
The Calculation of the Eigenvectors
of a General Complex Matrix by Inverse Iteration

By J. M. Varah*

Introduction. In this paper, we are concerned with finding approximations to

the eigenvectors of a general complex n X n matrix A, assuming good approxima-

tions to the eigenvalues have been found. In Section 1, we describe the method

used, which amounts to one step of the well-known inverse iteration technique for

a particular initial vector. We show that the eigenvector approximation thus ob-

tained is as accurate as can be expected using single-precision arithmetic. An Algol

60 program using this method for the case of a general real matrix is given in the

microfiche section, and the details of the program and an example are given in

Section 2. In a second paper [7], we will describe a technique which gives rigorous

a posteriori error bounds for such an approximate eigensystem, and which, ap-

plied repeatedly, can yield a better approximate eigensystem if the matrix A is

known to more than single precision.

1. The Basic Iteration. We are concerned with finding the column eigenvectors

of a general complex n X n matrix A, that is, the columns of a matrix X so that

AX = XA, where A is the diagonal matrix of eigenvalues {Xi}!" of A. We assume

the following:

(i) A has been scaled so that \\A\\2 = 1, for convenience.

(ii) A has been reduced by a similarity transformation to upper Hessenberg

form, i.e. a,-, = 0 for j ^ i — 2. This reduction is usually done by Householder

transformations or by elementary row and column operations. Both are discussed

in Wilkinson [6, Chapter 6].

(iii) approximations {X¿ ¡i" to the eigenvalues of A have been found, and are

such that each is an exact eigenvalue of a slightly different matrix A + E\. The

most popular eigenvalue method lately has been the QR method, which is known

to give such approximate eigenvalues. This and other methods, including a Laguerre

iteration developed by Parlett [3] are discussed in Chapters 7 and 8 of Wilkinson [6].

To find the eigenvectors, the inverse iteration technique has been very success-

ful ; namely we perform the following iteration for each eigenvalue approximation X :

(1) (A - Xl)y<v = y»~" ,        k = 1, 2, • • • ,

with 2/co) some arbitrary vector. The iteration is performed by first forming the LU

decomposition of (A — XI) using Gaussian elimination. That is, we form a unit

lower triangular matrix L and an upper triangular matrix U such that LU =

P(A — XI) + F, where P is a permutation matrix and F is a matrix of rounding

errors. Then the two resulting triangular systems are solved.

It is our purpose here to show how the inverse iteration technique can provide
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as good an eigenvector approximation as can be expected. In fact, since A is gen-

erally not represented exactly in the machine and because of rounding errors, all

we can expect of an eigenvector approximation is that it can be an exact eigen-

vector of some matrix A + E, with \\E\\2 S cr¡i, where c is close to 1 and

»7i = max {n: fl(l + n) = 1} .

Here fl(q) denotes the floating-point machine-calculated value of the arithmetic

expression q.

Theorem 1. If at any step in the iteration (1), we find

then the computed vector yik) is the exact eigenvector of a matrix A  + E, where

\\E\\2 ^ rvi, r = n + r2 + r3, and n andr2 are small machine constants.

Proof. In the machine computation, since we use Gaussian elimination with

partial pivoting, we know from Wilkinson [5, p. 98] that P~lLU = A — XI + F,

where \\F\\2 ^ rir/i. Moreover, in solving the triangular systems obtained, we

know from Wilkinson [5, p. 102] that

(P-*LU + Gk)y™ = 2/«-» ,

where 1107*112 á r2»7i. Here ri and r2 depend on the machine arithmetic. Thus we

have exactly

(A - XI + F + Gk)yM = i/«"1' .

Now let u = yik)/\\yik)\\2 and v = 2/(*_1)/ll2/(i;>l|2- Then the above gives

(A - XI + F + Gh - vu*)u = 0 .

Taking E = F + G — vu* gives

llalli ̂  (n + n)Vl + Hî/^IMI^Ih < rVl.

This completes the proof of the theorem.

So one strategy would be to use the basic iteration (1) and iterate until

ll^'IN/llz/'*-1'!^ is close to rjr1. Wilkinson [6, Chapters 5 and 9] uses this tech-

nique, with ym = P~lLe and e = (1, 1, ■ • -, l)r. He iterates until the norm ratio

is close to 771-1 and then does one more step. This strategy has two faults: first of

all, we cannot guarantee that we will obtain a norm ratio close to iji—I. In fact,

one can give examples where the iterates increase in norm by only tji-1'" at each

step. In practice however, such a large norm ratio is usually obtained on the first

iteration. But even so, for matrices with poorly conditioned eigenvalues, if we con-

tinue to iterate, the norm ratios are much less than iji-1 on each subsequent itera-

tion, so even the "one more step" is not a good idea. We take a different viewpoint:

we can guarantee a large norm on the very first iteration by choosing the initial

vector properly.

Theorem 2. Let X be an approximate eigenvalue of A with (A — XI + i^i)

singular and \\Fi\\2 = r-t/i, and let P~1LU be the LU decomposition of (A — X7).

Let G be a matrix of linearly independent columns {gi}in and consider solving UZ = G
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for the columns zt of Z. Suppose \\zk\\2 ̂  ll^ilk  i 9e k, and let ya) be the computed

solution to Uzk = gk- Then ya) satisfies

in/h^h^K-r,!,
with

K = nV2-cond2(G)-[(^±^)(r1 + r) + r2J ,

where r\ and r2 are given in Theorem 1. Thus ya) is an exact eigenvector of (A + E)

with \\E\\% Ú (K + n + r2)Vl.
Proof. Since (A - XI + Fi) is singular and A - XI = P-'LU - F, with

\\F\\2 ^ ri-vi, then

(P-iLU - F + Fi)v = 0

for some vector v. Since L and U are both nonsingular,

v = U~'L~^P(F - Fi)v ,

giving

\\U-%-i ̂ HPHilMlifr + rOfli -

Now since 4 is in upper Hessenberg form, L has only one nonzero element in

each column below the diagonal, and because partial pivoting is used, this element

is less than or equal to one in magnitude. Let Lk.j be the nonzero off-diagonal

element in the jth column. Then solving for the ith row of L~x (whose elements

are denoted by LTy),

|£«|- / . LikLkj
k-i+l

Ú \Li\.-Lkj,j\ ,       j = i - 1, i - 2, • • -, 1 .

We claim ¡LA] S 1 for all i, j. To see this, fix i. We proceed by induction on

j = i — 1, i — 2, ■ • -, 1, using the above equation. Now clearly |Z/7,«-i| =

|Lit4_i| ^ 1 and L~l = 1. For i < i - 1,

l^T/¡ ̂  ILT^I-Iá 1
using the induction hypothesis, since k} > j. Thus

\\L~% ^ (n(n + l)/2)1,a < (n + 1)/V2,

and

IIC/-1^"1^ ((» + i)/V2)(r + r^i.

Now we are solving C/Z = G and hence

Plltss llt^WII^II«-
Let the columns of Z be zt, i = 1, •■•,«, and suppose ||z*||2 ^ IIMk i ^ &■

Then

11,11   >    l    \\7\\   >    l   lifrl|ls
z* U è -~r \\z\\2 á

Vn "   "   - Vn \\G-% '

Now let our iterate ya) be the computed approximation to Zk, that is, the machine
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approximation we would obtain solving for the right-hand side gk. Then ya) satis-

fies (Í7 + G\)yü) = gk, with ||(?i||2 ^ r2r¡i, as in Theorem 1. Hence

1_  ^ \\I + U   Gi\\2   -    , ||/T_i|i n\TT-h\ -i  i        \
TiTT   ^ "-i¡—Ñ-     - vwllG   ||2(||i7   ||2     + r2rn) .

\\ywb -        11**11«

When we solve for 2/(1) in this way, our initial vector yi0) = P~lLgk, so that

||2/(0)||2^||P-1||2||L||2-||(?||2^(2n)l/2||G||2,

and hence

JÖ á nv^dlöll.-ll^ll.)-^2^)^ + ri) + r,]* = £•*.

Finally, applying Theorem 1, we see that y(1) is an exact eigenvector of (A + E),

with ||2?||2 =S (íl + ri + r2)i7i. This completes the proof of Theorem 2.

In effect, this just says that since (A — XI) is very nearly singular, the near-

singularity will be reflected in an inverse iterate with a large norm, for some initial

vector. So in theory we could take any nonsingular G and solve for each column.

But this takes too much work : solving for every column takes n3 operations. How-

ever, we do not have to find the column which gives the maximum solution norm,

only one where the norm is large. So we want to use a G in practice that gives a

large norm for the very first column in most cases.

As Wilkinson noticed in [4], taking G = I can be very poor. Here we are just

solving for the columns of U~l, and many of the matrices which arise have no

small diagonal elements in U although it is nearly singular. So it may be necessary

to solve for several columns of U~x to find one with a large norm. Wilkinson has

shown that the initial vector e = (1,1, • • -, l)r gives good results in practice;

actually any such vector with lots of nonzero components would probably work as

well. However, it can happen that z = U~le is not large in norm either; we still

must have other choices available.

The strategy we propose is to take for G the orthogonal matrix

,., 2t(í - í)(j - 1)   ,     .    2ir(i - l)(j - 1)
(2) g{j = cos —-—- + sin —-—-'- .

n n

The first column is exactly the vector e and in practice this almost always gives a

solution with a large norm. If it does not however, we go on and try the second

column, etc. Also note that GTG = ni so that cond2 (G) = 1 and thus this gives

the best possible bound in Theorem 2.

2. Description of the Program. The Algol 60 program, M-9, in the microfiche

section herein, applies to a real matrix A reduced to upper Hessenberg form. The

reason for this is twofold: first, for an Algol compiler that allows complex declara-

tions, the code for a general complex matrix is simpler than that given here be-

cause only the (a) iteration below is necessary. Secondly, if the matrix is real, time

is saved by using a specialized program. For best results, the input matrix A should

be "balanced" so that its ith row and column sums are roughly equal. This can

be done by diagonal similarity transformations (see Osborne [2]). Also, the matrix

should be scaled so that J|^4]|2 is close to 1.0.
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An Algol 60 program for the reduction to upper Hessenberg form using House-

holder transformations is given in [1] and a similar program using elementary

similarity operations is forthcoming in Numerische Mathematik. An excellent pro-

gram for calculating the eigenvalues by the QR method is forthcoming by Wilkin-

son in Numerische Mathematik, and the Algol 60 code for the Laguerre iteration

of Parlett is given in [3].

The eigenvectors of the Hessenberg matrix are found as follows :

(a) if the eigenvalue approximation X is real, we form the LU decomposition of

(A — XI) and solve Uyik) = gk, fc = 1, 2, ■ • •, where the gk are the columns of G,

defined by (2). We continue until ||í/<í;)||2 > Krn~l, where K is a. fixed tolerance.

The process requires about n2(k + l)/2 multiplications;

(b) if X = £ + iv, v j¿ 0, we proceed as in Wilkinson [6, p. 630]. Since X is also

an eigenvalue approximation, we form the LU decomposition of

B = (A - XI)(A - XI)

and solve

Uyik) = gk,       z(k) = - ± (A - i-I)ym ,       k = 1, 2, • • • .

We continue until \\y(k) + ¿z**'^ > Kn-r1. Since the matrix A2 is formed only

once, the work per eigenvalue is about n2(k + ll/6)/2 multiplications.

If any zero pivots are encountered in the LU decomposition, they are replaced

by t)i max¿,j |a¿3|, so that we can backsolve. If any eigenvalue approximations are

identical, they are perturbed by an amount close to rji so that a different LU is

formed. Then if there are distinct eigenvectors corresponding to these eigenvalues,

the two inverse iterations should give two distinct eigenvectors.

This program has been tested on scores of matrices using the Burroughs B5500

at Stanford University. We give one example :

a<y = n+l-max(¿,¿),   if   j^i-1   and   n = u

= 0,    otherwise

This is the Frank matrix discussed by Wilkinson ([6, p. 92] and [5, p. 151]). It is

in upper Hessenberg form and its eigenvalues are all real and positive. However,

the Wilkinson conditions of the eigenvalues deteriorate as we go from biggest to

smallest, and are about 10~7 for the last three eigenvalues. The eigenvalue ap-

proximations were found using an early version of Wilkinson's QR program on the

B5500 where vi = h 8-12. The smallest three eigenvalue approximations are only

correct to about two significant figures ; nevertheless each is an exact eigenvalue of

a slightly different matrix, as are the eigenvector approximations and each of the

latter was found on the first inverse iteration.
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