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I. Introduction. In this paper, we determine the asymptotic representation for

a class of (r-functions,

<\ \ *> w>(\\       nM+2-1   (,l,aP,l—n,n + y+ l\
(i) *„   {x) = Gp+3'Q+2Vi,ß+i,bQ J'

as n —> <x>, n an integer. For a treatment of the (?-function, see [1].

These functions occur as coefficients in the Jacobi polynomial expansions of

certain higher transcendental functions. For example, we have [2]

f(Xx) = GfciiJ1'/*) = ± (2n + 1^(1 + ̂  ^iVRn^il/x) ,
,c,\ \    \   oq  /       „=o      i \n + p + I)
W 1< X  <   00   ,

where y = a + ß + 1 and RAa-ß)iy) = PAa'ß)i2y — 1) is the shifted Jacobi poly-

nomial. Eq. (2) is valid for

(3) M > £±|-\ |argX| < x[m + ^-\-^] ,        X ̂  0

and for a, ß, a i, b¡ suitably restricted. (Our analysis will reveal that many of these

restrictions may be dropped.)

Since fi\x) has an asymptotic representation in descending powers of \x, (2)

may be interpreted as a summation process which converts the generally divergent

expansion into a convergent one. Important special cases of (2) yield expansions

for the confluent hypergeometric function \p(a, c; \x) and Lommel functions.

We will treat only the case Q — P — 1 > 0 since the case P + 1 ^ Q may be

handled by an elementary analysis. In the former, <E>n(M), as we shall see, has the

unusual behavior of exponential decay as n —-> °o f in contrast to the latter case,

where $>AM) behaves as inverse powers of w!, or at worst (P + 1 = Q), algebraically

in n.

In Section II, we first prove three lemmas; the first establishes an integral repre-

sentation for $„(ö)(x); the second estimates for large n a closely related integral,

and the third gives the desired asymptotic formula for $n(e)(X). Our main theorem

follows when we find we can express <Ên(A/)(A) as a linear combination of the func-

tions $„(e)[X exp (wi(Q - M - 2k))].

Section III is devoted to examples.

There are quantities and assumptions about them which occur frequently in

this paper, and they will always be as below :
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(i) M, P, Q integers ^ 0 ,       0 g M á Q ]

(ii) ß, y, a,-, bj complex constants,       i = 1, 2, • • •, P ;       j = 1, 2, • • •, Q ;

(iii) X a complex variable ¿¿ 0 ;

(iv) b„ ß + 1 * 0, -1, -2, • • • ,       j = 1, 2, ■ ■ -, Q ;

(A)       (v) Q - P - 1 = 1/s > 0 ,        w = (s + 1/2)-1 ,        5 = min [«*, w/2] ;

« p
(vi) a = X) &j - Z) ai ;

i=i      j=i
-3ü>/2

3*
(vii) Vn(x) = exp {_n[(2L±.iy-'* _ I

■]}(3s — 1)    _iW2 ,

"t"l0(2s+l) "+"

Assumptions (iii)-(iv) are necessary to guarantee the existence of (1). We also fre-

quently use the shorthand notation

p Q

(5) T(aP - z) = Il r(ay - 2) ,        r(&<, - z) = Ü r(6y - z) .
y=i j-i

II. Results.

Lemma 1. Let

(6) -ir/2s < arg X + <p < ir/2s ,        -*• < <p < * ,

and n be a positive integer, n > Re(—ß — 1), n > —Re(6y) ,j=l,2,---,Q.

Then

i7\ (bm(\~, - t — \nAn I _f   Rj\t)dt_
(7) *„    (X)-(    )r     Jo d+d + ^/y^d-H)-'

where

(g,       b<m) - oixi^(A/AAA)/2, ly+2)/2) •
Proof. The above result for <j> = 0 follows from an integral given by Saxena [3].

We give the proof, however, since it is short and since it involves relationships

which will be used subsequently. We first demonstrate the convergence of the in-

tegral. At the origin, the integral is a sum of functions [4] which behave like

0[<n-i+6)];       i-1,2, ...,Q',   or   0[<-+*].

For I ¿I —> 00, we have [5]

RÇ\t) = s1/2O)(1-s)/2s(X0eexp (-(\t)s/s)[l + 0(CS)] ,

(9)      |argX + 0| <t(1/« + 6),

-{l,Q*£+l, e=-i + s(ß-y + A),

and thus R decays exponentially, since (6) implies that |arg (X£)*| < w/2.
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Now R may be represented as the Mellin-Barnes integral [1, p. 207].

rim       Rf\n -J-f r(g+ i - z)r(bQ - z)(xt)zdz
1    j K   }      2« JL T(aP - z)T((y + l)/2 - z)T((y + 2)/2 - z) '

where L runs from — i<*> to i<*> in such a manner that all the poles of the integrand

are to the right of the path; L can be chosen so that the integral converges abso-

lutely.

When (10) is substituted in (7), the order of integration can be interchanged by

absolute convergence, and Lemma 1 follows by application of the known integral

j- «p -*» f(i + (i + tf'y dt = 22a+b+i T(g+l)T(-2a~b-l)rJn (1 + 01/2 T(-a-b)

for -ir < <p < it , Re (a + 6/2) < -1/2 , Re (a) > -1.

Lemma 2. Let

/•■so exp (i«) ,n+c\   —zt'

[1 + (1 + ¡)^r-..(1 + ,r " + "vm*,
where C\, c2, z are all complex quantities, n and s are real, 0 < 8 I 1, M(t) is analytic

and bounded in the sector |arg i| ^ |<£| < it, \t\ è e > 0, and for n sufficiently large,

tnM(t) is finite as t —» 0 in that sector. Also

(13) -ir(s+ h) <argz < ir(s + h) ,        z^Q,

and <b = arg to, where to is the root of

(14) ¿os (1 + ¿o)1/2 - n/zs = p,

which for large n behaves as

(15) ¿o~pw.

Then the integral converges for n sufficiently large and we have

(16) Ln(z) = (2^/n)1/2pw(c'-Cs/2+3/4)Fn(p)[l + 0(n~s)] ,        n -+ °o .

Proof. The proof is by application of the method of steepest descent. First, let

<p be unrestricted. Then the integral will converge if

(17) -ir < <f> < w , -w/2 < arg z + s<p < vr/2 ,

but since <p <~ — w arg z, n —» <x>, the conditions (17) reduce to (13) and, indeed,

\<p\ < 7T, as stated in the hypotheses.

Let

/oo exp( '*'

G(t)eA^dt,

An(t) = -zts + n In t - 2n In [1 + (1 + t)1/2] .

The saddle point in question is at Ana)(to)   =  0, which gives (14), and one

verifies that
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For higher derivatives of An we have

(20) An(k)(to) = Oint0~';-1/2) ,       k => 1 .

If we write

/•!+;"«
(21) Sniz) = toeA"Uo) j       GiUu)e"^u)du,

where

Mn   =   5n/|<o|   , V   =    ( — ¿0 /2)An       (to)  ,

(22) ^n._ M.(1)(M(m- I)8 _ f<MlB(4)(*o)(i*- l)4
<P\U) —      \u

and make the choice

<p(u) = —Ou — 1)
3An(2)ito) 12Anmito)

(23) Sn = »•<»-'» ,

then Lniz) ~ *S„(z), the neglected portion of the integrand being exponentially sub-

dominant to Sniz) : in fact, we have

/c>a\ exp [i4.„(i!o ± s5„e   )] r    „ „s/3 ...   . . .       ^/im
(24) exp[An(t0)]- =     P ^~ eXp ^ico/2) arg2) + °^1)] '

where K > 0. By (20), every term in the series for <p(u) is a bounded function of

n. Thus we can make the substitution <p = — f2 in (21) and proceed in the usual

fashion. The lemma follows, since exp [4„(i0)] = Vn(p), and v~112, G(t0) are easily

estimated.

Lemma 3. Let |arg X| < ir(l/2s + 1) and n be integral. Then

(25) *„(Q)(X) = (-)n(™s)U2(2ir)1/2Y'nd>Vn[n\-s][l + 0(n~s)] ,

n —> oo, where

(26) di = |[- | + s[ß + A + |]J, d, = <o[- | - 1 + s(- | - 7 + 0 + AJJ .

Proof. In the expansion (9), include the remainder term, i.e., write [1 + 0(t~s)]

= [1 + M(t)trs] and substitute (9) in (7). Then the hypotheses of Lemma 2 are

satisfied, and a straightforward identification of parameters gives (25).

Now, using the reflection formula for the gamma function, we find that

<mV s = tAa! [     r(i-z)rQ3 + i - z)T(bQ - z)r(z)
,07s "     K)       2wi JLT(ap- z)T(l -n - z)Y(n + y + 1 - z)
\¿i) Q

X   H   sin w(bj — z)\zdz .
j=M+l

By decomposing the sine product into its exponential factors, we may write

/ Q \ Q-M

(28)    *„W(X) = (-2«)w-Qexp(-,rï   E   b,) ?, ßk™*™[\e*«Q-M-m],
\ j=M+l       /    A-=0

where pkiM) is the coefficient of xk in the product
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Q

(29) IT    (1 - *exp (2irt6y)) ,
j=M+l

and empty sums are zero, empty products unity.

We thus have our main

Theorem. Let M > (P + Q - l)/2, |arg X| < ir[l/2s + 1 + M - Q], n in-

tegral. Then

-   (M) /s s /       sn/ sl/2/r,    \l/2s..d,    rf. /       o     -\M—Q
*n     (X) = ( —) (ttus)     (2w)      X  n -( — 2m)

(30)
Q-M

X exp (-«Il   bj - diiQ - M)jJ
Q-M

X  E M*Wexp (-2mdik)Vn[n(\e^Q-M-2k))-s]
Ä.--0

-is
X [1 + 0(n~°)] ,

n —► oo, where di, d<i, UkCM) ore as above.

III. Examples. An expansion given in [2] is

CO

(31) (\x)a*(a, c; Xx) = £ Cn(\)Tn*(l/x) ,
ji=0

lgxg œ,a+l— c, a ?¿ 0 , — 1 , — 2 , • • ■ , |argX| < 3tt/2 ,X^0, where

(32) c„(\) =  1/2 , N ;-- Gt:{\ \> I - n'n. |:  ) ,
7r1/2r(a)r(a + 1 - c)        V    1, \, a, a + 1 - c/

€0 =  1, €„ = 2, n > 0 and TAiy)  =  Tn(2y — 1) is the shifted Chebyshev poly-

nomial. Our theorem gives

C„(X) = «n(X)(-)nnrexp (-3n2/3X1/3)[l + 0(n"1/3)] ,

(33),       .,3* ,^, 47ri/2x(4a-2C+i)/6 2

'|argX|<-2-,        <n(X) =    1/2 --«     > r = - (2a - c - 1) .
z 3    T (a) T (a + 1 — c) -J

This provides the multiplicative constant missing in Németh's result [6] and agrees

with a result in Miller [7].

As shown in [2], Cn(X) satisfies a homogeneous third-order difference equation.

The Birkhoff-Trjitzinsky theory of singular difference equations [8] asserts that

there exist two other linearly independent solutions of the difference equation which

have the behavior

(34) 0S.»(X) = <72(X)(-)V exp (-3com2/3X1/3)[l + 0(n-1/3)] ,

<P3,n(X) = <r8(X)(-)Vexp (-3W2n2/3X1/3)[l + 0(n~1/3)] ,

where wi = (-1 + 31/2z')/2, o>2 = wi, |arg X| < 3tt/2.

In [2], it was stated that, for |arg X| < tt, C„(\) could be computed by using

the difference equation in the backward direction, but the proof given there is in-

correct. Nevertheless, the statement is true, as is easily seen by using (33)—(34).

Let <6lin(X) = C„(X). In the notation of [2], we find
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t, = Oyexp[3W3li ,

(35) y, = 0{vv° exp [-3.2/3X1/3(2 + co2)]}

5, = Olv" exp [-3x2/3X1/3(2 + ou)]}

But

(2 + co2) = (2 + «i) = 3"V"«,

and the requirement that -y, —> 0, ¿>„ —> 0 as v—* •» reduces to | arg (exp ( ± tí/6) X1 /3) |

< ir/2, or |arg X| < it.

For a Lommel function, we have

(Xx)1-a22-2or(l - a - b)T(l -a + 6)Ä2o-1,26(2(Xx)1/2)

(36) = ¿2)„(X)rn*(l/x) ,        lligoo,
n=0

and by [9, formula (32)], (2) and the theorem, we find

(37) DniX) = (-^"Vx^'V exp [-4n1/2X1/4][l + 0(n~1'2)] ,

|arg X| < 2x.

Also by [9, formula (26)], (2) and the theorem, we get

(38) (2Tr\x)ll2Ia[(\xfn]Ka[(Xxf'2] - ¿ En(\)Tn*(—) ,

lí ii  co, and

EA\) = (-)n23/2X1/V3/4exp[-2-21/V/V/4]

(39) X sin (| - a) + 2-2x/W4][l + 0(n~1/2)] ,        |arg X|< *

where 70(z) and íl0(«) are the modified Bessel functions.

There are a number of examples in the literature of expansions of the kind

(40) f(\x) = T.Fn(\)Tn(±)
n=0 \ X /

Mèi,

where Lemma 2 alone suffices to obtain an asymptotic formula for the coefficients,

since Fn has an appropriate integral representation, see [10], [11], [7].

For instance

p /w       to\\1/2 -3/2 i" e~XxK0(\x)xn~1/2dx

(41)      Fnix) " (2X) x   '- a + AA2n + (i + xY2r

= f /"       6XP [-mU2)fh~1 m    [1 + M(t)t-'2]dt,
2rrh   (1 -h i)     [1 -h (1 + 0     ]

by the asymptotic formula for K0, and thus

(42) Fn(X) = -^^-V3/4exp [-2(2Xn)1/2][l + OOrT112)] .
IT

Formula (42) is valid not only for values of X for which the integrals (41) converge,

but also furnishes a valid asymptotic representation for the analytic continuation
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of ^„(X) into the sector |arg X| < it. It agrees with the result given (for X real) in

[10a]; there F„(X) occurs in the Chebyshev polynomial expansion for one of the

asymptotic components of the Bessel function Jo(x).

IV. Conclusions. Actually, the expansion in [2] is more general, with coefficients

/¿on nM+2,K (, lap, 1 — n, n + y + 1 \

(43) Gp+2-Q+\X\l,ß+l,bQ J

and

(44) fi\x) = G^;QK(\x\abPQ )

where ai and K are no longer necessarily 1. Of course, one can always make oi = 1

by expanding (Xx)1_ai/(Xa;) instead of f(\x), but when K > 1 the situation changes

considerably, and the analysis is more complicated. Preliminary work indicates that

the asymptotic representation of (43) is then contaminated with terms which are

purely algebraic in n, unless ai = a2 = • • • = ok = 1 ', thus the convergence of

the more general expansion is greatly inferior to the convergence of (2). In fact,

for (2), our analysis enables us to weaken certain hypotheses : we can conclude that

the expansion converges at the end points x = 1, x = <x>, and that various re-

strictions on a,-, bj can be dropped, see [2]. The expansion is now seen to converge

for 0 ^ M ^ Q, Q > P + 1, bj, ß + 1 not zero or negative integers,

M > hiP + Q - 1), |arg X| < ir(M + (1 - P - Q)/2), ^ 0, 1 í i I
The same applies to the expansions in [10], [11], where X was assumed real. Lemma

2 shows that those expansions converge for |arg X| < it.

The advantage of our approach over using the Langer method [12] on the dif-

ferential equation satisfied by 3>„(M)(X) is twofold: the Langer method, at the pres-

ent time, is only a formal procedure, and it does not give the leading constant.

(However, if higher terms in the expansion (30) are needed, they are most easily

obtained from the differential equation.)

Since <ï>„(M)(X) satisfies a difference equation in n of order max [Q + 1, P + 2],

it might be thought that the subnormal solutions encountered in the Birkhoff-

Trjitzinsky theory could be used to prove the theorem. But the problems involved

in this approach are rather serious. Not only is the lead constant undetermined but,

for general M, P, Q, the application of the theory (even in its formulation by

Turrittin [13]) presents insuperable algebraic difficulties.
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