Error Bounds in Gaussian Integration
of Functions of Low-Order Continuity

By Philip Rabinowitz

The standard error term in the Gaussian integration rule with N points in-
volves the derivative of order 2N of the integrand. This seems to indicate that
such a rule is not efficient for integrating functions of low-order continuity, i.e.
functions which have only a few derivatives in the entire interval of integration.
However, Stroud and Secrest [3] have shown that Gaussian integration is efficient
even in these cases. By applying Peano’s theorem [1, p. 109] to functions of low-
order continuity, they have tabulated error coefficients e, » by which the error in
integrating such functions can be bounded, provided that a bound M,, exists for
the derivative of order m of the integrand. In this case,
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where [f ()] £ M.inI = {—1 £ x £ 1}. In the present paper, we use results

from the theory of Chebyshev expansions to compute a different set of error co-
efficients d,,,y which provide sharper bounds on Ex(f) in some cases.

Let f(x) be continuous and of bounded variation in I. Then there is an ex-
pansion of the form

’
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n=0
which is uniformly convergent throughout /. Here, T’.(x) are the Chebyshev poly-
nomials of the first kind and
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where g(0) = f(cos ). By integrating the right-hand integral in (3) successively by
parts and applying the second mean-value theorem of the integral calculus after
each integration, we get the following results of interest to us. These results as
well as additional ones appear in Elliott [2].

A. Define Fi(z) = (1 — 2)'?f'(x); if F1(x) is of bounded variation in I with
|Fi(x)] £ Pyand if C; is the number of intervals in I, in each of which Fi(z) is
monotonic, then

@) la.| < 4C,Py/an’ for n=1.
B. Define Fo(z) = (1 — 29)f""(x) — xzf'(x); if Fa(z) is of bounded variation in
I with |Fay(z)| £ P, if Cs is the number of intervals in I, in each of which Fa(x)
is monotonic, and if lim,_ .1 Fi(x) = 0, then
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) lan| < 4CoPy/an® for n=1.
Let us now apply the operator Ex to (2). We get

o0
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since Ex(Th) = 0 for n < 2N. If now f(z) satisfies the conditions A, we get

4C1Py > |Ex(T,
@ Ey(p) 200 5 BN _ g, o,p,
where
(8) din = = 2 _IEN(Z'”_)I

T n=2N n
converges since [En(T,)| = 2 4+ 2/(n* — 1). This bound holds since |Ta(z)] = 1

in I and 3%, w; = 2 implying that | D2, w.Tu(zx:)| < 2 and since [, To(2)dx
= 2/(n* — 1). If f(z) satisfies conditions B, we get similarly

9 |Ex(f)| < danCaoPo
where
(10) do = 2 3 1Ex(T)]

T n=2N n

In Table 1, values of e;~ and d;n are given for 7 = 1, 2 and N = 4(3)16. We see
that d:~/e:x < 1 and that this ratio decreases with increasing N. Hence, in cases
where C.P; is not too much greater than M, (7) and (9) will provide sharper
error bounds than (1), especially for large N.

TABLE 1
N e1N . di,n €N dy
4 2.76(—1) 8.64(—2) 2.19(—2) 7.07(=3)
7 1.65(—1) 3.13(—2) 7.63(—3) 1.50(—3)
10 1.18(—1) 1.60(—2) 3.86(—3) 5.40(—4)
13 9.15(—2) 9.68(—3) 2.33(—3) 2.54(—4)
16 7.48(—2) 6.48(—3) 1.56(—3) 1.39(—4)

Examples. 1. f(z) = |z|*?. In this case, f”/(z) is unbounded in I so that using
(1), we find Ex(f) < eixM,y. Taking N = 16 and M; = 4/3, we find E(f)
= 1.0(—1). Using (7) with C1 = 3 and P; = .92, we find Eis(f) < 1.8(—2). The
actual error is 1.0(—3). For N = 4, the figures are 3.7(—1), 2.4(—1), and 2.2(—2),
respectively.

2. f(x) = |z[*”. In this case, Ex(f) < esxM. With N = 16 and M, = 40/9,
we find Ei(f) = 7.0(—3). Using (9) with C: = 3 and P; = 8/3, we find
E6(f) = 1.2(—3). The actual error is 3.5(—5). For N = 4, the figures are 9.8(—2),
5.7(—2) and 5.1(—3), respectively.
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3. f(x) = (x + 1)%4 In this case also, f/(x) is unbounded in I so that Ex(f)
=< eq,xM:1. With N = 16 and M, = (5/4)2'"* we find E16(f) < 1.1(—1). However,
F(x) satisfies conditions B so that we can use (9). With C; = 2 and P, = (5/4)2'%4,
we find E16(f) < 4.2(—4). The actual error is 8.9(—7).

Remarks. 1. This method is not restricted to Gaussian rules but is applicable
to any integration rule defined over I which integrates constants exactly. This in-
cludes the Lobatto, Radau, Newton-Cotes, Romberg and Gauss-Jacobi rules.

2. This method can be extended to cases where higher derivatives exist. Thus,
Elliott [2] gives the estimate |a.| < 4C3P3/mn* where

Fix) = (1 — a1 — 23)f""(x) — 3zf"(2) — f' ()]
satisfies conditions similar to B. However, the expressions for F; become very
complicated with increasing ¢ and it is not worth the effort to find C'; and P..

3. Elliott also gives the estimate |a,| < 4CoPo/7n where Fo(z) = f(z). How-
ever, it is probably not possible to use this method for functions with unbounded
first derivatives. This is so since D meov [En(T»)|/n probably diverges. This as-
sumption is based on the fact that for Gauss-Chebyshev integration, we can prove
divergence. The Gauss-Chebyshev integration rule is of the form

/1 f@) T -

(1) LAy = N R @)+ Exh)

where

(12) .L',-=cosﬂ2;l1r, i=1,---,N.

Since [Li Ta(@)/(1 — a®)'%dz = 0 for n = 1, it follows that En(T,)
= (x/N) 2% Tu(z:). Since T.(x) = cos (n arccos z), we have Ta(z.)
= cos (20 — )na/2N). Hence, forn = 2KN, K = 1,2, -+, Ex(Ta) = —m,

from which it follows that Y ._ov |Ex(T%)|/n diverges.

Conclusions. As Examples 1 and 2 indicate, error bounds (1), (7) and (9) may
give rather good bounds on the integration error. On the other hand, Example 3
shows that the bounds may overshoot the actual error by many orders of mag-
nitude. Nevertheless, in the absence of further information, they are the best
available for functions of low-order continuity. Since |Fi(z)| < [f'(x)] in I, (7)
will be better than (1) for small values of C;. The situation with F, is more com-
plicated but usually P» will be of the same order of magnitude as M. so that (9)
will give a better bound than (1) for small values of C.. In both cases, the critical
value of C; increases with N. In cases when the singularity is at an endpoint of
1, our method may be very advantageous. As Example 3 shows, we can use (9)
even when f”(x) is unbounded. More generally, f¢>(x) may be unbounded while
Fjii(x) is well behaved, k = 0, 1, - - -. But as mentioned above, the work involved
in calculating C;x and P;.x becomes prohibitive. On the other hand, (1) has the
advantage of simplicity especially when compared with (9), and, of course, (1) is
preferable when C'; is large. Hence there is room for both types of error bound.

The Weizmann Institute of Science
Rehovoth, Israel



434 H. A. LUTHER

1. P. J. Davis & P. RapiNowrrz, Numerical Integration, Blaisdell, Waltham, Mass., 1967.
2. D. Eruiort, “A Chebyshev series method for the numerical solution of Fredholm integral
equations,”” Comput. J., v. 6, 1963, pp. 102-111. MR 27 #5386.
.'H. StROUD & D. SFCREST, Gaussian Quadrature Formulas, Prentice-Hall, Englewood
J ., 1966. MR 34 #2185.

An Explicit Sixth-Order Runge-Kutta Formula

By H. A. Luther

1. Introduction. The system of ordinary differential equations considered has
the form

(1) dy/dx = f(x,y),  y@o) = yo.’
Here y(z) and f(z, y) are vector-valued functions
y(@) = @), 12(@), - -, ym(@)) ,
f(xi y) = (fl(x, y); fz(il}, y); °c "fm(x; y)) )

so that we are dealing with m simultaneous first-order equations.

For the fifth-order case, explicit Runge-Kutta formulas have been found whose
remainder, while of order six when y is present in (1), does become of order seven
when f is a function of z alone [3], [4]. This is due to the use of six functional sub-
stitutions, a necessary feature when y occurs nontrivially [1].

A family of explicit sixth-order formulas has been described [1]. In this family
is the formula given in the next section. Its remainder, while of order seven when
y is present in (1), is of order eight when f is a function of z alone. Here again the
possibility arises because seven functional substitutions are used, rather than six.
Once more, this is a necessity [2].

For selected equations (those not strongly dependent on y) such formulas seem
to lead to some increase in accuracy.

2. Presentation of the Formula. For the interval [z,, z, + h], Lobatto quad-
rature points leading to a remainder of order eight are
Ty et h/2, -t (T — QDUDR/14, 4+ (T4 QDIR/14, a2, + ke

A set of Runge-Kutta formulas related thereto is given below. They can be verified
by substitution in the relations given by Butcher [1].
Expressed in a usual form they are
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