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Midpoint Quadrature Formulas

By Seymour Haber

A family of quadrature formulas for the interval (0, 1) can be constructed in

the following manner: For any positive integer n, we partition (0, 1) into subinter-

vals Ii, I2, • ■ ■, In ili being the leftmost, I2 adjacent to it, etc.) of lengths ah a2,

• ■ -, an, respectively. Now let xk be the midpoint of Ik, for k = 1, ■ • ■ ,n, and take

(1) aifOxi) + • • • + a„f(Xn)

as the approximation to flf(x)dx. The simplest of these rules is the "Euler's" or

"midpoint" rule

j fix)dx~fih).
Jo

We will refer to the members of this family as "midpoint quadrature formulas" and

determine their properties. We first find their "degrees of precision"—that is, for

any formula, the highest integer p such that the formula is exact for all polynomials

of degree p or lower.

Theorem 1. The degree of precision of a midpoint quadrature formula is 1.

Proof. The formula is exact for constants, since necessarily ai + a2 + • ■ ■ + an

= 1. To check the exactness of the formula for f(x) = x, we first note that

/r>\ Ol ,    a2 r l l     On
(2) xi = —,x2 = ai + — , ■■■ ,xn = ai+ ■■• + an-i + -5-.

So for the integral J\ x dx, (1) gives us

ffli(ai/2) + a2(ai + a2/2) + • • • + a„(ai + • • • + an-i + an/2) .
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But this is just

l/„  2
2 (ai  + a2  + • • • + an  + 2aia2 + 2aias + • • • + 2an-ian) ,

or |(ai +  • • • + an)2, which is \. Thus the degree of precision is at least one. To

show it is no greater, we calculate error in integrating x2/2 by the rule :

/12 n 2 i i     » / \2

-7- dx — J^Oi-A = - — r 2 oiai + a2+ • • • + a,_i + +■ J  .

Multiplying out and collecting terms in the last sum, we obtain:

X OiX? = 7 ]Ç a»3 + ¿2 ata2 + 2   Z   aiajak ,
i ^        i Ír*j téj^k

where the indices of summation run from 1 to n.

Now

1 = (ßi + • • • + an)3 = ^ a3 + 3 Z-, OiO2 + 6   Z,   a^jOk ,
i ir* i ir^j^k

so that

1 V> 2 1     /      3     , , 3s.
Ö —  ¿_j OiXi   = — (ai   +  • • ■ + a» ) ■

It follows that

/i   2 2       ,
7- da; — 2 a,■ -+ = ¡-r (a/ + • • • + a«3) > 0 ,

which proves the theorem.

Theorem 2. The error of a midpoint quadrature formula, for an integrand with

continuous second derivative, is given by

(4) fgfix)dx - Ç aifixi) = ¿ (ax3 + • • • + aM3)/''(£)

for some £ in (0, 1).
Proof. By a general remainder theorem (see, e.g., [1]) the error may be written

in the form

(5) ff"(t)K(t)dt
J 0

where

K(t) = (1 ~ °2 - E <-<(*, - 0 .

To derive (4) from (5) it is sufficient to show that K(t) does not change sign in

(0, 1) ; for then we may write

jlf"(t)K(t)dt=f"(£)jlK(t)dt,

and, taking f(x) = x2/2, we see from (3) that
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/   K(t)dt   =   ̂   (Cl*  +   ■ • •   +  On')   .

We shall show that, in fact, K(t) ^ 0 for t G [0, 1].

For t between xk and xk+i,

n

2K(t) = (1 - t)2 - 2   £  Oí(xí - t)
i=k+l

n n

= (1 - t)2 - 2   E  Oi(l - t) + 2   £ a,-(l - Xi) .
i=k+l i=k+l

Now, in fact

n

2   X  a>(l — ^») = iok+i + ak+2 + • • • + an)2.
i=k+l

To prove this by induction, we need only show that

2akil — xk) = a2 + 2ak(ak+i + ■ ■ ■ + an) ,

which follows directly from the fact that

xk = 1 — an — On-i — • • ■ — ak+i — ak/2 .

Therefore, in [xk, xk+i),

2K(t) = ((1 -t) - (ak+i + ■•■ +an))2^0;

and it can similarly be shown that K is nonnegative in [0, Xi] and [x„,i].

It is easy to see that, given n, the coefficient (ai3 + • • • + aA)/2A in (4) is

least when ai — a2 = ■ ■ • = an = 1/n, so that for any n, the "best" midpoint

quadrature rule is simply the repeated Euler's rule.
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