Distribution of the Figures 0 and 1 in the Various Orders of Binary Representations of k th Powers of Integers

By W. Gross and R. Vacca

Leibniz' observation (in Mathematischen Schriften, edited by C. I. Gerhardt, Halle, v. 7, 1863, p. 235) of the periodic repetition of the figures 0 and 1 in the columns of tables formed by writing successively the binary representations of the values taken by polynomials in x of arbitrary degree when x is given all the values of the positive integers, prompted R. Vacca to carry out counts of the figures 0 and 1 in the columns of tables formed by the k th powers of integers (with k an integer), which he did by means of appropriate programs for the FINAC electronic computer at Istituto Nazionale per le Applicazioni del Calcolo in Rome. Obviously in the order 2^{0} the number of figures equal to 1 is equal to the number of figures equal to 0 for any k. It was also observed that for $h>0$ the number of figures equal to 1 in the order 2^{h} is less than or equal to the number of figures equal to 0 , that for increasing values of h the ratio between the number of figures equal to 1 and the total number of figures within a periodic sequence tends to the value $\frac{1}{2}$ and that the value $\frac{1}{2}$ is reached periodically, in the table of k th powers, every k orders, or in all columns 2^{h} for which h is divisible by k and for $k>2$.

The "experimental" counts above referred to led to the formulation of the following theorem, the proof of which is due to W. Gross.

Theorem. Let us consider a generic natural number n in its binary representation

$$
n=\sum_{0}^{\infty} \epsilon(h, n) 2^{h}, \quad \text { with } \epsilon(h, n)=0 \text { or } 1 .
$$

The binary representation of the kth power of n, with k a positive integer, is

$$
n^{k}=\sum_{0}^{\infty} \epsilon_{k}(h, n) 2^{h}, \quad \text { with } \epsilon_{k}(h, n)=0 \text { or } 1
$$

We observe first that

$$
\epsilon_{k}\left(h, n+2^{h+1}\right)=\epsilon_{k}(h, n)
$$

or, in other words, that $\epsilon_{k}(h, n)$ is periodic with period 2^{h+1} as a function of n, due to the fact that $n \equiv m \bmod 2^{h+1}$ implies that $n^{k} \equiv m^{k} \bmod 2^{h+1}(\epsilon(h, n)$, in fact, depends only on the residue of $\left.n \bmod 2^{h+1}\right)$. We shall denote by $N_{k}(h)$ the number of $\epsilon_{k}(h, n)$ which are equal to 1 within a period, that is

$$
N_{k}(h)=\sum_{i=0}^{2^{h+1-1}} \epsilon_{k}(h, i)
$$

The values of the ratio $N_{k}(h) / 2^{h+1}$ (which is obviously equal to $\frac{1}{2}$ for $k=1$) can be listed as follows:

$$
\text { For } k=2
$$

$$
\begin{aligned}
& N_{2}(h) / 2^{h+1}=\frac{1}{2} \quad \text { for } h=0, \\
& N_{2}(h) / 2^{h+1}=\frac{1}{2}\left(1-2^{-s}\right) \quad \text { for } h>0, \text { with } s=[h / 2] .
\end{aligned}
$$

For $k>2$

$$
\begin{aligned}
& N_{k}(h) / 2^{h+1}=\frac{1}{2} \quad \text { if } k \text { is a divisor of } h, \\
& N_{k}(h) / 2^{h+1}=\frac{1}{2}\left(1-2^{-s}\right) \quad \text { if } k \text { is not a divisor of } h,
\end{aligned}
$$

where

$$
\begin{aligned}
& s=[(h+k) / k] \quad \text { if } \mu=0, \\
& s=[(h+k-\mu-2) / k] \quad \text { if } \mu \neq 0,
\end{aligned}
$$

having denoted by μ the maximum exponent such that 2^{μ} is a divisor of k. Obviously the statement that $\mu=0$ implies that k is odd. We have denoted by $[x]$ the integral part of x.

Proof. Let us begin by introducing a function similar to $N_{k}(h)$, but in which the sum is only extended to odd numbers:

$$
\begin{equation*}
\nu_{k}(h)=\sum_{m=0}^{2 h-1} \epsilon_{k}(h, 2 m+1) \tag{1}
\end{equation*}
$$

and let us express $N_{k}(h)$ in terms of $\nu_{k}(h)$, We observe, in this context, that any number i included in the interval $0 \leqq i \leqq 2^{h+1}-1$ may be written in the unique form

$$
i=2^{r}(2 m+1),
$$

with $0 \leqq m \leqq 2^{h-r}-1 ; 0 \leqq r \leqq h$, so that the sum $N_{k}(h)$ may be written in the form

$$
\begin{equation*}
N_{k}(h)=\sum_{r=0}^{h} \sum_{m=0}^{2^{h-r-1}} \epsilon_{k}\left(h, 2^{r}(2 m+1)\right) . \tag{2}
\end{equation*}
$$

We observe now that

$$
i^{k}=2^{r k}(2 m+1)^{k}
$$

from which

$$
\epsilon_{k}\left(h, 2^{r}(2 m+1)\right)=0 \quad \text { for } r k>h,
$$

whereas

$$
\epsilon_{k}\left(h, 2^{r}(2 m+1)\right)=\epsilon_{k}(h-r k,(2 m+1)) \quad \text { for } r k \leqq h .
$$

We may write therefore

$$
\begin{equation*}
N_{k}(h)=\sum_{r=0}^{[h / k]} \sum_{m=0}^{2^{h-r-1}} \epsilon_{k}(h-r k, 2 m+1), \tag{3}
\end{equation*}
$$

while, in virtue of definition (1), we have

$$
\begin{equation*}
\nu_{k}(h-r k)=\sum_{m=0}^{2^{h-r k-1}} \epsilon_{k}(h-r k, 2 m+1) . \tag{4}
\end{equation*}
$$

Due to the periodicity of ϵ_{k} with respect to n, the internal sum of formula (3) has the value

$$
\begin{equation*}
\sum_{m=0}^{2 h-r-1} \epsilon_{k}(h-r k, 2 m+1)=2^{r(k-1)} \nu_{k}(h-r k) . \tag{5}
\end{equation*}
$$

Substituting the value given by (5) into (3) we obtain

$$
\begin{equation*}
N_{k}(h)=\sum_{r=0}^{[h / k]} 2^{r(k-1)} \nu_{k}(h-r k) . \tag{6}
\end{equation*}
$$

The problem is, therefore, reduced to the computation of $\nu_{k}(h)$.
Let us observe now that $\nu_{k}(0)=1$, so that in what follows we shall limit ourselves to the consideration of cases in which $h>0$. Consider first the case of k odd and let us observe that, if x takes all the values of the odd numbers between 1 and $2^{h+1}-1$, then x^{k} takes the same values $\bmod 2^{h+1}$. This is due to the fact that for x and y both odd

$$
x^{k} \equiv y^{k} \quad \bmod 2^{h+1}
$$

if and only if

$$
x \equiv y \quad \bmod 2^{h+1}
$$

which appears immediately obvious considering that

$$
x^{k}-y^{k}=(x-y) \sum_{s=0}^{k-1} x^{s} y^{k-1-s}
$$

and that the summation on the right contains an odd number of odd terms and is, therefore, an odd number, which proves the assertion.

Remembering that the $\epsilon(h, n)$ depend only on the residue of $n \bmod 2^{h+1}$ and based on the observation above, we have that

$$
\sum_{m=0}^{2 h-1} \epsilon_{k}(h, 2 m+1)=\sum_{m=0}^{2 h-1} \epsilon(h, 2 m+1)
$$

or that

$$
\begin{equation*}
\nu_{k}(h)=\nu_{1}(h), \tag{7}
\end{equation*}
$$

and, as obviously

$$
\nu_{1}(h)=2^{h-1}
$$

the final result for k odd is

$$
\nu_{k}(h)=2^{h-1} .
$$

Take now $k=2^{\mu} \rho$ with ρ odd (where μ is the number introduced in the statement of the theorem). We have $x^{k}=\left(x^{\rho}\right)^{2^{\mu}}$ and x^{ρ} for the reasons stated above takes $\bmod 2^{h+1}$ all the values of the odd numbers between 1 and $2^{h+1}-1$ while x varies between the same bounds, so that in this case we have

$$
\sum_{m=0}^{2 h-1} \epsilon_{k}(h, 2 m+1)=\sum_{m=0}^{2 h-1} \epsilon_{2^{\mu}}(h, 2 m+1)
$$

or

$$
\nu_{k}(h)=\nu_{2^{\mu}}(h)
$$

Formula (7) is a particular case, for $\mu=0$, of the above formula. We have, therefore, reduced the problem to the computation of ν_{k}, where k is a power of 2 .

A well-known theorem of the theory of numbers states that for x odd we have

$$
\begin{equation*}
x^{2^{\mu}} \equiv 1 \quad \bmod 2^{\mu+2} \tag{8}
\end{equation*}
$$

which means that 2^{μ} powers of an odd number in the binary representation contain $(\mu+1)$ zeros on the left of the terminal 1 . This entails that for $1 \leqq h \leqq \mu+1$ we have $\nu_{2}{ }^{\mu}(h)=0$.

Let us proceed now to the case in which $h \geqq \mu+2$. Observe that the number of odd numbers between 1 and $2^{h+1}-1$ which satisfy (8) is $2^{h-1-\mu}$ and that half of them obviously has the value $\epsilon(h, n)=1$.

If we prove, therefore, that when x takes the values of the mentioned odd numbers x^{k} takes each value exactly $2^{\mu+1}$ times, we will have shown that $\nu_{k}(h)=2^{h-1}$.

In other words it is sufficient to prove that, for z odd, the congruence

$$
\begin{equation*}
x^{2^{\mu}} \equiv z^{2^{\mu}} \quad \bmod 2^{h+1} \tag{9}
\end{equation*}
$$

has exactly $2^{\mu+1}$ solutions.
We shall use a well-known representation theorem which states what follows. Any odd number may be represented $\bmod 2^{h+1}$ in the unique form

$$
x \equiv(-1)^{\alpha} 5^{\beta} \quad \bmod 2^{h+1}
$$

where α takes the values 0 and 1 and β takes those of a complete system of residues $\bmod 2^{h-1}$.

Write, then, in virtue of this representation

$$
x \equiv(-1)^{\alpha} 5^{\beta} \quad \bmod 2^{h+1} ; \quad z \equiv(-1)^{\alpha^{\prime}} 5^{\beta^{\prime}} \quad \bmod 2^{h+1}
$$

Substituting in (9) we have

$$
5^{2^{\mu_{\beta}}} \equiv 5^{2^{\mu^{\prime}}} \quad \bmod 2^{h+1}
$$

and, because the representation is unique, this relationship is equivalent to

$$
\begin{equation*}
2^{\mu} \beta \equiv 2^{\mu} \beta^{\prime} \quad \bmod 2^{h-1} \tag{10}
\end{equation*}
$$

The solutions of (10), as indicated by the general theory of congruences, coincide with those of

$$
\begin{equation*}
\beta \equiv \beta^{\prime} \quad \bmod 2^{h-\mu-1} \tag{11}
\end{equation*}
$$

Formula (10) is satisfied therefore by the 2^{μ} values of β which satisfy (11)

$$
\beta \equiv \beta^{\prime}+k 2^{h-\mu-1} \quad \bmod 2^{h-1} \quad \text { with } k=0,1, \cdots, 2^{\mu}-1
$$

This number is doubled if we take into account the fact that α can take two values.
We have proven, therefore, that

$$
\nu_{2^{\mu}}(h)=2^{h-1} \quad \text { for } h \geqq \mu+2
$$

Finally we have therefore

$$
\begin{array}{ll}
\nu_{k}(h)=1 & \text { for } h=0, \\
\nu_{k}(h)=2^{h-1} & \text { for } k \text { odd and } h>0 \text { and for } k=2^{\mu} \rho \text { and } h>\mu+1, \tag{12}\\
\nu_{k}(h)=0 & \text { for } k=2^{\mu} \rho \text { and } 0<h \leqq \mu+1
\end{array}
$$

In order to compute $N_{k}(h)$ it is now sufficient to use (6) taking into account (12). Obviously we have $N_{k}(0)=1$ and again we shall consider only cases for which $h>0$.

Let us now consider the various cases.
(a) k odd; k is not a divisor of h. We have

$$
N_{k}(h)=\sum_{r=0}^{[h / k]} 2^{r(k-1)} 2^{h-r k-1}=\sum_{r=0}^{[h / k]} 2^{h-1-r}=2^{h}\left(1-2^{-((h+k) / k]}\right) .
$$

(b) k odd; h is a multiple of k. We have

$$
N_{k}(h)=\sum_{r=0}^{h / k-1} 2^{r(k-1)} 2^{h-r k-1}+2^{h(k-1) / k}=\sum_{r=0}^{h / k-1} 2^{h-1-r}+2^{h-h / k}=2^{h}
$$

(c) k even; $h \leqq \mu+1$ (except the case $k=2, h=2$). We have obviously

$$
N_{k}(h)=0 .
$$

(d) k even; $h>\mu+1 ; k$ is not a divisor of h. We have

$$
N_{k}(h)=\sum_{r=0}^{[(h-\mu-2) / k]} 2^{r(k-1)} 2^{h-r k-1}=\sum_{r=0}^{[(h-\mu-2) / k]} 2^{h-1-r}=2^{h}\left(1-2^{-[(h+k-\mu-2) / k]}\right) .
$$

(e) k even and different from $2 ; h>\mu+1 ; k$ is a divisor of h. We have

$$
N_{k}(h)=\sum_{r=0}^{[(h-\mu-2) / k]} 2^{r(k-1)} 2^{h-r k-1}+2^{h(k-1) / k}=2^{h}\left(1-2^{-[(h+k-\mu-2) / k]}\right)+2^{h-h / k}
$$

but in the conditions which apply to the present case we also have $k \geqq \mu+2$ which implies $[(h+k-\mu-2) / k]=h / k$ so that $N_{k}(h)=2^{h}$.

The only case left is now
(f) $k=2$; h even. We have, for $h>2$

$$
N_{k}(h)=\sum_{r=0}^{h / 2-2} 2^{r} 2^{h-2 r-1}+2^{h / 2}=\sum_{r=0}^{h / 2-2} 2^{h-1-r}+2^{h / 2}=2^{h}\left(1-2^{-h / 2}\right)
$$

whereas for $h=2$ we have simply $N_{k}(h)=2$ which coincides with the previous formula.

The theorem is proved for $k>2$ by the formulas of cases from (a) to (e), whereas for $k=2$ it is proved by the formulas of cases (d) and (f), if we observe that for h odd and $k=2$ we have

$$
[(h+k-\mu-2) / k]=(h-1) / 2=[h / 2]
$$

Istituto di Matematica
Università di Bari
Bari, Italy
Compagnia Generale Automazione
20, Via Fumaroli
Roma, Italy

