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1. Introduction. Clenshaw and Curtis [1] have proposed a quadrature scheme

based on the "practical" abscissas x¡ — cos (iir/n), i = 0(l)n and they have also

discussed the estimation of error of the quadrature formula. Elliott [2] has dis-

cussed the estimation of truncation errors in the two Chebyshev series approxima-

tions for a function, one based on the practical abscissas and the other on the

"classical" abscissas x{ = cos (2i 4- l)ir/(2n + 2), i = 0(l)n. Elliott also obtains

asymptotic error estimates for the Lagrangian quadrature formulas based on these

two sets of points. Recently, Fraser and Wilson [3] have discussed the estimation

of error of the Clenshaw-Curtis quadrature and they give a simple formula for the

calculation of the error in terms of the function-values.

In the present note we obtain error estimates for the Clenshaw-Curtis quad-

rature applied to functions analytic on the interval of integration [ — 1, 1], We also

obtain error estimates for the quadrature formula based on the classical abscissas.

2. The Clenshaw-Curtis Quadrature Formula. Let ^n(x) denote the Lagrangian

interpolation polynomial for f(x) at the practical abscissas xt = cos (irr/n),

i = 0(l)n, and let ip„(x) denote the error of interpolation

(1) Ux) = fix) - *n(x) .

If

CO *«(a0 = ¿   Bk,nTk(x)
k=0

where Tk(x) = cos (k arc cos x), Chebyshev polynomial of the first kind of degree

k, and the double prime on the summation sign indicates that the first and the last

terms are to be halved, then the coefficients Bk,n are given by

2    n "

Bk,n   = Z-l      f\.Xp)Tk(Xif
3) n „,

r>       »   II

= ~zZ   f\Xi)Ti(xP) ,
It   ;_o

since Tk(xp) = T%(xP), and xt = cos (iir/ri), i = 0(l)n. An elegant method for

the evaluation of the coefficients Bk,„ is described by Clenshaw [4].

Let C be a closed contour enclosing the interval [ —1, 1] in its interior and let

f(z) be regular within C. Since the practical abscissas are the zeros of the poly-

nomial Tn+i(x) — Tn-i(x), the error \pn(x) of the Lagrange interpolation for f(x)

at these abscissas can be expressed by a contour integral (Davis [5, Theorem

3.6.1]) as
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U) j, (x) _ IT^iix) - Tn-i(x)] f_/(
{) *nW~ 2« Jc(z-x)[Tn+i

z)dz

'a (z - x)[Tn+i(z) - Tn-i(z)]

for x G [ — 1, 1]. If n is even, the integration of (2) gives

(5) f f(x)dx ~ f *n(x)dx = "¿" (~f£2y- .
J -i •'-i ,-o     4/ — 1

Substituting for B2j,n from the first of the relations (3), the Clenshaw-Curtis ap-

proximate integration formula can be rewritten as

(6)
/l n   i,

f(x)dx~ £   *</(**) ,
_1 ,_n

where the weights X, are given by

(7) X<*-L   —71-7—    for   1 = 0(1 ,n .
n ¿«0       4j   — 1

The error of the Clenshaw-Curtis quadrature formula is given by

1 f \Qt+i(z) - Q*-iiz)]
iriJc[Tn+i(z) - Tn-i(z)](8)      w) = i ux)dx = 1 ( j^g : ff-ffj /«*

where we have put

(9) Qn*iz) = \j[j~rpr-

Equation (9) defines Qn*(z) as a single-valued analytic function in the 2-plane with

the interval [ —1, 1] deleted.

2.1. The Quadrature Formula Based on the Classical Abscissas. Let $n(x) denote

the Lagrange interpolation polynomial for the abscissas x, = cos (2i 4- l)ir/(2n 4- 2),

i = 0(l)n which are the zeros of Tn+i(x). The computation of the polynomial

&n(x) has been discussed in detail by Elliott [2].

To describe the corresponding quadrature formula, let

(10) $„(x) = £ Ak,nTk(x) ,
k=0

where the prime on the summation sign indicates that the first term is to be halved.

The coefficients Ak¡n are given by

(11) Ak,n = —f-7 ¿ f(xi)Tk(xP)    for   i = 0(l)n ,
n -\- 1 ,-o

where Xi = cos (2i + l)ir/(2n + 2) for i = 0(l)n. Now, the integration of (10)

gives the quadrature formula based on these abscissas as

/    f(x)dx~ J    $n(x)dx

a2) "l Z    (r        \
=* g AkAJ_x T«ix)dx) ■

But
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/    Tk(x)dx =      2   ,   if   1 - /eis
■'-i 1 - A;2

odd

= 0   if    1 — fc is even .

Since n is even, putting k = 2m, we get

as) f mdx^j:^-2^.
J-i m-o   4m   — 1

Substituting for Aim,n from (11), the above approximate integration formula can

be put in the alternative form,

(14) /   fix)dx^JZßifixi),
J —1 i=0

where the weights ii¿ are given by

a-\ 2      -r->   ( — 2jTij(xi) .      zw.-,
5) w"ÎTî5      4/-1     '       î = 0(1)w-

Let 4>„(x)  = f(x)  —  $n(x) denote the error of interpolation for f(x) at the

classical abscissas. Then, <t>n(x) may be expressed in terms of a contour integral as

na\ a. (,.\      Tn+iix) f        fiz)dz
(16) ^^-^rT-Jciz-x)^^)-

The error -/?„($) for the quadrature formula (14) is given by

(17) £„($) = f 4>n(x)dx =ZL( $Mß- f(z)dz .
J-1 TTl   •> C   In+l{Z)

3. A Lemma for Qn*(z). Introduce the ellipse S„ in the z-plane by

z = *({ + r1) ,        ? - peie,        0 ^ 0 ^ 27T

with foci at 2 = ±1 and whose sum of semiaxes is p  (p > 1).

We establish the following lemma.

Lemma. For z £ Sp,

(is) Qn*(z) = rn~1  Z ^±p,
k—[n/2] J

w/iere

<„+2a+i = 2(n 4- 27c 4- l)/(2n + 2k 4- l)(2k 4- 1) ,

[k] = greatest integer S k.

Proof. In (9), setting x = cos 6 and transforming to the £-plane, we get

(19) Qn*(z) = r1 f _2«Í2£«5ML_
yo i - 2 cos er + r

since Tn(cos 6) — cos n6. Now,

(20) ^[i-2coser14-r2r1=í:^.
Ç m-l       £
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The last series converges uniformly and absolutely for 0 ^ 6 ^ x and for all

|£| ^ P > 1. Substituting (20) in (19),

m=l £

where

ffím = /   cos nd sin möciö
•'o

if   m — n is odd2 2
m  — n

= 0   if   m — ft is even .

The result follows by putting m — n = 2k 4- 1 and observing that k 3: — [ft/2]

for n,m = 1,2,3, ■ ■ ■.

From the above lemma we deduce

Corollary 1. For z £ Sp,

(2i) Qt+i(z) = r    zZ    ^¡r-k
k=-[(n-l)/2] p

where

aSt-i»ta = 2(ft 4- 2fc)/(2ft 4- 2fc + l)(2fc - 1)

and

0-Z+l,n+2k   ̂   2ft/(2ft +  1)  •

Corollary 2. iV 2 G SP,

(22) Q*+1(2) - Q*_i(2) = F"      Z,   §

where

X** = 8ft(ft 4- 2fc)/[4(ft 4- k)2 - l][4fc2 - 1]

and

X*i g 8ft2/(4ft2 - 1) .

Proof. Subtracting (18) with n replaced by ft — 1 from (21),

q*+i(2) - q*_i(2) = r   £ , -3
t—C(n-l)/2]   £

where

_8ft (ft 4- 2fc)_

[4(n + k)2 - l](4fc2 - 1)

Also,
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\*   < \\     I  -       8n
hnk =    A„,o    —        „

4ft2 - 1

4. Error Estimates. We now obtain error estimates for the Clenshaw-Curtis

quadrature formula for all functions analytic on [—1, 1]. Simultaneously, we shall

obtain estimates for £?»($).

Let f(x) be analytic on [ —1, 1]. Then, for some p > 1, f can be continued

analytically so as to be single valued and regular in the closure of 8P. In (8),

taking the contour to be an ellipse &„, we have

(9*\ IP <M>M   <    l    Í    lQ*+l(2)  -  Q*-l(z)\  |/(2)1  \dz\
IT   •% \ln+l(Z)   —   ln-l(Z)\

Now, for ft even, from (22) we have

(8ft2   \       °°Zp~~J    S   p~ik
in    —   1/  k=-(n/2) + l

/   8n2   \    ,

and

-UP   (p  - p   )   |all
|t„+1(2) - r,_i(«)|

Making use of these results, from (23) we obtain the following theorem.

Theorem 1. Let f(x) be analytic on [—1, 1] and be continuable analytically so

as to be single valued and regular in the closure of an ellipse Sp with foci at z = ±1

and whose sum of semiaxes is p (p > 1). Then, for n even,

(  16ft2  \ M(p)

^ ^^Kw^iJ^-w-p-»)   ■
where M(p) = max ¡&  \f(z)\ (or equivalently on ||| = p).

4.1. We next obtain an estimate for En(<t>). From (21), we obtain for n even,

Now, taking the contour to be an ellipse Sp in (17), we have

(26) \Enmè±fmMnmm,
■K   Jzf \In+l\Z)\

Employing (25), we obtain the following theorem from (26).

Theorem 2. Let f(x) satisfy the regularity conditions of Theorem 1. Then, for

ft eyew,

(25)
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Remarks, (i) From (24) and (27) it would appear that the estimate for £'„($)

is nearly half of that for En(^) for large n and p^> 1. For small values of n and

p near 1, the estimate (27) is still less than the estimate (24).

(ii) The estimates (24) and (27) obtained for the ellipse will be reasonably re-

liable for large p, while these estimates are poor if p is near 1.

(hi) For fixed n and varying p, a "least conservative" upper bound can be es-

tablished for these estimates for some p* (1 < p* ;S p). However, observe that if

f(z) is entire, p* will be a value of p for which the right side of (24) or (27) is a

minimum.

5. Example. We illustrate the error estimate (24) for the Clenshaw-Curtis

quadrature for the function f(x) = l/(x 4- 4), and compare the estimates obtained

with those given by Fraser and Wilson [3].

We select p = 7 for which f(z) = l/(z + 4) is regular within the closed ellipse

87. Now, on 8p,

1/(2)1 S M0° = <4+<l»V-,)fr-<4-<l»"»»-

Thus, M (7) = 2.33333347.
The estimate (24) for the error of the Clenshaw-Curtis quadrature applied to

this function is given by

,      /    w2    \     M(7)

The exact value of /ii dx/(4 + x) = 0.5108 2562.

Table I

estimates of
ri estimated error actual error Fraser-Wilson

2 0.0042    3456       0.0002    8549       0.0166    6667
4 0.0000   8230       0.0000   0125       0.0002    6882
8 0.0000   00027     0.0000   0000       0.0000   0007

The error estimated by (28) is compared in Table I with the actual error and

the estimates given by Fraser and Wilson [3].
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