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Introduction. Katz [2] has proposed a method of analysis of tubular catalytic

reactors which, in principle, will allow the determination of the actual kinetics of

the surface reaction even in the presence of a moderately slow rate of diffusion to

and from the surface. The catalyst is deposited on the tube wall and the reacting

fluid allowed to flow past under conditions of known hydrodynamics. The reader is

referred to the original paper for further details.

A case of particular importance is that for which flow is laminar. For this case,

the analysis yields an integral equation involving a kernel

(i) Mie) = Off/a») Ui

where Hiy, 8) is defined by

•:(»£)-*»-
dyV  dy /       " x       " '  ae '

(2) y = 0 ,       H bounded ,

y=l,       dH/dy = 1 .

e = o,     h = o,

The precise evaluation of M(8) in a form suitable for computation is the subject

of this paper. The variable 8 must assume all positive real values.

Exact Solution. To obtain an exact solution to (2) let

(3) Hiy, 0)=e+ W(y) 4- G(y, 8) .

Then the differential equation for H can be resolved into the following two prob-

lems:

d (    dW\      ,  n        ,.
dy\V-dy-) = i^-!j)>

(4) y = 0 ,        W bounded,

y=l,       dW/dy = 1 ,

and

(5)

d (   dG\

6y\yly-) =dyv dy/ w*--»*)-*§

y = 0 , G bounded ,

y = 1 , dG/dy = 0 ,

0 = 0, G =-Wiy).
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These two problems, (4) and (5), along with Eq. (3), are consistent with Eq. (2).

The solution to (4) is

(6) Wiy) =Bo + y2- y*/4 ,

where Bo is an integration constant which need not be determined for our purpose.

The solution to (5) may now be obtained by separation of variables as

(7) Giy, 8) = Ao + £ i.id/)^,
n-l

where the constants An are given by the following ratio of two integrals:

™ 4    - J°4;/(l-2/2)(t/4/4-2y2)^(2/)^

J o 42/(1 — î/ )<*>„ (y)dy

The functions 4>n(y) are eigensolutions to the Sturm-Liouville system

(9) y = 0 ,       <j>P = 0 ,

y = 1 ,       <pP = 0 .

The first 20 eigenvalues, X„, for (9) have been tabulated by Dranoff [1] along with

the functions d>n(y) and the denominator integral of (8). The normalizing condition

0„(O) = 1 was chosen for convenience in computation. Using the approach of Sellars

et al. [4], Dranoff also derived some important approximate formulas for X„ and

4>n valid for large n.

By manipulation of (9) it can be shown [3] that the numerator in (8) is equal to

— <£„(1)/Xn. Hence we may write

(10) An   =   -<pnil)/\nNn ,

where JVB is the normalizing integral appearing in the denominator of (8). Putting

(6), (7), and (8) into (3), we obtain

(11) Hiy, 8)=84rBo + y2-Jt + Ao-± -f^T 4>niy)e^
t n=l     AniVn

and applying (1) to Eq. (11) yields the desired kernel

(12) Miß) = 1+ T,^P-e-*"'
n_l       Nn

Notice that neither Ao nor B0 appears in (12). This equation is simpler than the

expression originally derived by Katz [2] in that it contains only one integral, A^^.

Numerical Evaluation of the Kernel. Equation (12) requires more and more

terms as 8 approaches zero. Using Dranoff's results [1], we were able to get satis-

factory convergence of (12) down to about 8 = 0.015. An asymptotic solution for

small 8 is developed in the Appendix. It takes the form

(13) Mid) — (.256 • • • )r2 '3   as 8 -> 0 .
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Unfortunately, Eq. (12) using 20 terms does not give satisfactory agreement with

Eq. (13) for the range of 0 near 0.015. Hence it was necessary to extend the work of

Dranoff.

Since Dranoff has supplied approximations to the eigenvalues and eigensolutions

for large n, the first effort was to use these for values of n above 20. Dranoff's equa-

tions yield

(14) X„ ~ 4(n + l)2,

and

(-l)n31/6_      (-l)nX .7039 •••

2    r(2/3)(3n + 1) ion + 1)

In addition, following Sellars et al. [4], it is easily shown that

.75(lß) N"-*Èï
I/=l; X=X„ 3n + 1

These three approximations are all that are required in (12).

Comparing results from (14), (15), and (16) with actual values at n = 20 reveals

that (16) gives values accurate to about .02%, (14) is valid to within 0.1%, but (15)

is good only to within about 1.7%. The total error in the quantity <j>Pi\)/Nn at n

= 20 is 3.5% when calculated from (15) and (16). In view of the fact that many

terms are required in (12) for small 8, this error was deemed excessive. Hence

Dranoff's eigenvalues were extended by direct integration of (9).

Using the Runge-Kutta-Gill integration scheme with double-precision arithmetic

on the IBM 360, the eigenvalues of (9) from n = 1 to n = 41 were computed. The

overall method for extracting these eigenvalues was that described by Dranoff. The

calculations at each n were stopped when <£n'(l) was found to be less than 10-13.

These calculations are summarized in Table 1. The interval of integration for the

Runge-Kutta-Gill algorithm is shown in the second column. All results from n = 1

to n = 20 agree very closely with those of Dranoff. As a further check on the integra-

tion procedure, the last two columns present the numerator integral of Eq. (7) as

calculated by direct integration and from its mathematical equivalent, — 0„(1)/X„.

Agreement between the two columns is very good.

Using all 41 eigenvalues in Eq. (12), satisfactory convergence was obtained down

to about 8 = .001. Figure 1 is a plot of Mid) on logarithmic coordinates. The

asymptote approached for 8 > .3 is Eq. (12), using only the first term of the series.

The dashed line at the left edge is Eq. (13). It can be seen that Miff) is approaching

this line asymptotically, although exact agreement is still lacking even at 8 = .001.

With these values of the kernel it now becomes possible to test the efficacy of

Katz' method for analyzing laminar flow catalytic reactors. The first part of such

a program, using computer simulation of a reactor, is now nearing completion.

It has been found that, provided Miff) is known accurately down to about .002,

only its integral need be known over 0 < 8 < .002 in order to carry out the con-

volution. The importance of Eq. (13) is then readily seen, as without it there would

be no means for estimating such an integral. Furthermore, over this small range of
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8 the integral need not be known accurately and so the deviation from the asymp-

tote at the left end of Fig. 1 is not serious.

Figure 1. The Kernel M(8)

Appendix

Derivation of the Asymptotic Approximation to Miff). We seek a solution to (2)

valid for small 8. It is evident from the boundary conditions that the departure of H

from its initial condition, Hiy, 0) = 0, will first take place at y = 1. The disturbance

here will then gradually "penetrate" toward y = 0. This suggests that for small 8

we may substitute z = 1 — y into (2) and find a solution valid for small z. This

substitution followed by elimination of higher-order terms in z, yields the approxi-

mate equation

(Al) d2H/dz2 = 8z idH/dd) .

The Laplace transform of (Al) with respect to 8 is then

d2H/dz2 - 8szH = 0 ,

which has as a general solution

/A9x 77/ X rtL      f2j8s)l/2    3/2  1,    ,     „   , (2(8S)1/2    3/2,1
(A2) Hiz,s)=z    \CiIi/A—-—z     J + C2/-1/3I-^y—z    J\.

For large argument, both Bessel functions in (A2) increase exponentially. To keep

Hiz, s) bounded, it is necessary to set C2 = — CV The condition

z = 0 ,       dH/dz = - 1/s

then yields, after some manipulation of the Bessel functions,

r(i/3)
(A3) C2 — —Ci —

2/3r,l/2   7/6 -
3"Ö21,2S

From the definition of Mid), it is seen that
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(A4) Mis) = sH | y=i = sH | z=0.

Evaluating H\ z„o from (A2) and (A3), inserting the result into (A4), and simplifying,

yields

m 05r(l/3)
31/3r(2/3)s1/3

which, upon inversion and re-arrangement, gives the function

(A5) Miff) = -¡7:-¡T..
34/3r (5/3)02/3

This is Eq. (13) of the text. Note that although M (ff) is infinite at 0 = 0, the area

under the curve is finite.
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