
Numerical Evaluation of Wiener Integrals

By Alan G. Konheim and Willard L. Miranker

Abstract. A systematic study of quadrature formulae for the Wiener integral

j F[x]w(dx) of the type / F[6(u, ■ )]v(du) is presented. The Cameron and Vladi-

mirov quadrature formulae, which are the function space analogues of Simpson's

Rule, are shown to fit into this framework. Numerical results are included.

1. Introduction. In this paper we consider the problem of obtaining numerical

approximations for the Wiener integral. The solution of the corresponding problem

for multiple Riemann integrals is provided by a class of quadrature formulae of the

type

(1.1) JJ  ■■■ J f(xi, Xi, • ■ • , xn) dxi dx2 ■ ■ ■ dxn ̂ Yi \i,n f(*i,n)

where the constants {X,-,„} and points {x,-,n} are chosen by a variety of means. Since

the Wiener integral of a functional F may, in many instances, be defined as a suitable

limit of repeated Riemann integrals, we are led to consider quadrature formulae,

which are formal limits of (1.1) of the form

(1.2) / F[x]w(dx) S / F[6(u, -)]v(du).

Here, Jc F[x]w(dx) denotes the Wiener integral, and / F[0(u, ■ )]v(du) denotes an

integral over some Euclidean space.

In [1] Cameron determined a pair (v, 0) by imposing on (1.2) the condition

that the formula be exact for polynomial functionals of degree ^3. Imposing the

same requirement, Vladimirov [5] constructed a family of pairs (v, 6).

In this paper we shall develop a class of approximations of the type given in

(1.2). The pair (v, 6) is chosen so that the resulting quadrature formula

¡F[d(u, -)]v(du)

is exact for polynomial functionals of degree t^2n + 1. The Cameron and Vladi-

mirov results are special cases.

Quadrature formulae for Riemann integrals achieve a certain order of accuracy

by the imposition of a requirement of exactness for polynomials of degree ^k. To

increase the accuracy the range of integration is partitioned into subsets of "fine-

ness" A, and the quadrature formula applied within each subset. Under certain

conditions the approximation may then be shown to have an error 0(Ac(* ) as

A —» 0 where the exponent e(k) is characteristic of the quadrature procedure. The

analogue of the partition of the range of integration is also available for Wiener

integrals. It takes the form of integrating over finite dimensional subspaces of C (the

space of continuous functions on [0,1] which vanish at 0). Using this device Cameron

obtained the error estimate 0(m~ ) while Vladimirov proved only the estimate
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o(l) where m denotes the dimensionality of this subspace. This method, when ap-

plied to our quadrature formulae, yields error estimates of the form

O(m-in+1~"))(or   o(l))(as   m -> oo )

where the exponent 17 depends upon the pair (v, 0). We are thus able to provide an

analogue of the classical quadrature theory for Riemann integrals.

The Wiener integral plays a role in such diverse fields as probability theory,

differential equations, statistical mechanics, and quantum physics [3]. Extraction of

numerical values from the solutions of problems which are expressed in terms of

Wiener integrals is therefore of some interest. For example, in [2] Gelfand, Frolov,

and Cencov evaluated function integrals by a Monte Carlo method after replacing

the integral by an iterated Riemann integral of many hundredfold order.

In Section 2 we state several known properties of the Wiener integral which are

required in the sequel. In Section 3 we formulate the problem for quadrature form-

ulae which are exact for polynomial functionals of degree 2n -f- 1. We then show in

Theorem 1 how to reduce the development of these formulae to the case of n = 1.

In Section 4 we characterize the most general L solution for the case n = 1 and

give three specific examples. The first two examples correspond, respectively, to the

formulae of Cameron and Vladimirov. In Section 5 we describe the refinement

procedure for the quadrature formulae which consists of integrating over subspaces.

We then derive error estimates for the mixed integration procedures. In Section 6

we give a summary of numerical evaluations of the Wiener integral of two specific

functionals. We also include for reference a table of constants essential for the

method developed here.

2. Some Properties of the Wiener Integral. Let (C, 6, w) denote the probability

space consisting of

(1) C, the space of real-valued continuous functions x(t) on 0 ^ í á 1 with

x(0) = 0.
(2) e, the <r-field of subsets of C generated by the cylinder sets

Ta.b.t = {x € C; — 00  < o¿ < x(ti) g bi < 00, 1 á t á n),

a = (01, 02, ■ ■ • , a„)        b = (61, b2, ■ ■ ■ , bn)        t = (ii, t2, ■ ■ ■ , t„)

and

(3) w, Wiener measure.*

A functional F on C is called a monomial of degree m if

Fix] =   I   x(ti)x(t2) ■ ■ ■ x(tm)um(dt! XdkX ■•■ X dtm)
J jm

where Im = [0, 1] X [0, 1] X • • • X [0, l](m copies), and pm is a regular signed

measure of finite total variation defined on the Borel sets of Im. A functional F is

called a polynomial of degree k if it is a linear combination of monomials of degree

iSfc. We shall denote this latter class by (Pk ■

We now state three known lemmas which describe properties of Wiener in-

tegrals which will be needed below. Lemmas 1 and 3 give the value of Wiener in-

* We choose thatWiener measure with <r = 2~1/2; see [3] for precise notation and definition.
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tegrals of functionals of special types, while Lemma 2 is an identity giving the

Wiener integral in terms of its values over subspaces.

Lemma 1 [4, p. 151]. ///: Rn —> Rl is such that

1^ [gnen(u,1ut,.--,un)f(^^1,---,T^yul...dun

exists (as a Lebesgue integral), where i\ , i2, ■ ■ • , in are distinct positive integers and

(2.1) ei(ui, m , ■ ■ • , Un) = iTnl2 exp ( — (ui A- ui A- ■■■ + w„2)),

then

I =  [ F[x]widx)
Jc

where

Fix] - / U   «,,(«)*(«) dt, jf   ahit)xit) dt,---,f ainit)xit) dt\

and

(2.2) as(t) = 21/2sin (2j - l)xi/2.

Lemma 2 [1, p. 114]. If F £ L\C, Q, w), then

f F[x]w(dx) =  /    e„(u) du [ F[x - Pn x A- *„(u, -)]w(dx)
Jc J«» Jc

where

n .1

(Pnx)it) = E«i«)   /   a}(s)x(s)ds,
3=1 Jo

3=1 IT  2j   —   1

and en and ct¡ are as in (2.1) and (2.2).

Lemma 3 [3, p. 50]. If F[x] = x^x^) • • • x(tm)(0 S ¡¡ á 1, 1 ^ ¿^ m), then

f F[x]w(dx) - Bm(k, k , • • • , im)
Jc

(2.3) n , j= 0,                                                                                                          m odd,

= 2~ml2 X)* min (ti¡ , Ui) min (t,-3 , i,-4) • • • min («,„_, , tim), m even,

the summation (  ) being carried out over all partitions of {1, 2, • • • , m] into m/2

subsets each of size two.

3. Determination of the Pairs (vn , 6n). We seek an approximation formula to

the Wiener integral of the type

(3.1) / F[x]w(dx) at f F[en(u, ■ )K(du).
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Using Lemma 3 above and arguments similar to those used by Cameron [1],

it may be seen that the requirement that (3.1) be exact for polynomial functionals

F G ö^n+i is equivalent to the conditions

TI Oniu, tj)vnidu) = Bm(ti, k , ■ ■ ■ , U,        lámá2n+l,

=   1, TO  =  0.

In this section we will show how to construct pairs (vn , 0n) which satisfy the

integral relations (3.2) in terms of pairs (v, 6) corresponding to n = 1.

Let X denote a symmetric probability measure on the Borel sets (B1 of JB1; i.e.,

X(jB) = \(-B) where BÇ (B1 and -B = {-b: b € B\. We let us{0.u denote the

<7-field of Borel subsets of [0, 1], and suppose p(£, t): Rl X I1 —> Rl satisfies

(3.3) (i) p is bounded and (B1 X (B[o,u is measurable;

(3.4) (ii) p(£,0 = -pi-It);

(3.5) (in) f p(É, <)p(£, s)\(dt) = 1/2 min (s, t).

(Here and henceforth we omit the range of integration if it is over the entire space.)

For k a positive integer, \k will denote the product measure on the Borel sets (B* of

Rk induced by X.

In what follows n is an arbitrary but fixed positive integer, and vn — X». Let

Kl denote the field of complex numbers, and define 0„: Rn X I1 —» K1 by

(3.6) 0„(u, t) = ci(n)p(ui, t) + c2(n)p(u2, t) + ■ ■ ■ A- cn(n)p(un , t)

where the complex constants {cj(n)\ are to be specified.

Theorem 1. If the {cj(n)\ are the roots of the polynomial

(3.7) An(z) =zn-Ç + Ç-+ (-1)"¿.

then (3.2) holds where (vn , 0„) is given by (3.3)-(3.6).

Proof. Part I. Let If be a finite set. By an n-partition of U we shall mean a

partition of U, {Ui, U2, • • ■ , Ur\ into r (say) disjoint, nonvoid sets for some r with

1 ^ r g n. Denote by H» ( U) the family of all n-partitions of U. We say that

an n-partition { Ui, U2, • ■ ■ , UT\ of U is of type a = (ai, a2, • • • ) if a,- of the sets

{Uj\ y=i have i elements, for each i, 1 á¿< <x>. An n-partition is of even type a if

cta+i = 0 (0 á i < »). Let 3„(?7)(resp. 3ne(U)) denote the totality of possible

types (resp. even types) of n-partitions of U. Note that a € 3„(Í7) if and only if

(i) a, is a nonnegative integer (1 £j < oo ),

(ii) «i -f- a2 + •• • an,
(iii) ai A- 2a2 + • • • =   | U |   = number of elements in U.

Let YLn .a ( U) denote the family of n-partitions of U of type a.

We begin our proof by observing that, independent of the choice of the {c,(n)],

Ç  2p+l

/   II 0„(u, tj)vn(da) = B2p+i(ti , ¿a , • • • ,kp+i) = 0
j   ,„i

for all p, 0 ^ p <  °° due to the symmetries of X and p. It thus suffices to choose
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the {c,(n)j so that

/2p
IT 0„(u, t)v«(dv) = B2pih , U , ■ ■ ■ , t2p), 1 g p á 2n.
3=1

Now,

2p

II 9n(U, t,)
3=1

is a linear combination of terms of the form

(3.8) ÛicikW)^ II Pixik,t3)
k~l 3<¡Uk

with the expression in (3.8) corresponding to the n-partition j Ui, U2, ■ ■ ■ , Ur\ of

Z2p = {1, 2, ••• , 2p}.Ifwelet

E(U) =  [Hp(x,t1)\(dx),

then the integral of the term in (3.8) with respect to the measure vn is equal to

(3.9) flicikin))lv"lEiUk).
k=l

To evaluate

/2p
YlOnivi, tj)vn  (du),
3=1

we fix a € 3niZ2p), {Ui , U2, • • • , Ur] £ H«,« iZ?p) and sum (3.9) over all or-

dered r-tuples iii, i2, ■ ■ ■ , ir). There results

2p

! ft 0„(u, ti)vnidn) E E
J    3-1 oea„«(Z2p)    lV1,U2,---,Ur)£Hn,a(z2pî

nw)}{    E*    IÏ icibin)yu*]
3=1 J       {Ui.ii.•••,«,) k=l )

(3.10)

where the   -summation is carried out over all ordered r-tuples iii, H , • • ■ , O) of

distinct integers with fj 6 Zt(l I ; á »). We note that the right-hand side of

(3.10) includes the expression

(3.11) {      E*     n(cu(n))2}ß2p«i,<2,--- ,l2p)
^(<lt<»>* "tip) k=l J

which corresponds to the sum

E {ñW/)f{      E*     ñic<tin))2}

with a =  (0, p, 0, 0, • • • ). (3.5) shows that this is the case since for

a = (0,p,0,0, ••• ),

the corresponding sets in the partition have two elements. The proof consists of
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showing that it is possible to choose the {cy(n)j so that the coefficient of

B2piti, t2, ■ ■ ■ , t2p)

in (3.11) is equal to unity, while simultaneously forcing all of the remaining ex-

pressions in (3.10) to vanish (for each p, 1 ápán). We introduce the coefficient

functions Grip; vi, v2, ■ ■ ■ , vT) defined by

r

G,(p; vi, vt, • • • , v,) =       E*     LI icijin))2v>
(¿l.»2,- •■•*!•'   3=1

where the [vj\ are positive integers with sum p.

Lemma 4. The family of functions \Grip; vi, v2 , ■ ■ ■ , vr)\ satisfies

(i) Grip; Vi, v2, ■ ■ ■ , vT) = Grip; "»(i) , tV(2) , • • • , v„(r)) where o is a permuta-

tion of Zr,

Grip; vi, v2, ■ ■ ■ , vr) = Giivr ; vr)Gr-iip - vT ;vi, v2, ■ ■ ■ , tv_i)

— E¿-í Gr-iip; vi,v2 , ■ ■ ■ , y¿_i, v. A- vr, vi+i, ■ ■ ■ , t>r-i)

for r > 1, and

Grip; vi ,v2,--- ,vi) =     E    Cr(g)

(3.12)  (iii) , .        , v
E Y\G\ Zv3r;   E   «/)

where

(3.13) Cr(s) = nK-iro'-i)!^.
3=1

Proof. Lemma 4 (i) is obvious. To prove Lemma 4 (ii) we need only observe

that

r—l

Grip; vi ,v2 , ■•■ ,vr) = E*       II (ci,(n))2"-''

X [ft(* ; i;r) - (^(n))"' - ••• - (^(n))'"].

The proof of Lemma 4 (iii) is by induction on r. Certainly, the result holds for

r =■ 1. Assuming the result for r = t, we then have by Lemma 4 (ii)

Gi+iip; vi ,v2 , • • • vt+i) = Giivt+i ; vt+i)

,otA,       x    E   c«(ff) E        ITXE vr, E ?y)
(3.14) ¡Je3,(z«> (jv1,---,jv,)£ntig(Zj) i=i        ye** ye**

-É    E    C((8) E lWE*y(i); E »y(<))
■'-i g£3i(z,) iAri.---.Jv.i€niig(Zi) *=i       xygAT* yg/Yi        /

where

vf = V,-, if       j 9¿ i,    j <G Zt,

= Vi A- vl+i,        if       j = i.

Take y = (ti ,72, • • • ,7<+i, • • • ) £ 3í+i(Zí+i); then (3.12) implies the recurrence
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formula

Ct+iiy) = Ct((yi - l,y2, •■• ,yt , •■•))        if 71 è 1,

(3.15) = -(j - 1)C,((0,0, ••• ,0,1,73— 1,7m. ••• .71+1 ,•••))

if for some,/', (2 ^ j ^ t A- 1) we have 7; = 0 (1 ^ i < j) and 7y 9e 0.

Finally, (3.15) yields (3.12)-(3.13) for r = t + 1. Note that C,(y) ^ 0.
Proof. Part II. By virtue of (3.10)-(3.11) it suffices to choose the {cy(n)j so

that

Gr(p;vi, v2, ■ ■■ , vr)

(3.16) =1        if   p = r    and    vx = v2 = • • • ■» vr — 1,
1 á p ^ n.

= 0       otherwise,

We assert that in order for (3.16) to hold it sufficesf to require

Gi(p; p) = 1        if   p = 1,
(3.17) 1 á p á n.

= 0       if   1 < p á n,

For (3.17)   implies that whenever [Ni, Ns, • • • , N.) € IL.aí^.íC € 3(Zr)),

then

II Gi ( E »y ;    E »y ) = 0        if for any fc (1 ^ A; ̂ s)  E ^3 > 1
k-i       V€Ar* ygjvj   / yew»

= 1        if for every k ( 1 ;£ fc ̂  s)   / , t>,- = 1
yew*

which yields (3.16) by (3.12)-(3.13). Set dy(n) = cf(n) and let

(3.18) An(z) = Ê (« - «W»)) = £ *"""*(-l)^(n).
jt=i 4=0

It is known [6, p. 81] that

EG,(p -j;v -j)(-l)Vy(n) + (-l)V,(n) =0 1 Ú p ^ n
3=0

which completes the proof of Theorem 1 by virtue of (3.17).

Remark. We assumed in (3.3) that p is bounded. This requirement was made

for purely technical reasons. Our conclusions are valid under the weaker condition

m

Up(-,tj) 6 Ll(R\ œ\ X), 1 g m g 2n + 1.
3=1

4. The Solutions of Jp(¿, í)p(£> s)\(d£) = £ min (s, £)• In Section 3 we reduced

the problem of determining quadrature formulas to finding a solution pair of the

integral relation (3.2) for the case n = 1. We will solve this problem by determining

the solutions of

(4.1) /    p(x,t)p(x, s)\(dx) = I min (s, í)

t This condition is actually necessary and sufficient, but we only require its sufficiency.
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subject to the conditions

(4.2) X is a symmetric probability measure on (B1,

(4.3) P(x,t) = -p(-x,t)(Xa.e.),

(4.4) p G L2(Ri X 71; (B1 X (BÎo.u ; X X m)

where p denotes Lebesgue measure.

Note that it suffices to determine the solutions of

(4.l') /    p(x, t)p(x, s)\(dx) = | min (s, í)
Jo

subject to the conditions

(4.2')    X is a measure on the Borel sets (B+1 of R+1 = [0, <» ), MP+1) = \,

(4.4')    p € L2(R+  X J1; (B+1 X «{o.i] ; X X p).

The solutions of (4.1)-(4.4) are then obtained by taking X to be the even extension

of X to (Bl and p the odd extension (in x) of j5 to R1 X I.

Theorem 2. The solutions of (4.l'), (4.2'), and (4.4') are given by

00

(4.5) p(x, t) ~   E *y(0**(*)
y,*=i

w/iere

(i) i/ie {<pj} satisfy ¡I \ min (s, t)<pj(t) dt = riJxpj(s), where

(1 á i <  °°)    and     f 4>y2(í) di = 1;

(ii) {i'fc} is any complete orthonormal set in L2(R+, (&+, X); and

(iii)  (a;i , ay2) = E*-i o>i.*a32.* = Pifih.h >

where S^,,-, ¿s i/ie nsnai Kronecker delta.

Proof. It is known that

00

(4.6) imin(«,i) = E My4>y(s)4>y(i)-
3=1

Expanding p in its Fourier series (4.5), we substitute into (4.1') and use Parseval's

theorem and (4.6) to infer that

(a3i j &h)   = P-Ji"ii.h •

Since
00

E My < °° >
3=1

our conclusion is obtained.

Example 1 iCameron). Let X be Lebesgue measure on [ — \, §] and

p(u, t) = 1/V2 if   0 < u g \    and    2u á í á 1

= -p( -n, í)        if    -i á w < 0    and    -2u á í á 1

= 0 otherwise.

l/2j - 1   N
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Example 2 (Vladimirov). Let X be the measure on (B determined by

X{(- « ,x]}  = E        X,
—*<*<«>;*£s

where

1       1 - Xo
X,- -

(W
— X-*

= Xo 6 [0, 1)

if 1 á k < co

if— oo  < fc ̂  - 1

if ft = 0

and

1/2

Pik, t) = ¿|r4y0}   sin (2* - i) g *      if i ^ * -

= -p(- ä,o
= 0

Example 3. Starting from the formula

1   Z-00 sin TOZ

it J-oo     a;

we observe

1  /"" 1 — cos Ax 1   - cos Bx

TV  J-oo

if — oo < Ä; £ - ]

if k = 0.

, M     Ar) .

dx = sgn to,

dz = min (A, 5)    if   i,B^ 0.

We now define the pair (X   , p   ) for 0 < r <  <» by

•'ant-LH 4 Jsnt-i.!]'      4

tr),(i ,s      /2\1/21 - cos in
P   («, 0=1^-)    -;-

\3ir/ w2

/        2       \1/2
= ( tt;—,   ,.    )     | u |r(l — cos tu) if 1 < u < co

\(2r + l)x/

if 0 < u á 1

,(2r + 1)»

=  -PMi-u,t) if -co   < u < 0.

Let *ü0n denote the total variation of 0n with respect toíonO ^ í ^ 1. Then,

Example 1 Example 2 Example 3

€ ¿"(A1 X 71) 6 ¿"(A1 X 71) € L2+ll^-"iRl X Z1)       for all r? > 0

Í Iß+W'^R1 X i"1)

=U0n € ir(&;vn) Í LUÄ1;^) € L»+w+»-»(äi ; „„«)       for all ij > 0
Í Z^+w+oCa'î^W)
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5. The Error Estimate. Suppose £kla'bl is a quadrature formula for the Riemann

integral $af(x) dx chosen so that £*[o'61(/) = jlf(x) dx whenever / is a poly-

nomial of degree k. In order to improve the accuracy of such a formula the interval

of integration [a, b] is partitioned into sub intervals {A,jîLi and the formula applied

within each subinterval; i.e., we approximate

f fix) dx
J a

by
m

E ££■•(/).
i=l

Under suitable conditions the error

rb
dx£(/) = Ê £**(/) - f fix)

i=l Ja

is OiAeW) as A = max | A< | —> 0, the exponent eik) being characteristic of the

quadrature formula £k["'b]. The subdivision of the range of integration is also at

our disposal in the Wiener integral. The form it takes is given by Cameron's Mixed

Integration Theorem (Lemma 2). The exponent eik), as we shall see, is dependent

upon the integrability of T)0„ .

Let C* denote the family of functions on [0, 1] of the form

*(■) + (/- P-)en(n, ■)

where x£ C, 1 ^ to < co and u £ Rn.

Theorem -3. Let F 6 Z/(C, Q, w) admit an extension to C   which we continue to

denote by F. Suppose

2n+l    ¡.      y

F\xo + x] = F[x0] + E   /   II xitk)pi.^idti X • • • X dt,)
(5.1) i=i  J''*-i

+ (R„(x0 ; x)xo, x € C

where

(i) iiy,l0 is a regular signed measure of finite total variation, || ¿ty,I0 ||, with

(5.2) || ßj,o II € L\C, e, w),

\(Rnix0;x) \ úlf  \x(a) \2 ds\

(5.3) (ii)
X i Ai exp B /   | x(s) A- x0(s) |2 ds A- A2 exp B j   \ x0(s) |2 ds

2 ,
xo, x e C; 0 < B < w/4,

and such that

(iii) equations (5.1)-(5.3) continue to hold for xo € C and x* d C .

Then, if 0„ is bounded, we have, as m —> «,
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(5.4)

o(D

o(to-')

&m,n(F) -   f   e„.(y) dy f F[(I - Pm)x + 9m(j, •)]*>(<&)

- f   e„,(y) dy f   F[(I - P,„)0»(u, •) + ¥;.(y, OK(du)
JRm JRn

if V6n £ LPiRn, <B", r.) /or any p > 1

zf <U0„ € Lp(ß", (B", »„) /or some p,

1 < p < 2n + 2

«,^, = [¡] + (p-2[¡]-l)+

[0(TO-(n+1> ) if ven e L2in+1\Rn, <B", „„)

w/iere

(i) *m(y, i) = E;:=i (2/»)(yy/(Sy - 1))V2 sin (2¿ - 1)^/2,
(ii)  [ ] ¿s i/ie "integer part of   ", and

(iii) a+ = max (a, 0).

Proof. We have

S«,„(F) = S„,»,i(F) - 8„.,„,2(F) =  /    em(y) dy f (R„(*„,(y, ■); (I - Pm)x)w(dx)
J Rm J C

-        e„,(y) dy /   (R„(¥m(y, • ); (7 - Pj0„(u, • ))vn(du)
J Rm J Rn

by virtue of the construction of the pair (vn , 6„) and the fact that

2n+l     »       y

E   /   II ((7 - P»)¡c)(í*)My.»m(,..)(d«i X ••• X díy)
y—l   Jr) &=i

is an element of 6>2n+i. We shall estimate &m,„,i(F) and &m,„,2(F) separately. Since

f ((I - Pm)x(s))2ds= E -J f x(s)aj(s) dsV ,
Jo 3>m *     (JO J

we have, by Lemma 1,

/{jf((7 -Pm)x(s))2 dsV' w(dx) = 0(to-("+i))

as m —» cc . Since

expß f  |*,„(y,s) + ((/ - Pm)x(s)) |2ds
Jo

= exp B /  *OT2(y, s) ds-exp ¿? /   ((7 — Pm)x(s))2 ds
Jo Jo

^ exp B /   *,„"'(y, s) ds-exp B j   x2(s) ds,
Jo Jo

we have, by Holder's inequality,
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/c{jf(U - P-)x(a))* ds\n+1

(5.5) xjexp B jf  |*m(y,s) + ((7 - Pm)x(a)) \2ds\w(dx)

= exp B f\m2(y, s)dsX 0(m~(n+1)).
Jo

Finally,

f   em(y) jexp B f *m2(y, s) da\ dy -» (sec (51/2))1/2   as   m-» «,

which, with (5.5), shows that

(5.6) em.».i(F) = 0(wT(n+1))    as   to^co.

In estimating the rate at which &m,n,2(F) —» 0, we no longer have Lemma 1 at our

disposal. Let us assume that 0„ € L2r+1+<(Ä", (B", vn) where r is an integer, 0 ^ r ^

n and 0 < e < 1. We have

| (7 - Pm)0„(u,s) |2 ds = E -s    /   «y(s)0n(u, s) ds
3>m 7T    |  Jo

(5.7) = E-_
££> 7T2 (2/ -   l)T/2

= |('O0b)(u)|2O(to-1),

I r1
—T-    /   cos (2j - 1) £ s d, 0„(u, s)
7T/Z   |  Jo ¿

which yields

(5.8) jjf1 | (7 - Pm)0„(u, s) |2 d

On the other hand,

[  | (7 - Pj0„(u, s) |2 ds ^ E -
J0 3>>» ""

(5.9)

(2j - l)x/2 |

I   f1
X   |  (W»)(U)  |1+i      /    0„(U, S)ay(s) ds

I Jo

= icu0n)(u)r+to(TO-').

Taken together, (5.8) and (5.9) imply

¡If | (7 - Pm)0n(u, s) |2 dsV ' Vn(du)

(5.10) *"    °

= / | CU0B)(u) |2r+1+<o(TO-(r+,,),B(du).

We again note that
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(5.11)

cfe

exp B /   | ¥ro(y, s) + (7 - P„t)0„(u, s) |2 ds
Jo

= exp B I   yj(y, s) ds-exp B /   | (7 — Pm)0„(u, s) |2 ds
Jo Jo

^ exp B f *J(y, s) ds-exp B f  \ 0B(u, s) |2
Jo Jo

^ D exp /  ^„,2(y, s) ds
Jo

since 0„ is bounded. Equations (5.10) and (5.11) together yield

(5.12) &m.n.2(F) = o(nT)

with 7? = r + e, and hence, &m,n(F) = o(m"^). If 1)0» £ L2(n+1)(P", (Bn, »»»), then

we may take r = n A- 1 in (5.8) and replace 77 in (5.12) by n + 1 and "0" by

"0". Finally, if 030« £ Lp(Rn, <B", »„) for any p > 1, then Parseval's theorem,

applied to the left member of (5.10), yields &m,n,i(F) = o(l), and hence, &m,n(F) =

o(l).

6. Numerical Results. In this section we will give a summary of the results of

numerical experiments performed with certain of the formulas derived above.

We evaluate the functionals by a variety of formulas. In most cases our formulas

reduce to evaluating finite-fold integrals. We do this by Monte Carlo. The slowness

of the convergence of the Monte Carlo method for integrals of large multiplicity is

the limiting factor in accuracy of our results. We conclude this section with a table

of the coefficients Cy(n) needed in our methods.

The mixed integration formula developed in Section 5 is

(6.1) f F[x] dwx =  [   em(y) dy  [ F[(I - Pm)x + Vn(y, -)]w(dx).
Jc J Bm Jc

We will first apply this formula to integrate the functional exp || x ||2. It is known

that to five figures

(6.2) /exp f x2(t) dtw(dx) = 1.3605.
•¡c Jo

We first use the approximation formulas corresponding to the Cameron type (Ex-

Table I (Eq. (6.3))

3
4

10
20
30
40
50

1.35
1.34
1.39
1.30
1.39
1.40
1.33

1.31
1.34
1.34
1.35
1.31
1.36
1.32

1.41
1.36
1.39
1.39
1.33
1.30

1.41
1.36
1.43
1.36
1.38

1.31
1.38
1.31
1.40
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ample 1 in Section 4) in the right member of (6.1). With F[x] = || x ||2 this becomes

.1/2 ,.1/2

/    em(y) dy I      ■■■ exp
Jü<n J-l/2 J-l/2

1

(6.3)

y 3=r+i (2/ - i)2

X Í E Ciin) sgn ui cos {(2/ — l)xUj} J

+ i S (2FTTP 2// dwi •

Here and hereafter, n is the parameter describing the degree of exactness of the

approximation formula.

The integration dy in (6.3) may be performed to yield

-   / 4 V1'2   fm fm [4     y, l

,     s    M V        T2(2/ - 1)7       i-i/2 ' ' ' i-i/2 6XP U2 Ai (2j - l)2

X ( E ciin) sgn it¡ cos {(2/ — l)7rw¡} J    dwi • • • dun .

The m A- n-fold integral in (6.3) and the TO-fold integral in (6.4) were evalu-

ated by a Monte Carlo method. The results are given in Tables I and II below.

In these tables we see that the results are in rather good agreement with the exact

answer 1.3605. Indeed, the error is at most 5% in Table I while it is at most 0.22%

in Table II. In Table II we see that the results are invariant with increasing n

but improve as expected with increasing to. On the other hand, Table I shows in-

Table II (Eq. (6.4))

m

3
4

10
20
30
40
50

1.3567
1.3570
1.3576
1.3585
1.3589
1.3592
1.3594

n

1.3554
1.3572
1.3578
1.3586
1.3589
1.3592
1.3593

1.3571
1.3567
1.3579
1.3585
1.3589
1.3592

1.3554
1.3573
1.3576
1.3585

Table III (Eq. (6.5)) (n = 2)

m

3
4

10
20
30
40
50

1.3264
1.3263
1.3263
1.3270
1.3308
1.3314
1.3317
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sensitivity to both m and n. Unfortunately, the quality of our results is limited by

the necessity to use Monte Carlo methods for evaluating m 4- n- or n-fold in-

tegrals. Tables I and II represent calculations which sample the integrands in (6.3)

and (6.4) at 300 points. In Table II the relatively small multiplicity of integration

enabled 300 samplings to produce excellent results. In Table I the Monte Carlo

method needs very many more iterations before an accurate test of the quality of

the methods can be made. Note, however, that the rows m = 3 and to = 4 in

Table I (small multiplicity of integration) show the right relative behavior.

We next consider the approximation formula of the Vladimirov type (Example

2 in Section 4) applied to the right member of (6.1) with F[x] = exp || x \\2. In this

case all integrations may be performed, and we get for the approximation

2-mII[(2j - 1)V
y-i

4]l/2 E  x4l
k\•••*»

(6.5) X exp c«(n)cß(n)ö\kj,\kß\
\_2  a,ß=l

X sgn (lcakß) f 1 - E Suj.yji 1 - E 5|*„i,oJ   •

This expression was evaluated for n = 2 and several values of m. The results are

given in Table III. The results have the proper behavior relative to to, and we see

that, as expected, they are less accurate than those in Table II.

Now we consider the Wiener integral

(6.6) j exp - (f V(x(r)) drj w(dx)

Table IV

m

3
4
5

10
20

.64

.65

.66

.64

.65

n

.64

.66

.62

.65

.66

.66

.67

.64

.65

.65

.66

.64

.69

.64

.65

EXACT
ANSWER

_L L
500       1000       1500

NUMBER OF SAMPLINGS

Fig. 1

2000
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where

(6.7)
va) = 1

= 0

I > o

I 10.

This integral is the expected value of the fundamental solution at t

partial differential equation

1 of the

(6.8)
OU 1   d U Tr/     \
17 = öFi _ Vix)u-
dt        2 dx2

Table V

ci(2
c2(2

ci(3
c2(3

c3(3

ci(4
c2(4

c3(4

c*(4

ci(5
c2(5

c8(5
c4(5

c5(5

ci(6
c2(6

c3(6
c4(6
c5(6

c6(6

ci(7
c2(7
c3(7

c4(7
c6(7

c6(7
c7(7

ci(8
c2(8
c3(8

c4(8

c6(8
c6(8

0,(8
c8(8

.77688698 -

.77688698 +

.79154171

.59266106 4-

.59266106 -

.69700524 +

.69700524 -

.46880439 +

.46880439 -

.67719117

.59917088 +

.59917088 -

.38364247 +

.38364247 -

.62251030 +

.62251030 -

.51649093 +

.51649093 -

.32260387 +

.32260387 -

.60203804

.44947612 +

.44947612 -

.56252567 +

.56252567 -

.27715672 +

.27715672 -

.24221770 +

.24221770 -

.50659500 +

.50659500 -

.56540275 +

.56540275 -

.39536845 +

.39536845 -

.32179713?"

.32179713Í

.405606lOi

.40560610t

.16865045z

.16865045z

.42089298z

.42089298z'

.25286159z

.25286159z

.41418658z

.41418658z

.10720664z

.10720664z

.29438975z

.29438975z

.40024508z

.40024508?'

.31376828z

.31376828z

.17408303z

.17408303z

.38438162z

.38438162z'

. 36859030z

.36859030z

.21566945z

.21566945z

.07574939z'

.07574939z

.32123876z

.32123876z
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The exact value of this integral is known to be

(6.9) - /     exp (-cos2 0) dd = 0.6450.
TV  Jo

We use the mixed integration formula (6.1) and the approximations of the Cam-

eron type. This leads to an m A- n-fold integral which we do not reproduce here.

This latter integral is evaluated by Monte Carlo. The result of sampling the in-

tegrand at 200 points is given in Table IV. The results in Table IV, with one ex-

ception, are within 4% of the exact answer. The deficiencies of Monte Carlo do not

allow us to see the correct behavior of the results as to and n vary. To show the

influence of the Monte Carlo method we ran the case m — 5, n = 2 in Table IV

for 2000 samplings of the integrand. The final result for the integral was 0.652. In

Fig. 1 we reproduce a running account of this Monte Carlo calculation.

The integration formulas which we have derived require that x(t) be replaced

by a complex-valued expression since the cy(n) are complex-valued. If F[x] is

given, a priori, for real x only as in (6.6) and (6.7), an appropriate complex ex-

tension must be chosen before our methods may be applied. In the function (6.7)

we use as a complex extension

7(£) = 1       Re $ > 0,
Í6.10)

= 0       Re í ^ 0.

The method of prescribing a complex extension is not well defined. This matter

remains an open question which we hope to look into.

Finally, we include in Table V a list of values of the coefficients Cy(n) needed

in our methods.
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