Evaluation of a Kernel Associated with
Laminar Flow Tubular Catalytic Reactors

By Chul-Hee Kim and R. E. Gilbert

Introduction. IXatz {2] has proposed a method of analysis of tubular catalytic
reactors which, in principle, will allow the determination of the actual kinetics of
the surface reaction even in the presence of a moderately slow rate of diffusion to
and from the surface. The catalyst is deposited on the tube wall and the reacting
fluid allowed to flow past under conditions of known hydrodynamics. The reader is
referred to the original paper for further details.

A case of particular importance is that for which flow is laminar. For this case,
the analysis yields an integral equation involving a kernel

(1) M(9) = (0H/36)|ym1
where H(y, 0) is defined by

%(y %Iyi) =1yl —y") %%,
2) y=0, H bounded ,
y=1, OH/dy = 1.
=0, H=0,
The precise evaluation of M () in a form suitable for computation is the subject

of this paper. The variable 6 must assume all positive real values.

Exact Solution. To obtain an exact solution to (2) let
) H(y,6) =0+ W(y) + Gy, 0) .

Then the differential equation for H can be resolved into the following two prob-

lems:
d aw '\ _ e
dy<y——dy > =4yl —-y),
4) y=0, W bounded ,
y=1, dW/dy=1,

and
o (,9G)_ _ 2 96
ay<y ay)—4y(1 J) g
(5) y=0, G bounded ,

y=1, 9G/oy =0,
6=0, G=-W().
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These two problems, (4) and (5), along with Eq. (3), are consistent with Eq. (2).
The solution to (4) is

(6) W(y) = Bo+ y* — y¥/4,

where B, is an integration constant which need not be determined for our purpose.
The solution to (5) may now be obtained by separation of variables as

) Gy, 0) = Ao+ 2 Aun@)e™,
where the constants 4, are given by the following ratio of two integrals:

= o4 =) @Y/4 — yNe.w)dy
[o4y(1 = y")e."(y)dy
The functions ¢.(y) are eigensolutions to the Sturm-Liouville system

(8) n=12---

d ie_sn_) s
dy (y dy +4y(1 — ¥y I\, =0,
(9) y=9, ¢n, =V,

y = ] d’n, =

The first 20 eigenvalues, \,, for (9) have been tabulated by Dranoff [1] along with
the functions ¢,(y) and the denominator integral of (8). The normalizing condition
¢.(0) = 1 was chosen for convenience in computation. Using the approach of Sellars
et al. [4], Dranoff also derived some important approximate formulas for A\, and
¢ valid for large n.

By manipulation of (9) it can be shown [3] that the numerator in (8) is equal to
—¢.(1)/A\.. Hence we may write

(10) An = _‘d’n(l)/)\nNn 5

where NV, is the normalizing integral appearing in the denominator of (8). Putting
(6), (7), and (8) into (3), we obtain

4 )
(11) H(y,0) =0+ By + y* — —{’1— + Ay — ; fz(\}n) én(y)e ™

and applying (1) to Eq. (11) yields the desired kernel
© 2

(12) M@®6) =1+ Z"’LN(I—)e-‘n" )
n=1 n

Notice that neither 4, nor By appears in (12). This equation is simpler than the
expression originally derived by Katz [2] in that it contains only one integral, N,.

Numerical Evaluation of the Kernel. Equation (12) requires more and more
terms as 6 approaches zero. Using Dranoff’s results [1], we were able to get satis-
factory convergence of (12) down to about § = 0.015. An asymptotic solution for
small 6 is developed in the Appendix. It takes the form

(13) M(@9) ~ (256---)62% as6—0.
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Unfortunately, Eq. (12) using 20 terms does not give satisfactory agreement with
Eq. (13) for the range of 0 near 0.015. Hence it was necessary to extend the work of
Dranoff.

Since Dranoff has supplied approximations to the eigenvalues and eigensolutions
for large n, the first effort was to use these for values of n above 20. Dranoff’s equa-
tions yield

(14) Ao~ 4(n + %)2 ’
and
- (—1)"3"* (—1)" X .7039 - - -
1‘ n 1 ~ =
(15) ¢(1) 2Y°1(2/3)(3n + 1)V? 3n + 1V

In addition, following Sellars et al. {4], it is easily shown that

% 5

~ =

(16) No=—¢ ONOY | yerinen,  Bm 4 1°

These three approximations are all that are required in (12).

Comparing results from (14), (15), and (16) with actual values at n = 20 reveals
that (16) gives values accurate to about .02%, (14) is valid to within 0.19, but (15)
is good only to within about 1.79,. The total error in the quantity ¢,2(1)/N, at n
= 20 is 3.5%, when calculated from (15) and (16). In view of the fact that many
terms are required in (12) for small 6, this error was deemed excessive. Hence
Dranoff’s eigenvalues were extended by direct integration of (9).

Using the Runge-Kutta-Gill integration scheme with double-precision arithmetic
on the IBM 360, the eigenvalues of (9) fromn = 1 ton = 41 were computed. The
overall method for extracting these eigenvalues was that described by Dranoff. The
calculations at each n were stopped when ¢,’(1) was found to be less than 10—,
These calculations are summarized in Table 1. The interval of integration for the
Runge-Kutta-Gill algorithm is shown in the second column. All results fromn = 1
ton = 20 agree very closely with those of Dranoff. As a further check on the integra-
tion procedure, the last two columns present the numerator integral of Eq. (7) as
calculated by direct integration and from its mathematical equivalent, —¢,(1)/A..
Agreement between the two columns is very good.

Using all 41 eigenvalues in Eq. (12), satisfactory convergence was obtained down
to about § = .001. Figure 1 is a plot of M(#) on logarithmic coordinates. The
asymptote approached for 6 > .3 is Eq. (12), using only the first term of the series.
The dashed line at the left edge is Eq. (13). It can be seen that M (8) is approaching
this line asymptotically, although exact agreement is still lacking even at § = .001.

With these values of the kernel it now becomes possible to test the efficacy of
Katz’ method for analyzing laminar flow catalytic reactors. The first part of such
a program, using computer simulation of a reactor, is now nearing completion.

It has been found that, provided M (8) is known accurately down to about .002,
only its integral need be known over 0 < 6 < .002 in order to carry out the con-
volution. The importance of Eq. (13) is then readily seen, as without it there would
be no means for estimating such an integral. Furthermore, over this small range of
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6 the integral need not be known accurately and so the deviation from the asymp-
tote at the left end of Fig. 1 is not serious.

sof= T T 7 [ TT17T7T T T T 1717 T T 1T T 4

\ Lot Ll
001 o]} A 10
6 —

Figure 1. The Kernel M(6)

APPENDIX

Derivation of the Asymptotic Approximation to 1/(6). We seek a solution to (2)
valid for small 6. It is evident from the boundary conditions that the departure of H
from its initial condition, H(y, 0) = 0, will first take place at y = 1. The disturbance
here will then gradually ‘‘penetrate’” toward y = 0. This suggests that for small 6
we may substitute z = 1 — y into (2) and find a solution valid for small z. This
substitution followed by elimination of higher-order terms in 2, yields the approxi-
mate equation

(A1) 9*H/32* = 8z (0H/a9) .
The Laplace transform of (A1) with respect to 6 is then
d?H/dz* — 8szH = 0,
which has as a general solution
1/2 1/2
(A2) Hz,s) = 21/2[0111/3<2(8§) z3/2> + 021_1/3<2(8§) 23/2)] .

For large argument, both Bessel functions in (A2) increase exponentially. To keep
H(z, s) bounded, it is necessary to set C; = —(';. The condition

z2=0, dH/dz = — 1/s

then yields, after some manipulation of the Bessel functions,

(A3) ¢y = —, = LW3)

22/351/2 7/6 °
3°°2% %

From the definition of M (8), it is seen that
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(Ad) M(s) = sH | ym1 = sH | izo.

Evaluating H|,— from (A2) and (A3), inserting the result into (A4), and simplifying,
yields

- 0.5T(1/3)
M(s) = =7 —"——,,
( ) 31/3F(2/3)81/3
which, upon inversion and re-arrangement, gives the function
1
A5 M®) = 57—
(A5) (6) 34/31,(5/3)02/3

This is Eq. (13) of the text. Note that although M (6) is infinite at 8 = 0, the area
under the curve is finite.
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