On a Generalization of the Midpoint Rule*

By Franz Stetter

I. Introduction. A modified midpoint rule for the approximate calculation of weighted integrals $\int_a^b p(x)f(x)dx$, where $p(x) \geq 0$ is the weight function, has been recently proposed by Jagermann [1]. Although this formula reduces to the common midpoint rule in the particular case $p(x) \equiv 1$, in the general case of arbitrary weight functions the error does not vanish for all polynomials $\alpha + \beta x$. The purpose of this paper is to generalize the midpoint rule such that the formula is exact for polynomials of first degree and arbitrary weight function $p(x) \geq 0$.

In view of practical calculations, the repeated midpoint rule is very useful because of its simplicity and small round-off error. Moreover, an error estimation does not require higher derivatives whose bounds are often not easy to obtain. For a comparison of the repeated midpoint rule to both Gaussian quadratures and "best" quadratures we refer to Stroud and Secrest [2].

II. Generalized Midpoint Rule. We assume that the weight function p(x) does not identically vanish on any subinterval of [a, b]. Let

(1)
$$y = H(x) = \int_a^x p(t)dt$$
, $H(b) = 1$,

and let the inverse function of H (which exists because H(x) is monotonic increasing) be denoted by L:

(2)
$$x = L(y) = H^{-1}(y).$$

For $i = 0, 1, \dots, N - 1, (N \ge 1)$ we put

(3)
$$a_i = N \int_{i/N}^{(i+1)/N} L(y) dy = N \int_{x_i}^{x_{i+1}} tp(t) dt,$$

where $x_i = L(i/N)$. We now define the generalized rule by:

(4)
$$\int_{a}^{b} p(x)f(x)dx = \frac{1}{N} \sum_{i=0}^{N-1} f(a_i) + R_N.$$

Assuming $f \in C^2[a, b]$ the error R_N can be expressed by

(5)
$$R_N = \frac{1}{2} \left(\int_a^b x^2 p(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} a_i^2 \right) f''(\xi) = \frac{1}{2} C_N f''(\xi), \quad a < \xi < b.$$

Proof. Dividing [a, b] into the subintervals $[x_i, x_{i+1}]$ we obtain for the error R_N

$$R_N = \sum_{i=0}^{N-1} \left\{ \int_{x_i}^{x_{i+1}} p(x) f(x) dx - \frac{1}{N} f(a_i) \right\}.$$

Received October 30, 1967.

^{*} Work performed under the auspices of the United States Atomic Energy Commission.

By the Taylor series

$$f(x) = f(a_i) + (x - a_i)f'(a_i) + \frac{1}{2}(x - a_i)^2 f''(\xi_i)$$

and by (3) we get the expression

(6)
$$R_N = \frac{1}{2} \sum_{i=0}^{N-1} \left\{ \int_{x_i}^{x_{i+1}} (x - a_i)^2 p(x) f''(\xi_i) dx \right\}$$
$$= \frac{1}{2} \left(\sum_{i=0}^{N-1} \int_{x_i}^{x_{i+1}} (x - a_i)^2 p(x) dx \right) f''(\xi) .$$

Furthermore, it follows from (3) that

(7)
$$\sum_{i=0}^{N-1} \int_{x_i}^{x_{i+1}} (x - a_i)^2 p(x) dx = \sum_{i=0}^{N-1} \left\{ \int_{x_i}^{x_{i+1}} x^2 p(x) dx - \frac{2}{N} a_i^2 + \frac{1}{N} a_i^2 \right\}$$

$$= \int_{a}^{b} x^2 p(x) dx - \frac{1}{N} \sum_{i=0}^{N-1} a_i^2.$$

(6) and (7) yield the bound (5).

 C_N can also be interpreted as the integration error of the function $f = x^2$. It may be noted that Jagermann's modification of the midpoint rule is obtained if the integral $N \int_{i/N}^{(i+1)/N} L(y)dy$ in (3) is approximated by the (ordinary) midpoint rule, i.e., by L((2i+1)/2N).

III. Examples.

- (a) For $p(x) \equiv 1$ and a = 0, b = 1, we obtain $a_i = (2i + 1)/2N$ and, from (5), $C_N = 1/12N^2$ in accordance with the common midpoint rule.
- (b) Let $p(x) = \pi^{-1} (1 x^2)^{-1/2}$ and a = -1, b = 1. From $L(y) = -\cos \pi y$ it immediately follows that:

$$a_i = -\frac{2N}{\pi} \sin \frac{\pi}{2N} \cos \frac{2i+1}{2N} \pi$$
 $(i = 0, \dots, N-1)$

and

$$C_N = \frac{1}{2} - \frac{1}{N} \sum_{i=0}^{N-1} a_i^2 = \frac{1}{2} \quad \text{for } N = 1$$
$$= \frac{1}{2} - \frac{2N^2}{2N} \sin^2 \frac{\pi}{2N} \quad \text{for } N \ge 2.$$

Obviously, $C_N = O(N^{-2})$.

(c) For the infinite interval $a=0, b=\infty$ and the weight function $p(x)=e^{-x}$ we get from $L(y)=-\log (1-y)$:

$$a_{N-1}=1+\log N\ ,$$

$$a_i=1+\log N-(N-i-1)\log \left(N-i-1\right)-(N-i)\log \left(N-i\right)$$
 for $i=0,\,1,\,\cdots,\,N-2.$ Numerically computed values of C_N

N	1	2	5	10	20	50
C_N	1.000	0.520	0.213	0.108	0.054	0.022

show that C_N goes to 0 with the order $O(N^{-1})$.

Applied Mathematics Division Argonne National Laboratory Argonne, Illinois 60439

D. Jagermann, "Investigation of a modified mid-point quadrature formula," Math. Comp.,
 v. 20, 1966, pp. 79-89. MR 32 #8499.
 A. H. Stroud & D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, N. J., 1966. MR 34 #2185.