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1. Introduction. The economy of the Gaussian quadrature formulae for carrying

out numerical integration is to some extent reduced by the fact that an increase in

the order of the formulae makes no use of previous integrand evaluations. Kronrod

[1] has shown how the Gauss formula of degree 2n — 1 can be extended to one

of degree 3rc + 2 by making use of the original n Gauss points and an additional

set of n points. However, it is not possible to proceed further than this without

using an entirely new set of points with a resulting waste of computational labor.

It may be noted that due to the absence of a convenient error estimate for the

Gaussian formulae it is usually necessary to carry out a quadrature using more

than one order of formulae to check the convergence.

In this paper a set of integration formulae is derived based on a set of 2r + 1

Gauss or Lobatto points, where r is an integer. If the original points are denoted

by Xj, j = 1, 2, • • -, (2r + 1), then r subsets of points xitu_l)+v j = 1, 2, • • -,

(2r_i + 1) are obtained for i = 1, 2, • ■ -, r by successively deleting alternate

points from the preceding subset. The integration weights associated with each

subset can be determined as described in Section 2. In carrying out an integration

the number of points is successively increased until convergence appears satis-

factory or until the number of points reaches 2r + 1 corresponding to the full

accuracy of the Gauss or Lobatto formulae. Since each subset includes the points

of the previous subset, no integrand evaluations are wasted. The degree of pre-

cision of the successive formulae are one less than the number of points used,

since they are of the Newton-Cotes type. For the base formula, the Newton-Cotes

weights and the base weights degenerate of course to one and the same.

The integration formulae have been derived for the basic set of 33 Gauss points

(r = 5) as well as for the sets of 65 Gauss and Lobatto points (r = 6). It was con-

sidered that the 65-point Gauss and Lobatto formulae were capable of dealing

with all but pathological integrands so that it was unnecessary to base the formulae

on higher values of r. For example, the Gauss 65-point formula will integrate

powers of x up to 154 with a relative accuracy of just less than nine decimal digits.

The Chebyshev expansion method of Clenshaw and Curtiss [2] has also the

characteristic of not wasting previous integrand evaluations, and a comparison

with the new formulae is therefore presented in Section 3. The Clenshaw-Curtiss

quadrature formulae may be interpreted as the Newton-Cotes formulae with the

abscissas Xk = cos ikx/On — 1)), k = 0, 1, • • ■, n — 1. These formulae will be

referred to later as Chebyshev formulae.

2. Evaluation of the Integration Weights. The Lagrangian interpolating poly-
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nomial of degree n — 1 for a function fOx) given at the points a;,-,  i = 1, • • -, n, is

POx) = ¿ L.ix)fOx.)
¿=i

where

£«(*) = F^aO/F^a;,)
and

k

FiOx) = II ix - x,)/0x - Xi) .
3=1

Thus the weights of an ?i-point integration formula

fix)dx = 22 uifOxi)-i i=i
are given by

on —       Liix)dx .
J-i

These weights can be evaluated exactly in a numerically stable fashion using a

Gauss formula with n/2 points when n is even and On + l)/2 points when n is

odd. It is to be noted that the weights for any quadrature formula, including the

Gaussian and Lobatto formulae, can be calculated in this way.

If the derivatives of the integral are known as well, the Hermite interpolation

formula allow the weights Bt and C¿ of the formula

fix)dx = ¿ BJixi) + £ Cif'ix.)

/'

/'

to be obtained from

Bi = j    [1 - 2L/ixi)ix - Xi)]Ltix)dx ,
J -i

Ci =  I    ix — Xi)L20x)dx .
J-i

These weights can be evaluated exactly using a Gauss formula with n points. As

Lanczos [3] has noted, the inclusion of the n values of the derivatives in an arbi-

trary point formula gives rise to an integration formula with the same integrating

power as the n-point Gauss formula.

3. New Formulae. By the method of Section 2 integration formulae with 5, 9,

and 17 points were derived, based on the 33 Gauss points, together with formulae

with 5, 9, 17 and 33 points based on the 65 Gauss and Lobatto points. The Cheby-

shev formulae for 5, 9, 17, 33 and 65, were also derived for comparison. The in-

tegrand weights for the Lobatto, Gauss and Chebyshev formulae are given in

Tables* Ml, M2, M3 and M4. All the Gauss formulae used to evaluate the weights

were obtained from Gawlik [4]. The weights associated with the 65-point Lobatto

formula have been given by Rabinowitz [5] and have not been included in Table

* The letter M preceding a table number refers to the microfiche card. -
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Ml. The 65 Gauss points and weights have not previously been tabulated and had

to be calculated to derive Table M2. To assess the integrating power of the for-

mulae each was applied to integrate powers of x higher than those which should be

integrated exactly. In Figs. 1 to 4 the modulus of the fractional error (defined as

the ratio of the error to the true value of the integral) committed by the various

formulae is plotted against the power of x being integrated. It can be seen that the

formulae based on the 33 Gauss points probably give the best overall performance.

The Lobatto formulae appear to be particularly good at integrating very high

powers of x. A further indication of this is evident from Table 1, which records the

performance of the various formulae when integrating JA \x + §|1/2da:, whose

integrand has a singularity in its derivatives at a; =   —§. This integrand could

POWER   OF  X

Figure 1
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Figure 2
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Figure 3

[fractional errorI

Figure 4

Table 1
Errors in Calculating /Ij \x + lAAl2dx

Basic points

Gauss 65
Gauss 33
Chebyshev
Lobatto 65

0.0569
0.0507
0.0627
0.0608

Number of points

9 17

0.0180
0.0194
0.0160
0.0168

0.0041
0.0011
0.0064
0.0058

33 65

0.0029
0.0026
0.0021
0.0025

-0.0011

-0.00078

0.00039

probably only be approximated with acceptable accuracy by a polynomial of very

high degree. It would thus seem that the Lobatto based formulae may provide a

useful scheme for controlling the accuracy and economy of numerical integrations.

The tables were calculated using at least thirty-digit arithmetic and are correct

to all figures given. The usual checks of integration of powers were successfully

applied. It is interesting to note that the weights of all the formulae are positive

so that their stability is likely to be high.
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