A Note on a Maximum Principle
for the DuFort-Frankel Difference Equation

By Paul Gordon
Consider the parabolic partial differential equation

(1) ou/ot = ¢ 9°u/dz"

where ¢ is a positive constant.
Suppose initial and boundary conditions are given as follows:

u(0,2) = fix): O0=z=a,
(2) u®0) =f@E: 0=t=
u(t, :vl) =f3(t) : 0st=st.

Suppose that in the region 0 = t £ ¢, 0 £ = < z1, this data determines a continu-

ously differentiable solution, u(t, z), of Eq. (1). Let
®) m = max (L@, 101, O]
It is well known that (¢, x) satisfies the following boundedness property:

4) lu(t, z)] = m.

A difference equation representation for Eq. (1) would be expected, if it is to be
convergent, to satisfy some kind of a bound similar to Eq. (3). The usual explicit and
implicit difference equations satisfy precisely this bound [3, p. 13 and p. 47]. It is
also well known that the DuFort-Frankel scheme satisfies some kind of a maximum
principle. If one works with the Ly-norm, the form of the bound is quite clear [3, p.
83]. With respect to the maximum norm, it is also known that a maximum principle
holds [2, p. 127], but its form is somewhat obscure. The purpose of this note is to
derive the maximum principle satisfied by the DuFort-Frankel scheme in a relatively
elementary fashion and to exhibit the dependence of this bound on the initial data.

The DuFort-Frankel difference equation can be written as follows:

5) A+ U™ =1 - U/ + qU + Ul),
where
q = 20At/Az” Ui = U(nAt, jax) .

Let us suppose that Az is specified as some function of A¢, Ax = Ax(Af). The con-
sistency condition [3, p. 83] requires

(6) lim (At/Az) = 0.

At=0
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Instead of proceeding in the time direction, the trick we employ is to suppose
that the calculations proceed along the diagonals x + ¢ = constant. That is, at the
Nth step obtain the values of U;» satisfyingn + ¢ = N + 2. This means that at the
Nth step the following system of equations is to be solved:

) A+ QUM = UIHT = (1= UM+ U™, 1SisN.
(If any of the other boundaries are encountered by the diagonal, the system of

equations is simply cut off appropriately.) It is assumed that U, U, Us", U, are
known from the data, Eq. (2), and that the same bound is satisfied.

(8) m = II}:R!X “Uioly |Ufll7 [Uonl’ lU:1]] .
Let
9) L= (1 - U+ qUiti.

Then Eq. (7) can be solved as follows:

i—2

. —2 T—2—p
(10) 14+ )Uxnyoi = (I(IT?_“(}) Uv1 + z"& <$> Ly, .
Let

1) L, = max {]Urlt+1l; ILP—VI} .
Then,
(12) |Uxyo—i| < L.

It remains to obtain a bound for Ly. From Eqs. (9) and (10), after some manipula-
tion, we obtain the following:

i 1 7 \n |_1 q ""2"2 144\,
Ln~i= < > " ( > < e
¢ \I ¢/ U ¢ \1+q¢/ Z\ ¢ Lns

q i—1
+ (1 + q)Ln—l—z .

(14) -EN = max [_L-N—27 lLNol’ [L}V—ll’ |U11V+1|] .

But Ly® and Lx! depend on the initial data. A simple series expansion shows that
ILy’| £ C(at/Az) + |UNY],

where C is determined by the data. The same holds for Ly!. Thus,

(13)

Thus,

n At
(15) U] £ m+C5s,

where At/ Az satisfies Eq. (6). Equation (15) is now to be compared with Eq. (4).
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