
Rigorous Machine Bounds for the Eigensystem
of a General Complex Matrix*

By J. M. Varah

Introduction. We are concerned here with giving rigorous error bounds for the

eigensystem of a general complex n X n matrix A, given an approximate eigen-

system such as is furnished by [2]. In Section 1, we outline the technique in gen-

eral terms and show that the bounds can be found in terms of computed quantities

if ll-Elloo = ||/ — XFU«, < 1, where X is the matrix of approximate eigenvectors

and Y is an approximate inverse for X. Then in Sections 2, 3, and 4 we give the

specific roundoff error bounds for these general error terms, which include all the

rounding errors made during the computation. An Algol program using the method

is given in the microfiche section, and the results for the matrix example given in

[2] are presented in Section 5, using the results of [2] as the initial approximation.

1. Theoretical Bounds for the Eigensystem. We assume we have a complex

matrix A° of order n represented for our calculation by the matrix A, with

A = A° 4- A,        |A,-,-| i£ 5-   max   \Aij\

and 5 specified. We further assume a complete approximate eigensystem has been

given for A, that is, a diagonal complex matrix A of eigenvalue approximations and

a complex matrix X whose columns are approximations to the corresponding col-

umn eigenvectors of A, normalized in some way so that all components are less

than or equal to 1.0 in modulus. We wish to give rigorous bounds for the true

eigensystem of A". In this section we outline the technique used, which follows

Wilkinson [4, Chapter 9]. In Section 4, we will give the actual bounds used, which

include bounds on the roundoff errors committed in the calculations.

We first perform a similarity transformation on A with X, assuming X can be

inverted, giving

X~lA°X = A. + P + Q,

wrhere P is known exactly, and a bound for the modulus of each element of Q is

known. To perform this similarity, let F be a calculated approximate inverse for

X, and define the following matrices :

F = AX - XN + Qx,       P = YF 4- Q2,       E = I - XY,

where the elements of Qx and Q2 are small. In the actual computation, we form

F = fUAX - XA)        and       P = fhiYF) ,

using double-precision accumulation of inner products. Then we use Qi and Q2 to
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denote the errors made in these machine computations. We will show that we can

obtain bounds for [QfJ-| assuming only that

jiY|U = max (¿ |jY«|) < 1
lSiSn   V=l /

Using these matrices above, we have

P = YF + Q2
= X~lF + (F - X-*)F + Qi

= X-*AX -A4- X-'Qi + (F - X-')F 4- Qt,

so that

X-lA°X = A + P + Q ,   with   g = -[X-* AX + X-*Q! + (F - X~l)P + Q2] .

To bound Q, we note that if X Y is invertible,

F - X-1 = Y il - (XF)->)

= Y il -il- E)->)
= - YEil - E)-' .

Also

X-1 = (F-1 - EY-1)'1

= YÜ - E)->,

so that

O = -[YÜ- IÍ)-'(AX + Qx) - F7Í(7 - E)~lF + QJ .

Now, for i = 1, 2, • ■ -, n, let

n n

«¿ = TI ^«¿1 > ßi = T \x>i\,
j-X 3-1

7< = max |Py,-| ,   o-i = max | (Qi),-,-| ,

r.= 2.|(fb)w| ;
3-1

and let 4max = maxx¿i,j£„ \Ai¡\. Then we have

|(AX4-Qi),-3-i ^5-Am^-ßj+ aj,

so that

|[(7 - jY)-»(AX + Q,)]¿J-| ̂ ||(7 - 7i)->|U-(5-^max-^- 4- <ry) .

Also,

|[F7i(7 - EYxF]ij\ g ||(7 - íO^IU-r.-Yy.

Thus, assuming ||P||M < 1,

I««I ^ l - \\E\\m _ + ' W2) wl •

We bound the eigenvalues of A° using Gerschgorin's theorems, which we now
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state for reference. For a given matrix B, define the Gerschgorin disks

Gi = \X:\X- bu\ ̂  T IM \ ,       * = 1, ■ • -,n .

Then the first theorem of Gerschgorin states that all the eigenvalues of B are con-

tained in the union of the n disks {(?,-}. The second theorem states that if k of the

disks are isolated from the others, then there are precisely k eigenvalues of B in

the union of those k disks. For proofs of these theorems, see Marcus and Mine

[1, p. 146].
We apply these theorems to the matrix B = X~lA°X = A 4- P 4- Q. If the

elements of P and Q are small, and no other eigenvalue approximation A# is too

close to Ai,-, the ith disk will be isolated from the others, so that there is only one

eigenvalue of B in the disk. For the ith disk to be isolated, we must have for all

k 9¿ i,

\bkk - ba\ > J2 \ba\ + T \bki\ .
i7a i j^k

For the ith eigenvalue, we can usually obtain a better bound by applying Gersch-

gorin's theorem to the matrix B modified by multiplying the ith row by ß~m and

the ith column by ßm, where ß is the number base of the machine used and m is a

nonnegative integer, chosen as large as possible under the restriction that the ith

Gerschgorin disk of this modified B matrix remain isolated. For such an m, the disk

is defined by

|X - iNa + Pa + Qu)\ ^ ß~m- T \P*i + Qu\ .

so that one eigenvalue X,- of A° satisfies the inequality

|X, - (A« + P„)| á r, = IQ.-.-I + ß~m T (\PiÁ + \Qn\) ■

The ith disk will be isolated if for all k ¿¿ i,

I (A« + Pa + Qu) - (A** + Pkk + Qkk)\ > ß~m T \PtJ + Qa\

+ ßm\Pki + Qki\ + T \Pk> + Qn\.
i^k.i

which holds if

|(A„ + Pti) - (A«, + Pkk)\ > \Qu\ + \Qkk\ + ß~m T (\P*\ + ! Qui)
i* i

+ ßmi\pki\ + \Qki\) + T (\Pxá + IQ^-I) •

If such a bound can be obtained for the ith eigenvalue, we can also bound the

corresponding eigenvector of 4.°. We first bound the corresponding eigenvector u

of B = X~1A°X. Since B is nearly diagonal, u is close to the unit vector e<. Hence

we can set m¿ = 1.0 and bound the other components of u by using the relation

Bu = X,n and the bound for X¿ obtained above. In fact, the Arth equation of Bu = X,-w

gives

[(Ait- + Pu) - (A«, + Pkk)]uk

= Pki + Qki + iQkk + dxrduk +   E   iPkj + Qkj)uj
j^k.i
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where |0i| g 1. We set pk = (A¿¿ 4- P(i) — (Am + Pkk) for convenience. We first

obtain a crude bound for uk by assuming \u¡\ :£ 1 for j ¿¿ i. This gives

M úska) =    IQ»! + «■«- + £(|P*y| + \Qkj\) \/\pk\ ,       k= 1, ---,n.
L j*k J

Now we use this bound for all |m*| in (1), obtaining the more precise bounds

/IP.I ,uk - —  â \\Qk,\ + i\Qkk\ + ri)ska) +   T   i\P*i\ + KM)«/
Pk   I L J9*k,i

(1)

J9^k, i

or, using i/i = Pki/pk as the approximation to uk,

\uk - Uk\ g s*<2> ,        i^¿        (and m = 1.0) .

This bounds the eigenvector u of B = X~1A°X. To bound the corresponding

eigenvector v = Xu of A°, we must transform the estimate and bound for u by

multiplying by X. Thus \vk - iXU)k\ è Tï-i l**>|s/2), k = 1, • • -, n. Finally,
we can normalize the estimate so that its largest component in modulus is 1.0,

obtaining

jXU)k
Vk     iXU)mi

En       I y     |      (2)
j-X \A-kj\Sj

(X(7)max|     '       k      1,'"'n

2. Basic Roundoff Errors. To bound the errors in machine calculation, we let

771 = 2 • (1.06) -ß1_i as in [3, p. 19] where ß is the floating-point number base of the

machine and t, the number of base ß digits carried in each single-precision floating-

point number. Thus 171 is an upper bound for the relative rounding error committed

in each basic real single-precision floating-point operation. That is,

\flix + y) -ix + y)\ g 1,1(1*1 + 12/1),
\flix-y) - ix-y)\ ^ vxi\x-y\) ,
\flix/y) - ix/y)\ á r,xi\x/y\) ,       y*0.

We also assume the square root routine on the machine gives answers of com-

parable accuracy, i.e.,

I/KVjb) -  Vx| ^nxV.T.

The factor 1.06 makes for easier accumulation of errors. 771 could probably be

taken smaller on most machines by a factor between 2 and 4, and the user may

wish to adjust its value in the program. For further information, see Wilkinson [3].

To bound the errors in complex operations, let zx = Xx + iyx, z2 — x2 4- iy2.

Then the following results are easily obtained.

1. \flizi + zi) - (21 + zi)\ ^ r,xi\zx\ + |*|).

2. \flizx-zi) - izx-z2)\ á (2V2)i?1|zi-«,|.

3. (a) If

,,.    .   . Jxxx2 4- yg/\ JxiVx - XxVÁ

then \flizx/z2) - Oft/«,)I ̂  (5V2)iji|2i/z2|.
(b) Suppose |x2| ^ 12/21 and set r = x2/y2,  d = y2 4- rx2.

If
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fli^)^fl^^)+i-fl(^-f^),

then |/Z(zi/z2) - (zi/z2)| ^ (6V2)«ji|*]/*«|.

4.(a) lifli\z\) =fliix2 4- y2Y2), then \fli\z\) - \z\\ ^ 2r,x\z\.

(b) If \x\ Ú \y\ anàfli\z\) =fli\y\ -(1 + \x/y\2Y2), then \fli\z\) - \z\\ û ^M-
5. In a real single-precision floating-point inner product,

fl\T XiVi) - \T xilli)   = nnx[T |z<2/i| ) = t\\T \xiVi\) •

6. In a complex floating-point inner product of single-precision factors accumu-

lated in double precision and rounded to single precision,

\flA T ziwi) — IT ziwi) piiE ziwi\ + e2( T \ziwi\)

where e2 = (n 4- l/2)r;2 and r¡2 = 2 • (1.06)/31_2í bounds the basic double-precision

rounding error.

3. Machine Bounds for the Error Matrix Q. To bound the elements of Q, we

need bounds for the quantities used to bound Q in Section 1. We use barred sym-

bols to denote the machine bounds.

1. ai ^ at = fliTl=i \Yij\) •(! + «i + 3m), i = 1, ■ ■ -, n.
2. ßi Ú ßi = fliTU \Xji\)-il + 6i + 3rn),  i = 1, • • -, n.
3. 7¿ ^ 7¿ = maxiSys„ ifli\Fji\)) -(1 4- 5tji),  tJ = 1, ■ • -, n.
4. ^4max ̂  S = maxirsí,^ (/Z(|4¿,-|)) -(1 4- 5t?i).

5. To bound \\E\lx,, we have for j j^ i,

fliEij) = -fl2(jtxikYkJj

= Eau 4- dVl) + 6e2(jb \Xik\\Ykj\]

and

fUEu) = flt{l - g X¿,Ftij

= £«(1 + Ovx) + Bin + Vi)(jL \Xik\\Yki\J 4- 8r,2 .

Here 6 denotes a generic multiplier less than or equal to 1 in modulus. Thus if we

set

5= /Z(í>í)(l + «l),

we have, since |-X"üt| ̂  1 for all i and fc,

||jY|U S e = (max |_/z(¿ |S„|)J(1 + «i + 4*n) + (o + 7j2)a + r,2)(l + 6*i).
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6. We also need a bound for r< = Tl-* \(YE)ij\. Now

fHYE)ij = fh\TYik-fliEki)J

= (g YikEkYjil + em) + T YikiEkj - fliEkj))

+ 6e2-  Ti\Yik\-\fliEki)\).
k=X

Thus

n =s tí = [(¿ \fhiYE)ij\jil +ex + 4»h) + a.(«s + »ii)a

+ ivi + 62)ê + 12   (1 + 6171) .

7. To bound a,-, recall

/Z(Pi3) = #2((|>itXw) - XijAjjj

= iAX - XA),-y + 0vx\Fij\ + 6 it i + k)\L l-áaii^wl)

+ 0ii2Y2)n2)\Xij\\A1j\

= iAX -XA)íj+ iQx)ij,

and thus

o-j è  <fj =  («2 + Vi)äßi + 3lJï|Ayy|  4- nxjj .

8. Finally to bound |(Q2)d, we have

fHPii) = fh\T YikFki)

= iYF)u 4- 6Vl\Pij\ + 8e2(jt\Yik\\Fkj\) ,

so that

\iQl)i,\   £vi\Pij\  + 625,7;.

To give a rigorous machine bound for Q, we have to account for the errors

made in computing the above bounds as well. Thus, for example,

\Pa\ £M\Pij\)-il + 4nx).

Finally, we obtain

iq«i ^ 9« = fl{vi\PY + 625,7,+ 5;(^ + ;;()1+y}(i +12,0.

For this to exist, we must have the denominator positive. Thus corresponding to

the theoretical condition ||P||oo < 1 of Section 1, we have the machine condition

~e < (1 - ,0/(1 + T7i).
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Eigensystem Bounds: Fourth Iteration

ABSCI_AMBDA[10]-C   8 .12276»59240»40516,95367»4180-02))   <   7,08773666250-13

EIGENVECTOR BOUNDS AREI
ABSCXC 1,10] - (-9.80976,06019.70599,72072»042?-10 } } < 1,10686004320-14
ABSCXt 2,101 - ( 1.10958,96145,20815,97919,513P-08)) S 1,03134223830-14
ABSCXC 3,103 - C 7,33905,41289,82543,43573,171P-09)) < 5,21009514060-15
ABSCXC 4,10] - C-l.44903,69720,68494,60904,9790-06)) < 6.84295130450-15
ABSCXC 5,10] - C 1.55770,04376,90727,26666,8130-05)) S 6,98462499850-15
ABSCXC 6,10] - C-3.34790,51622»02285»25975*7050-05)) S 2,73790351240-14
ABSCXC 7,10] - C-9.63703,80170,00350,37346,5620-04)) S 1.93018621610-13
ABSCXC 8,10] - C 1.33735,07467,49867,89746,5630-02)) S 1,26115043850-12
ABSCXC 9,10] - C-9.19476»1/614»76852»50508,6800-02)) < 6,44416141220-12
ABSCXCIO.IO) - C 3.81457,47745,22297,68340,1980-01)) < 2,31545366000-11
ABSCXC11»10] - C-9.18772,34075»95947,12999»6050-01)) < 5.19213896370-11
ABSCXC12»10] - C 1.00000,00000,00000,00000,0000+00)) < 5,48420109180-11

ABSCLAMBDAC1D-C 1. 43646,51976,92204»86973,6450-01)) < 1.54164296650-13

EIGENVECTOR   BOUNDS   ARE!
ABSCXC    1,11)   - C   6.20702,69169,10568,26641 » 5050-09)) S 1.74342996580-14
ABSCXC   2,11]   - C-3.70033,96340,09112,79938,7790-08)) < 1,63083516110-14
ABSCXC    3,11]   - C-2.54717,68426,92U7,74995,8880-07)) S 6,77820595040-15
ABSCXC    4,11]    - C    4.09451,15813,68153,62233,4870-06)) < 9,34793877 320-15
ABSCXC   5,11]   - C-8,45053.59816»36507,96475»6520-O6)) < 8.24317665860-15

ABSCXC   6,11]   - C-l.77654,47289,81438,28545,1170-04)) < 1,37636289550-14
ABSCXC    7,11]    - C    1,47089,3B187,69934»9O432»8240-O3)) < 7.44960031260-14

ABSCXC   8,11]   - C-l.34829,72206,76638,36936,0380-03)) < 5.58823088600-13
ABSCXC   9,11]   - C-4.31604,61433,37340,37369,1660-02)) < 3,07739496040-12
ABSCXClCll]   - C   2,94847,38166,70738,33609,4350-01)) < 1,14976668430-11
ABSCXC11,11]   - C-8.56353,48023,07795,40335,0460-01)) S 2.63616814370-11
ABSCXC12,11]   - C    1.00000,00000»OOOOO»OOOOO»OOO0+OO)) < 2,61515690270-11

ABSCI_AMBDAU2]-C   2.84749,72055.64781,88282,6170-01))   <   1.38734395220-14

EIGENVECTOR BOUNDS ARE!

ABSCXC 1,12] - C-l.19061,05278,84764,66934,1490-07)) S 6.03021981460-15
ABSCXC 2,12] - C 2.99O64,21369»1O219»92917»68O0-O7)) S 5.64086595480-15
ABSCXC 3,12] - C 3.84817,17071,07064,87942,5940-06)) < 2,37149954760-15
ABSCXC 4,12) - C-2.01687,57372,24147,30515,2150-05)) < 3 . 23823H31300-15
ABSCXC 5,12) - C-7.09670,09125,93027,69031,1500-05)) S 2 .06864505230-15
ABSCXC 6,12] - C 7.44897,06845,14587,61341,6440-04)) S 5.025 37944030-15

ABSCXC 7,12] - C-l.26492,74040,69843,68850,8910-04)) S 2.68463512930-14
ABSCXC 8,12] - C-l.53760,95663,08615,36267,7320-02)) <,   1,78391958520-13
ABSCXC 9,12] - C 4,08486,82483,41952,45413»7140-02)) S 1.00323886670-12
ABSCXC1C12] - C 1.13416,62084,13488,33735,3740-01)) < 3.8657 3279990-12
ABSCXCU,12] - C-7.15250,2/944,15221,20985,6410-01)) < 9.00723779610-12

ABSCXC12,12] - C 1.00000,00000,00000,00000,0000+00)) S 9,66012599680-12

4. Machine Bounds for the Eigenvalues and Eigenvectors. We first form

X,- = flliAa + Pu) ,        i = 1, ■ ■ -,n

as improved estimates for the eigenvalues, where fll denotes double-precision add

and store. We include roundoff here by adding »;2(|A,-,-| -f- |P,-j|) to Qu. We also

form

U = AT <\p*\ + QikYjYi + «i + 5,0 i =   F   •••,71,
<t^i /

bounding the off-diagonal row sums of (P + Q).

To bound the error in X„ we use the Gerschgorin bounds obtained in Section

1. We form for j ¿¿ i,
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Pi = flliX, —  Xj) ,

Pi = fli\Pi\) ,

and

vj = Yiivi + »jO(|x,| + \h\)) •(! + 7,0 ,

so that \pj — (X, — Xj)\ ^ vj. Then we can say rigorously that

\Xi - x,-i ̂  f,- = fliQu + rmi.-) • (i +10,

where m is the largest nonnegative integer such that the ith Gerschgorin disk is

isolated, i.e. so that for all j 9e i,

ßj > fli4Vxßi + Vj + fi + Qjj + «,- + ßmi\Pji\ + Qy,)) • (1 + 7,0 .

To choose m initially, note that the largest term in the above expression is

usually the last, so we pick the largest m such that

ßmi\Pa\ + Qu) < Pi,       j^i-

Then we test each of the above more stringent requirements, decreasing m until

they all hold or until m < 0. If the latter is true, we conclude that the ith eigen-

value cannot be isolated. Otherwise, we proceed to bound the corresponding

eigenvector.

We first bound the eigenvector u of B = X_1A°X. Corresponding to identity

(1) of Section 1, we have in terms of machine quantities, for k ¿¿ i,

(2) pkUk = Pki + 6Qki + 6iQkk + ?i + vk)uk +   T   (Pki + 6Qkj)uj.
Í9^k, i

Again we first obtain a crude bound for Im^I by taking moduli and replacing |wj|,

j = 1, • • -, n on the right-hand side by the upper bound 1.0, obtaining for k ^ i,

\uk\ ̂ s¿» = flft» + r' + n + faV(l + 8,0 .
\ ßk /

Now we use this bound for |wj| ij ¥" i) in the right-hand side of (2), obtaining the

estimate ûk = fliPki/pk) for uk and the bound, for k ^ i,

\uk — Jik\ á §¡fe(2)

jQki + sYYQkk + fj + Vk) + Ti^k.i j\Pkj\ + Qki)s/l)   ,  n   ,_|
= fl\-r 9,i\Uk\

I Pk

•(1  +  61+   H,l)  .

To bound the corresponding eigenvector v = Xu of A°, we multiply through

by X. Thus our estimate for v is v = Xu, which we form and store in double pre-

cision. So

"y = fU\T xikük )
V-i /

and \vj — (Xm)j| ^ e2£, where
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í= f\T\ûk\J- (1 + 61 + 3,0.

Also, from the above bound for \uk — u~k\, we have

\vj - iXü)j\ í T \Xjk\skm ,
k-X

where we know ms = S¡ = 1.0 and s¿(2) = 0. This gives ior j = 1, • • -, n,

\Vj - Vj\   Ú  s/3>  =  fl\jt \Xjk\Sk2) + 62?)- (1 + 6! + 5,0 .

Finally we normalize v so its largest component in modulus is 1.0 by dividing by

the largest component í>j-max in double precision, obtaining

ví - fi(^-) ^ ;(5/3) + 9TN)- (i + 8,o •

5. Use of the Program. The program, M-10, given in the microfiche section

herein, is coded in standard Algol 60 except for the addition of complex and long

(double-precision) declarations. Arithmetic operations between two long variables

is assumed to be done in double precision, and we assume the abs function is de-

fined for a complex argument and gives the modulus. It is important to note that

the technique can be applied repeatedly, using the output improved eigensystem

as the input for the next iteration.

The program, translated into Burroughs Algol for real matrices, has been tested

on scores of matrices using the Burroughs B5500 at Stanford University. The one

example given here is the 12 X 12 Frank matrix for which the approximate eigen-

system is given in [2]. Because the approximations to the smallest eigenvalues

were so poor, on the first iteration we could not isolate the smallest three eigen-

values. But the improved eigensystem was more accurate, and on the fourth itera-

tion, we obtained estimates for the eigenvalues which agreed with those published

by Wilkinson [3, p. 152] to all 15 decimal places he gives, and which were guaran-

teed to at least 12 decimal places, as were the eigenvectors. We list the fourth

iteration results for the smallest three eigenvalues.
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