The Calculation of the Eigenvectors
of a General Complex Matrix by Inverse Iteration

By J. M. Varah*

Introduction. In this paper, we are concerned with finding approximations to
the eigenvectors of a general complex n X n matrix 4, assuming good approxima-
tions to the eigenvalues have been found. In Section 1, we describe the method
used, which amounts to one step of the well-known inverse iteration technique for
a particular initial vector. We show that the eigenvector approximation thus ob-
tained is as accurate as can be expected using single-precision arithmetic. An Algol
60 program using this method for the case of a general real matrix is given in the
microfiche section, and the details of the program and an example are given in
Section 2. In a second paper [7], we will describe a technique which gives rigorous
a posteriori error bounds for such an approximate eigensystem, and which, ap-
plied repeatedly, can yield a better approximate eigensystem if the matrix A is
known to more than single precision.

1. The Basic Iteration. We are concerned with finding the column eigenvectors
of a general complex n X n matrix 4, that is, the columns of a matrix X so that
AX = XA, where A is the diagonal matrix of eigenvalues {\;}:* of A. We assume
the following:

(i) A has been scaled so that ||4]||: = 1, for convenience.

(ii) A has been reduced by a similarity transformation to upper Hessenberg
form, i.e. a;; = 0 for j < ¢ — 2. This reduction is usually done by Householder
transformations or by elementary row and column operations. Both are discussed
in Wilkinson [6, Chapter 6].

(iii) approximations {\,}." to the eigenvalues of A have been found, and are
such that each is an exact eigenvalue of a slightly different matrix A + E,. The
most popular eigenvalue method lately has been the QR method, which is known
to give such approximate eigenvalues. This and other methods, including a Laguerre
iteration developed by Parlett [3] are discussed in Chapters 7 and 8 of Wilkinson [6].

To find the eigenvectors, the inverse iteration technique has been very success-
ful; namely we perform the following iteration for each eigenvalue approximation X:

(M (4 = Ay® = yo, k=12,

with y© some arbitrary vector. The iteration is performed by first forming the LU
decomposition of (A — AI) using Gaussian elimination. That is, we form a unit
lower triangular matrix L and an upper triangular matrix U such that LU =
P(A — N) + F, where P is a permutation matrix and F is a matrix of rounding
errors. Then the two resulting triangular systems are solved.

It is our purpose here to show how the inverse iteration technique can provide
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as good an eigenvector approximation as can be expected. In fact, since A is gen-
erally not represented exactly in the machine and because of rounding errors, all
we can expect of an eigenvector approximation is that it can be an exact eigen-
vector of some matrix A + E, with ||E|[z £ ¢n1, where ¢ is close to 1 and

m = max {n: fI(1 +n) = 1}.

Here fl(q) denotes the floating-point machine-calculated value of the arithmetic
expression ¢.
TueoreM 1. If at any step in the iteration (1), we find

ly“l: © 1

1

ly* Pl ™ 7

then the computed vector y® s the exact eigenvector of a matrix A + E, where
|1Ellz < m1, 7 = 11 + 12 + 713, and 1 and rs are small machine constants.

Proof. In the machine computation, since we use Gaussian elimination with
partial pivoting, we know from Wilkinson [5, p. 98] that P'LU = A — A\ + F,
where ||F|ls < rm. Moreover, in solving the triangular systems obtained, we
know from Wilkinson [5, p. 102] that

(PLU + Gy® =y,

where ||Gy|l: =< 7. Here 71 and 7, depend on the machine arithmetic. Thus we
have exactly

(A = N + F + Gy® =yt .
Now let u = y®/|ly®||: and v = y*1/||y*®||.. Then the above gives
A-=N4+F+G—vu*Hu=0.
Taking £ = F 4+ G — vu* gives
[Ells = (r1+ ro)m + [ly®=lle/ly® s < ran.

This completes the proof of the theorem.

So one strategy would be to use the basic iteration (1) and iterate until
ly® |2/ |ly*2|l2 is close to 5:~t. Wilkinson [6, Chapters 5 and 9] uses this tech-
nique, with y® = P-1Leand e = (1, 1, - - -, 1)7. He iterates until the norm ratio
is close to 7! and then does one more step. This strategy has two faults: first of
all, we cannot guarantee that we will obtain a norm ratio close to #:~!. In fact,
one can give examples where the iterates increase in norm by only n;71'» at each
step. In practice however, such a large norm ratio is usually obtained on the first
iteration. But even so, for matrices with poorly conditioned eigenvalues, if we con-
tinue to iterate, the norm ratios are much less than #;~! on each subsequent itera-
tion, so even the ‘“‘one more step’’ is not a good idea. We take a different viewpoint:
we can guarantee a large norm on the very first iteration by choosing the initial
vector properly.

TueoreM 2. Let N be an approximate eigenvalue of A with (A — N + Fy)
singular and ||Fills = 7-m1, and let P7'LU be the LU decomposition of (A — A).
Let G be a matriz of linearly independent columns {g;}1" and consider solving UZ = G
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Jor the columns z; of Z. Suppose ||zc|z = ||z:lle, 7 #= k, and let y® be the computed

solution to Uz, = gir. Then y© satisfies

Iy N2/ Ily P2 < Komy,
with

K = nv/2-conds(G) - [(”jzl) (4 1) + n] ,

where r1 and ry are given in Theorem 1. Thus y® is an exact eigenvector of (A + E)
with [|[Els £ (K 4 r1 4 ro)n.

Proof. Since (A — A + F,) is singular and A — N = P7'LU — F, with
”FHZ < 1M, then

(PULU—-F+Fv=0
for some vector ». Since L and U are both nonsingular,

v=UL7P(F — Fio,
giving

[0 = (1PHLILoCr 4+ ra)ms
Now since 4 is in upper Hessenberg form, L has only one nonzero element in

each column below the diagonal, and because partial pivoting is used, this element
is less than or equal to one in magnitude. Let Li,,; be the nonzero off-diagonal

clement in the jth column. Then solving for the ¢th row of L—! (whose elements
are denoted by L7}),

i

> LiLs;

k=j+1

L3 =

S Lok Lysl, j=i—-1,i—2,---1.

We claim [L7}| < 1 for all ¢, j. To see this, fix . We proceed by induction on
J=1—119— 2 --- 1, using the above equation. Now clearly |L7}. =
[Liia] £ land L7} = 1. Forj <i—1,

L] S L] 121
using the induction hypothesis, sinee k; > j. Thus
IL72 = (n(n + 1)/2)'* < (n + 1)/V 2,
and
N0 = ((n+ 1/ V2)(r + ri)m.
Now we are solving UZ = G and hence
121l = Us/11G 2 -

Let the columns of Z be z;, ¢ = 1, -, n, and suppose [|z|z = |z:]ls, 7 = k.
Then
1 LU
> — 2], 2 == M
ll2xll2 = vn 1Z]l: = V|G,

Now let our iterate y® be the computed approximation to z, that is, the machine
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approximation we would obtain solving for the right-hand side gx. Then y© satis-
fies (U + G)y® = gi, with ||G1|lz = 71, as in Theorem 1. Hence

1 _|I+UTG:
O, = n
ly™ 1l l2elle

When we solve for ¥y in this way, our initial vector y©@ = P~'Lg;, so that

lylle < IP7YIsILY- Gl < @),

= VoG (U™ A+ ram) -

and hence

0
L S nv2a1el 16 () ¢+ 4 e os = Ko
Finally, applying Theorem 1, we see that ¥ is an exact eigenvector of (4 + E),
with ||E|l: £ (K 4 r1 + r2)n1. This completes the proof of Theorem 2.

In effect, this just says that since (4 — AI) is very nearly singular, the near-
singularity will be reflected in an inverse iterate with a large norm, for some initial
vector. So in theory we could take any nonsingular G and solve for each column.
But this takes too much work: solving for every column takes n® operations. How-
ever, we do not have to find the column which gives the maximum solution norm,
only one where the norm is large. So we want to use a G in practice that gives a
large norm for the very first column in most cases.

As Wilkinson noticed in [4], taking G = I can be very poor. Here we are just
solving for the columns of U-!, and many of the matrices which arise have no
small diagonal elements in U although it is nearly singular. So it may be necessary
to solve for several columns of U~! to find one with a large norm. Wilkinson has
shown that the initial vector ¢ = (1, 1, - -, 1)T gives good results in practice;
actually any such vector with lots of nonzero components would probably work as
well. However, it can happen that z = U~'e is not large in norm either; we still
must have other choices available.

The strategy we propose is to take for (¢ the orthogonal matrix

(2) gi; = COS 2r( = 12)(,7’ —1) -+ sin 2n(i = ln)(j — 1) .

The first column is exactly the vector e and in practice this almost always gives a
solution with a large norm. If it does not however, we go on and try the second
column, ete. Also note that GTG = nl so that cond, (G) = 1 and thus this gives
the best possible bound in Theorem 2.

2. Description of the Program. The Algol 60 program, M-9, in the microfiche
section herein, applies to a real matrix A reduced to upper Hessenberg form. The
reason for this is twofold: first, for an Algol compiler that allows complex declara-
tions, the code for a general complex matrix is simpler than that given here be-
cause only the (a) iteration below is necessary. Secondly, if the matrix is real, time
is saved by using a specialized program. For best results, the input matrix A should
be “balanced’” so that its 7th row and column sums are roughly equal. This can
be done by diagonal similarity transformations (see Osborne [2]). Also, the matrix
should be scaled so that ||4]|; is close to 1.0.
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An Algol 60 program for the reduction to upper Hessenberg form using House-
holder transformations is given in [1] and a similar program using elementary
similarity operations is forthcoming in Numerische Mathematik. An excellent pro-
gram for calculating the eigenvalues by the QR method is forthcoming by Wilkin-
son in Numerische Mathematik, and the Algol 60 code for the Laguerre iteration
of Parlett is given in [3].

The eigenvectors of the Hessenberg matrix are found as follows:

(a) if the eigenvalue approximation A is real, we form the LU decomposition of
(A — M) and solve Uy® = g, k = 1,2, - - -, where the gi are the columns of G,
defined by (2). We continue until ||y®||s > Kn:™!, where K is a fixed tolerance.
The process requires about n?(k + 1)/2 multiplications;

(b) if A = £ + v, » # 0, we proceed as in Wilkinson [6, p. 630]. Since X is also
an eigenvalue approximation, we form the LU decomposition of

B= (4 =) —X\])

and solve

Uy =g, =LA —®, k=12,

We continue until [|[y® + 2®|, > Kn~!. Since the matrix A? is formed only
once, the work per eigenvalue is about n*(k + 11/6)/2 multiplications.

If any zero pivots are encountered in the LU decomposition, they are replaced
by 71 max;,; |a:;|, so that we can backsolve. If any eigenvalue approximations are
identical, they are perturbed by an amount close to 7; so that a different LU is
formed. Then if there are distinet eigenvectors corresponding to these eigenvalues,
the two inverse iterations should give two distinct eigenvectors.

This program has been tested on scores of matrices using the Burroughs B5500
at Stanford University. We give one example:

a,~,~=n+1—max(i,j), if ]gz—l and n = 12.
= 0, otherwise

This is the Frank matrix discussed by Wilkinson ([6, p. 92] and [5, p. 151]). It is
in upper Hessenberg form and its eigenvalues are all real and positive. However,
the Wilkinson conditions of the eigenvalues deteriorate as we go from biggest to
smallest, and are about 10~7 for the last three eigenvalues. The eigenvalue ap-
proximations were found using an early version of Wilkinson’s QR program on the
B5500 where 7; = 3 82, The smallest three eigenvalue approximations are only
correct to about two significant figures; nevertheless each is an exact eigenvalue of
a slightly different matrix, as are the eigenvector approximations and each of the
latter was found on the first inverse iteration.
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