - Si(Ti) | < 3.1 log T2 + 4.8.

We obtained the following distribution of zeros in the approximate Gram in-

tervals starting with the interval with left end point ¡/moooo :

2,1,1,1,1,1,1,1,1,1;    1,1,1, 1,1,0,2,1,1,1; 1,1,1,2,0,1, 1, 1, 1, 1;

1,1,1,1, 1, 1,1, 1,2,0;    1,1,1,1,1,1,0,1,2,1; 1,1,1,1,1,2,1,0,0,2;

1,1,0,2,0,2,1,1,1,2;    0,1,1,1,1,1,1,1,1,1; 1,1,1,1,1,1,2,0,1,1;

0,2,1,1,1,2,0,1,1,1.

Thus, in these 100 approximate Gram intervals we find 101 zeros. (The extra zero

in the first interval is compensated for by the absence of a zero in the previous

interval.)

Let

N( 2x0250000) = 250000 4- q

where g is a nonnegative integer. The integer q is even because complex zeros or

unseparated real zeros of Z(t) must occur in pairs. We prove that q = 0 by showing

that q < 2. We apply the equation

S(2ttt)  = N(2ttt)  -  1 - 2k(t)

at t = gn for 250000 ^ n ^ 250099. At 8 points (corresponding to the underlined

numbers in the above listing), the first of which is 0250000, we have

(5.3) S(2irgn) > q - 1 - 0.01;

at 7 points (corresponding to the overlined numbers)

(5.4) S(2irgn) > q-r- 1 - 0.01;
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and at the remaining 85 points

(5.5) S(2irgn) > q - 0.01.

Also by (5.1) *S(2xt) cannot decrease by more than 1.02 in an approximate

Gram interval. Consequently, if Ti = 2x02soooo and T2 = 2x025Oioo, then

/     S(t) dt = 2x / S(2xr) dr > 2w(q - 1.03)(g2b0iw - 026oooo) + 2x(L7 - Li)
JT-i JTiliir

where L7 is the total length of the 7 intervals (gn , gn+i) for which we obtained (5.4)

and L8 is the total length of the 8 intervals for which we obtained (5.3). The approxi-

mate Gram intervals all have lengths between 0.096 and 0.099 and have total

length greater than 9.79. Hence, if q S: 2,

S(t) dt > 2x{(0.97)(9.79) 4- (0.672 - 0.792)} > 58,
jTi

while on the other hand by Theorem 1

r-T2

S(t) dt < 43,
Jj-j

a contradiction. Therefore, q = 0 and the first 250000 zeros of f(s) for which

0 < t < 170571.35 are on the line a = \.

6. Proof of Theorem 1. For the proof of Theorem 1 we need several lemmas.

Lemma 1. If T2 > Tx > 0, then

Tc{St(Ti) -St(Ti)\ = f      ' log | r(«) Ids- f       l log | TOO I ds.

Proof. To define log tis) uniquely we consider the branch of the logarithm which

is real for s > 1 and is obtained by analytic continuation in the complex plane cut

from — oo to 1 along the real axis and cut along the line from — » 4- iy to p = ß 4- iy

for each complex zero p of f(s). In the cut plane we consider the half-strip S for

which a > i Ti < t < T2. Then for each zero p for which a è h Ti ^ t á Ts

we delete from S any points which lie in a closed disk of radius € about p, where

e is a small positive number. It is easily seen that if 6 is sufficiently small, then the

disks are disjoint and the remaining domain Dt is simply connected.

We apply Cauchy's theorem integrating log t(s) over the boundary of D( and

then let e —> 0. For each small e the integral vanishes because log f (s) has no singu-

larities in Dt and is exponentially small as o —> ». As e —> 0 the contributions to the

integral of portions of the boundary which are circular arcs all approach 0 because

log f (s) has only logarithmic singularities at the zeros p. In integrating over por-

tions of the boundary along a cut the direction of integration is opposite for the

two banks of the cut. Since on opposite banks the values of log f (s) have the same

real part, the total contribution to the real part of the integral from the horizontal

segments other than those along t = Tt and t = T2is zero. Applying (3.2) we obtain

the lemma.

Lemma 2. If a > 1 then | log | f(s) | | < log a/(a — 1).
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Proof. We have

r(«) ¿I á¿I<i + f£-   »„=1 71s n=l M"" Jl     I* <T   —    1

and

r(«)
iu(n)

n=i   n*
s ¿ Ls<»li < ¿ I <    *   .

rtíl' o- -   1n=l      n'

Lemma 3. 7/<r è — f and t ^ 2x íAen | t(s) | < |i2.

Proof. Applying the formula [8, p. 14]

r(s) =-J—+ Í4-S r
s — 1      2 Ji

M — x 4-1
(/.r

which is valid for a > 0, we find that for a ^ ^, £ > 0

i ,/  m ^ 1   ,   !   ,   I s I  r dz        1,1,1/,   .   T Y'2 ^ 1   .   1   .   , A   .    1 \
irwiar + a + Tri ^i = f + 2 + 2V1 + ^  «r + s + T + i?)

and hence for <r ïï J, ¿ S; 2x

(6.1) |f(s)| <i4- 1 < |i2,

which establishes the lemma for c ^ |.

We estimate f (s) for — § ^ o < ^ by applying the functional equation

tU - s) = ^r(s) cos ixsfts).

For a > 0, t > 0

log | r(<r + ¿í) I  á -iirt + («r - J) log Í 4" I log (2x) + co3

where [4, p. 237]

0)3 |   ^
(a - IV

2fs +
12 | s |      720 at2

Hence, for § g <r ̂  I, t è 2x

-1á I+ à + 33» < 0172 <log 119>

and therefore

r(s)

(2x)'
< 1.19e"-xi/2 / J_V

\2x;   •

Also, for í ^ 2x

I cos |xs I á Ke""2 + e-^'2) ^ |( 1.001 )eT,/2.

Thus for \ ^ o- ̂  f, t è 2x

(6.2) |f(l  - <r + Ô) |  =  |f(l - s) |   g   1.2(í/2x)'-1/2| f(s) |.
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Hence for | ^ a ^ §, ¿ ^ 2x we obtain by (6.1)

i m -o- + it)\ =s 1.2 (¿)(í + D <jh

and for § ^ o- ^ |, ¿ ^ 2x we obtain by Lemma 2

lf(l-. + .0|S..2(¿)*^S3.6(¿)!<I1',

completing the proof of the lemma.

Lemma 4. Let fis) be an analytic function regular for \ s — s0\ á R' such that

fiso) t¿ 0 and such that \ /(s)//(s0) | ^ M on \ s — s01 = R . Let si, s2, ■ ■ ■ , s„ be

the zeros of fis) in the circle | s — s01 á R where 0 < R < R' ivith multiple zeros

repeated. Then if \ s — s0\ g r < R,

log | fis) | — <log [/(«o) | +Zlog
•Sí-

So Sk

■2r
í—llogüí+nlog^},

Proof. Consider the function

»(«)  = ~
fis)

no sk)

which is regular for | s  —  s01 Ú  R' and does not vanish for | s  —  s01 ^ R.

On | s — so | = R we have

o(so)

and hence

fis)  fr (So -   SÄ I   <   I /W   I /       R       \"
/(so) M V s - s J I       I /(so) I \Ä' - R)

gis)

o(so) ^(f+k)"-

By the maximum principle this inequality must hold for | s — s01 á R'■ The func-

tion A(s) = log ja(s)/a(so)} with A(s0) = 0 is thus regular for | s — s01 á R and

Re his) í¡ log M + n log --y
R

R' - R'

Applying the Borel-Carathéodory theorem [9, p. 174] with circles of radius r and

R, we obtain

A(s)| ^
2r

R - r
log M 4- n log -H7

B
R' - R

The lemma follows by using the definitions of gis) and A(s) and the fact  that

|ReA(s) | ^ |A(s) |.
To prove Theorem 1 we show that the inequality

I       pK + it

\ I        log | tis) I ds(6.3) < 4.8 log t 4- 7.5
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holds for t > 100. Then by applying the inequality for t = Ti and t = T2 we ob-

tain by Lemma 1

x I StiTi) - SiiTi) | < 9.6 log T2 4- 15

from which the theorem follows immediately.

We break the integral in (6.3) into two parts, one going from § 4- it to s0 =

1.1 4- it and the other from so to oo -f- it. The latter is easily estimated since for

o- >   1

1
I log | f(s) | | á | log f(s)

and hence by Lemma 2

ZE
.-i np"

áZZ
p   r.=i np"

log i roo id« i      EE -^d
•"so I       Ji.1 t p   n-i npB'J

(6.4)
1

=  lrwr 9 4^ 4í ««Lin
= EE -

j,   n=i n2p1An log p      log 2  p   „=i np

log f( 1.1)      logJT
=     log 2      ~  log 2 "

To estimate the integral from ^ 4- it to 1.1 4- ¿i we apply Lemma 4 with

fis) = f (s), so = 1.1 -f it, r = 0.6, R = 0.9 and R' = 2.6. If s* is a zero of f (s) in

the circle | s — s01 ^ 0.9 with Re sk = ok, then because | s0 — s* | < 1 we have

(6.5)

/       log
•'l/2+ii

Sk

So 8k
(¡S

Jp8o
log

1/2+ii

sk I ds è   f     logier

•1.1—et

ok I da

log I n | du > — 1.33
0.3

since log 11* | is an even function which is monotone increasing for u > 0.

It is easily seen that when s is on the line between \ A- it and s0 = 1.1 4- it,

and s is in the strip 0 < Re s < 1, the quantity | s — s |/| s0 — s | takes its maxi-

mum value for s = | 4~ it, s  = 1 + it. Consequently

(6.6)
rso

/        log
S — Sk

So —  sk
ds <

rso

/        log 5ds = 0.6 log 5 < 1.33.

On the circle | s — so | = 2.6 we have o 2: — §. Hence by Lemma 3 we can let

M =  Ht + 2.6)2/| f(*o) |- Then for t >  100

log M á log i 4- 2 log t + 2 log 1.026 - log | f (s0) |

^ 2 log t - log | f (so) | - Í.

Using Lemmas 2 and 4 and the inequalities (6.5) and (6.6), we obtain

f °   log | r(s) | ds
¿tli+it

^ 0.6 | log | t(So) | | + 1.33« + •^!7.{log M + n log ̂ -/

S 3 log 11 - 3.2 4- 4.8 log t + (1.33 - 2.4 log 17/9)«

^ 4.8 log t 4- 4
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because 1.33 — 2.4 log (17/9)  <  —0.19 < 0. Combining this inequality with

(6.4), we obtain (6.3).

7. The ALGOL Program. In this section we give the complete text of the main

program used in the verification. The program uses three nonlocal procedures be-

sides the standard ALGOL functions. The procedures print2 and prints are used

for output of 2 or 4 integers, respectively; and the procedure input is used for input

of an integer. If this program is used with another machine or with another system

of performing real arithmetic, the expression E for the error bound in the procedure

sign Z should be changed.

We remark that in the procedure sign Z it would have been better to replace

the statement

if m X m > tau then m := m—I

by
if m X m > tau then m := m—I

else if (m+l) X im+l) < tau then m : = m4-1

since this would have guaranteed that 0 < r1'2 — m < 1 and permitted simplifica-

tion of the considerations in Section 2.

begin
integer j, k, n, s, sa, sb, sc, sd, first, last, displacements, doubtful;

real a, b, c, d, q, u, v;

array cs[0:16383], logl, rsqri[l:4O0], Iog2[l-A00};
comment    The array log2 should contain elements with double-precision accuracy ;

integer procedure sign Zifau); value tau; real tau;

comment    This procedure assigns to the function designator the value 4-1   if

Zitau) is positive, — 1 if Z(fau) is negative, and 0 if the procedure cannot determine

the sign ;

begin integer j, m, n;

real E, k, s, sg, sum, il, 12, x, Z;

Boolean first;
real procedure fractional part (a;) ; value x; real x; fractional part := x — entier ix);

s := sqrtitau);

m := entieris); if m X m > tau then m := m—I;

comment    The arithmetic in the following statement should be performed in

double-precision ;

k := fractional partiO.5 X tau X (Initau) — 1) — 0.0625);

first := true; sum := 0;

comment    The next loop is the innermost loop of the program;

for n : = 1 step 1 until m do

begin il  := absifractional partitau X log\[n\) — k);

j := entier(2 Î   14 X il);

sum := sum -f- cs[j] X rsqrt[n]

end;

sg : = if m = im v2)X2 then — 1 else 1 ;

x := (1  - 2 X (s-m))   T   2;
12 := ((((-0.00162 X x - 0.01357) X x - 0.01361) X x

4- 0.13238) X x 4- 0.43724) X x + 0.38268;
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check: Z := 2 X sum -f sg X i2/sçri(s);

E : = if ^?-si then

3.210-9 X tau Î   (5/4) + 1.610-8 X lau |   (1/2)

4- 810-4 X tau Î   (1/4) + 5u>-4 X tau f   (-1/4) + 0.95 X tau  |

(-3/4)
else

7.310-13 X tau T  (5/4) + I.610-8 X tau î  (1/2)

+ 1.610-9 X tau î  (1/4) 4- 5w-4 X tau |  (-1/4) 4- 0.95 X tau T

(-3/4);
if absiZ) > 2 X E then begin sz'grn Z := signiZ); go to e.rii end;

if   T first then begin sign Z := 0; go to exit end;

/irsi := false; sum := 0;

comment    If absiZ) is less than twice the error bound, the sum is recomputed

using double-precision arithmetic ;

for n : = 1 step 1 until m do

begin il   := absifractional partitau X log2[n]) — k);

sum : = sum + cos(6.283185307179586 X il) X rsqrl[n]
end;

go to check;

exit:

end;

procedure Gramin, a, b) ; value n ; integer n ; real a, b ;

comment    Using a as an initial approximation the n4-lth Gram point is calcu

lated and assigned to b;

begin real il, i2, ¿3, difference;

il  := a; difference := w10;

iterate: 12 := (n-|-1.125)/(in(il) - 1); í3 := abs(í2-íl);

if i.3 < difference then

begin il := ¿2; difference := i3; go to iterate end;

b := Í2

end;

Boolean procedure two zeros foundia, c, s);

value a, c, s; real a, c; integer s;

comment    This procedure searches for two zeros in the interval (a, c). The param-

eter s gives the sign of Z at a and c. The function designator is assigned the value

true if the zeros are found and the value false if they are not;

begin real A, i; integer i, j;

h := (c — a) I A.;
for i := 1 step 1 until 7 do

begin for j := 1 step 1 until 2  f ¿do

begin i := o 4- (2 X / - 1) X A;
if sign ZU) =  — s then

begin two zeros found : = true ; go to complete end

end;

A := A/2
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end;

two zeros found : = false ;

complete:

end;

comment   The main program begins at this point;

initialize:

for j : = 0 step 1 until 16383 do

cs[j) := cos(6.2831853072 X 0/16384 4- 1/32768));
for j : = 1 step 1 until 400 do

begin logl\j] ■= ln(j); rsqrt\j] := l/sqrt(j);

comment   The following statement should be performed using double-pre-

cision arithmetic;

log2\j] := Inij)
end;

start: displacements := doubtful := 0; inputifirst); inputQast);

n := first; if n = 0 then go to exit;

Gramin—1, n, a); sa := sign Z(a); if sa = 0 then go to reset;

continue: if n > last then

begin printiifirst, last, displacements, doubtful); go to start end;

Gramin, a,b);k := 0;

LI: sb := szon Z(b);

if sb = —sa then

normal: begin n := »+1; a := b; sa := sb; go to continue end;

if sb = 0 then

begin doubtful := doubtful + 1; b := b — (6 —a)/128;
if fc > 32 then go to error exit; k : = fc+1; go to LI

end;
comment   If the signs are the same at a and b, then a failure of Gram's law has

occurred ;

displacements := displacements -f- 1;

(rrom(n4-l, &, c);

L2: sc : = szgrn Z(c) ;

if sc = 0 then

begin doubtful := doubtful A- 1; c := c — (c — 6)/128;
if fc > 32 then go to error exit; k := /c+1 ; go to L2

end;

if se = sa then

begin comment    In this case an attempt is made to find two zeros in the interval

(a, c). Most failures of Gram's law fall under this case;

if two zeros found(a, c, sa) then

begin n := n-\-2; a := c; go to continue end;

print2in, 1); n := n4-2; a := c; go to reset

end:

displacements : = displacements A- 1 ;

Gram(n4-2, c, d); sd := sign Zid);

if sd 5¿ —sa then
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begin print2in, 2); n := n-f-3; a := d; go to reset end;

comment   In the following case an attempt is made to find three zeros in the

interval (a, d) ;

q:= ib+c)/2;
L3 : s : = sign Z(o) ;

if s = 0 then

beging := q - (c-6)/128;

if k > 32 then go to error exit; k := fc-f-1; go to L3
end;

if s — sa then begin u := a;v := q end

else begin u := q; v := d end;

n := n-|-3; a := d; sa := sd;

if two zeros foundiu, v, s) then go to continue

else begin prini2(n—3, 3); go to reset end;

reset: Gramin, a, b); sb := sign ZQ>);

if sb =  —sa then go to normal;

prin12in, 4); n := «4-1; a := 6; sa := sb; go to reset;

comment.    The next statement is executed if the sign of Z is left undetermined

at too many points. This probably indicates insufficient accuracy in the pro-

cedure sign Z for the range considered;

error exit: print2in, 5);

exit :

end
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