
REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

1[2.10, 7].—0. V. Babtjrin & V. I. Lebedev, "O vycRislenii tablits korneï i vesov

polinomov Ermita i Liagerra dlia n = 1(1)101" ("On the calculation of a table

of zeros and weights of Hermite and Laguerre polynomials for n = 1(1)101"),

Zh. Vychisl. Mat. i Mat. Fiz., v. 7, 1967, pp. 1021-1030.

Herein are described the mathematical and computational details (including

error estimates) of the electronic digital calculation of the zeros of the first 101

Hermite and Laguerre polynomials, respectively, and of the coefficients (weights)

for the associated quadrature formulas

/b n
p0x)f0x)dx = £ BkF0xk) + Rn ,

n k=l

where Fixk) = p0xk)f0xk); pOx) = e~x2,a = — °o,6 = <», for Gauss-Hermite quad-

rature; and pix) = e~x, a = 0, b = oo, for Gauss-Laguerre quadrature.

Excerpts of this table that are reproduced in this paper consist of 16S values of

the zeros, xk, and weights, Bk, for n = 60, 100, and 101 for the Hermite polynomials

(Tables 1-3), and for n = 60 and 100 for the Laguerre polynomials (Tables A, 5).

This reviewer has compared the contents of Table 5 with the corresponding 24S

values in the unpublished table of Berger & Danson [1], and has detected just two

discrepancies; namely, the first two values of B in Table 5 are too high by three

units and one unit, respectively, in the last decimal place. A comparison of the zeros

of both the Hermite and Laguerre polynomials when n = 60 (Tables 1 and 4) with

the corresponding 30S approximations in the tables of Stroud & Secrest [2] has re-

vealed no discrepancies. Comparison of the corresponding weights was not possible,

inasmuch as Stroud & Secrest tabulate coefficients A,-, which are equal to pix/) -Bi,

in the notation of this paper.

So far as the reviewer is aware, the data constituting Tables 2 and 3 appear to

be new.

Appended to this informative and useful paper is a list of the nine references

that are cited in the text.

J. W. W.

1. B. S. Berger & R. Danson, Tables of Zeros and Weights for Gauss-Laguerre Quadrature,
ms. deposited in UMT file. (See Math. Comp., v. 22, 1968, pp. 458-159, UMT 40.)

2. A. H. Stroud & D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, Englewood
Cliffs, N. J., 1966. (See Math. Comp., v. 21, 1967, pp. 125-126, RMT 14.)

2 [4, 5, 6].—Susan J. Voight, Bibliography on the Numerical Solution of Integral

and Differential Equations and Related Topics, Report 2423, Naval Ship Re-

search and Development Center, Washington, D. C, November, 1967, ii, 526

pp., 27 cm.

This is a valuable reference. It covers various aspects of the numerical solution

of differential (ordinary and partial) and integral equations including methods of

solution, computer programs for developing solutions and existence and properties

of the solutions. Mixed type equations are also covered. Related topics such as
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matrix manipulation have been included to some extent in view of their application

to particular methods.

Books, journals and research reports (both government and industry) are

referenced. The time period is mostly 1960-1966, though numerous earlier references

are also presented.

There are essentially four parts. The first is a bibliography of entries giving title

and source of article, where it is reviewed, abstracted, etc. In illustration of the

review aspect, the bibliography notes where an article has been reviewed in Mathe-

matical Reviews, Computing Reviews, Nuclear Science Abstracts, etc. The entries in

this part are not completely alphabetized by author. Here each entry is given an

accession number to facilitate cross-referencing with other parts. The second part

is an author index. The third part is a source index listing the source abbreviations

used throughout the volume. The fourth part and perhaps the most useful for infor-

mation retrieval is a Key-Word-In-Context (KWIC) index of titles of articles. This

is not a subject index but rather a list of all the titles each permuted about all the

significant words in the title.

There are three appendices. Appendix A describes the bibliography format.

Appendix B gives a key which tells the language in which an article is written.

Appendix C presents a transliteration scheme from the Cyrillic alphabet. Additional

information on the project and its development is found in the introduction.

The value and usefulness of this volume to all research workers is clear. We hope

that steps are being taken to continually update the literature of the subject at

hand, and to extend these ideas to other segments of the mathematical literature.

Y. L. L.

3[4, 5, 6, 7, 13.15].—R. Sauer & I. Szabo, Editors, Mathematische Hilfsmittel des

Ingenieurs, Part I: G. Doetsch, F. W. Schäfke & H. Tietz, Authors, Springer-

Verlag, New York, 1967, xv + 496 pp., 24 cm. Price $22.00.

This is the first volume of a projected four-volume set. Though labelled as a

handbook for engineers, the material is useful to all applied workers. The present

volume is divided into three parts.

The first part written by H. Tietz is on function theory. Here in 84 pages are

covered the rudiments (mostly without proof) of complex variable theory, elliptic

functions, and conformai mapping.

The second part written by F. W. Schäfke deals with special functions. The

special functions are conceived as those functions of mathematical physics which

emerge by separation of the 3-dimensional wave equation Am + k2u = 0 by use of

certain orthogonal coordinate systems. To this class of functions, the T-function

is also appended. The latter is treated in the first section. Separation of the wave

equation in various coordinate systems is taken up in the second section. The next

eight sections deal with cylinder functions, hypergeometric function (the Gaussian

2F1), Legendre functions, confluent hypergeometric functions, special functions

which satisfy the relation a(x, a)idy/dx)ix, a) + b(x, a)y(x, a) = y(x, a + 1), or-

thogonal polynomials (mostly classical), Mathieu functions and spheroidal func-

tions. For the most part, proofs are given. A considerable amount of material is

covered in 145 pages, though much valuable material was evidently omitted in view
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of space requirements. A short list of books on the subject of special functions is

provided. Here the Handbook of Mathematical Functions with Formulas, Graphs and

Mathematical Tables, Applied Mathematics Series 55, U. S. Government Printing

Office, Washington, D. C, 1964 (see Math. Comp., v. 19, 1965, pp. 147-149) is
conspicuous by its absence.

The third part of the handbook written by G. Doetsch is on functional trans-

formations. It is the longest of the three parts (253 pages). After an introduction to

the subject and Hubert space (Chapter 1), Fourier transforms (both two-sided and

one-sided) are taken up in Chapter 2. Basic results including existence theorems and

rules are clearly outlined. Classically, some serious drawbacks to transform theory

arose, for in the applications one often encountered functions for which the trans-

forms diverged. Also considerable formalism had become quite common in the use

of transforms (e.g., the Dirac 5 function). In recent times, a discipline called "Distri-

bution Theory" has been constructed which provides a rigorous framework for the

development of a transform theory to meet the deficiencies noted above. The present

handbook is noteworthy in that it contains an appendix giving pertinent results on

distribution theory, and in Chapter 2 there is presented a modified distribution

theory and its connection with Fourier transforms. For physical applications, con-

siderable attention is devoted to idealized filter systems (Fiktive Filtersysteme) and

realizable filter systems. In the idealized situations, the topics covered include fre-

quency and phase response, distortion, and high, low, and band pass systems.

Chapter 3 is concerned with Laplace transforms and their inversions. Applications

are made to ordinary and partial differential equations. Physical applications in-

clude vibration problems and analysis and synthesis of electrical networks. The

two sided Laplace transforms and Mellin transform are treated in Chapter 4. The

two-dimensional Laplace transform is the subject of Chapter 5. A discretized version

of the Laplace transform known as the Z-transform is developed in Chapter 6 along

with applications to difference equations. Chapter 7 treats finite transforms includ-

ing those known by the name of Fourier (i.e., finite exponential, cos and sin trans-

forms), Laplace and Hankel. An appendix gives short tables of the following trans-

forms: Fourier, Laplace (one- and two-dimensional), Mellin, Z, finite cos and sin.

Y. L. L.

4[7].—V. A. Ditkin & A. P. Prudnikov, Formulaire pour le Calcul Opérationnel,

Masson & Cie, Éditeurs, Paris, 1967, 472 pp., 25 cm. Price F 65.

This translation from the Russian gives tables for the evaluation of one- and

two-dimensional Laplace transforms (actually p-multiplied Laplace transforms

which are called Laplace-Carson transforms) and their inverses. Thus the one-

dimensional and two-dimensional transforms tabulated are of the form

7(p) =pT e-ptfit)dt,
J 0

/CO        ÍOO

I    e~px~gyf(x, y)dxdy .
4)        J   0

Chapter 1 [2] gives J(p) [/(<)] for a given/(i) [J(p)] while Chapter 3 [4] gives J(p, q)

[fix, y)] for a given fOx, y) [/(p, q)]. The influence of the book Tables of Integral Trans-
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forms by A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Vol. 1,

McGraw-Hill Book Co., New York, 1954 (see MTAC, Vol. 10, 1956, pp. 252-254)
is marked in that the arrangement of the one-dimensional material under review is

much akin to that of the work just mentioned. The current work contains more

transforms than the Erdélyi et al. volume. For example, there are transforms of

numerous sectionally rational functions and Mathieu functions. Aside from this,

there appear to be few if any transforms which can not be readily deduced from

those in the latter volume.

The list of transforms in Chapters 3 and 4 are the most extensive I have ever

seen. True, these results can be built up from the pertinent material in Chapters

1 and 2. Nonetheless, applied workers should appreciate the short cuts provided by

the present tables.

We have spot checked various portions of the tables against other lists. The only

error found is formula 1.1.4. There in the/(i) column for (ai — b) read fiat — b).

Regretfully, the printing of the tables is incredibly poor. We have not seen the

original Russian edition and so do not know if the present tables were reset or are

a photocopy of the original.

Y. L. L.

5 [7].—Vincent P. Gutschick & Oliver G. Ludwig, Table of Exact Integrals of

Products of Two Associated Legendre Functions, Department of Chemistry,

California Institute of Technology and Department of Chemistry, Villanova

University. Ms. of 40 computer sheets deposited in the UMT file.

Let

Iih, mi, l2, m2) = \    P™l(x)Pmil(x)dx .
J-i

This manuscript table presents exact (rational) values of all nonvanishing and non-

redundant integrals /, where the I's and m's individually assume all integer values

from 0 to 12, inclusive.

An introduction of three pages explains the method of computation and gives

other pertinent information.

For a technique to compute a generalization of this integral, see a paper by J.

Miller [1]. Another related paper is one by S. Katsura and his coworkers [2].

Y. L. L.

1. James Miller, "Formulas for integrals of products of associated Legendre or Laguerre
functions," Math. Comp., v. 17, 1963, pp. 84-87.

2. S. Katsura, Y. Inoue, S. Hamashita & J. E. Kilpatrick, Tables of Integrals of Threefold
and Fourfold Products of Associated Legendre Functions, The Technology Reports of the Tôhoku
University, v. 30, 1965, pp. 93-164. [See Math. Comp., v. 20, 1966, pp. 625-626, RMT 98.]

6[7].—Ts. D. Lomkatsi, Tablitsy Ellipticneskoi Funktsii Veïershtrassa (Tables of

Weierstrassian Elliptic Functions), Computation Center of the Academy of

Science of the U.S.S.R., Moscow, 1967, xxxii + 88 pp., 27 cm. Price 1.06 roubles
(paperbound).

An elaborate mathematical introduction to these tables was prepared by V. M.
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Beliakov and K. A. Karpov. Starting with the standard definition of the Weierstrass

elliptic function z = pOß; g2, gz) as the inverse of the function

_.  f" dz
i Í 1/9)

J z   iAz   - g2z - g3)

it gives a detailed discussion of the properties of that function, as well as formulas

for the evaluation thereof corresponding to complex values of u. A section is devoted

to a discussion of the numerical evaluation of pOu; g2, g3) for large values of g2

when gr3 = ±1. This is supplemented by a discussion of the evaluation of the Jacobi

elliptic function sn(u, m), together with an auxiliary table of KOm) to 8D for

m = 0.4980(0.0001)0.5020, with first differences. The relevant computational meth-

ods are illustrated by the detailed evaluation of ¡¡?(0.2; 100, 1) and g>(0.3; 100, —1)

to 78.
The two main tables, which were calculated and checked by differencing on the

Strela computer, consist of 7S values (in floating-point form) of fpOu; g2, gz) for

g2 = 3(0.5)100, gz = 1, and g2 = 3.5(0.5)100, g% = —1, respectively, where in both

tables u = 0.01(0.01)wi. Here u>i represents the real half-period of the elliptic func-

tion. It should be noted that for the stated range of the invariants g2 and g3, the

discriminant g23 — 27gz2 is nonnegative, so that the zeros e\, e2, e% of Az3 — g2z — gz

are all real.

A description of the contents and use of the tables, including details of interpola-

tion (with illustrative examples) is also given in the introduction.

Appended to the introduction is a listing of the various notations used for this

elliptic function and a useful bibliography of 19 items.

An examination of the related tabular literature reveals that these tables are

unique; indeed, Fletcher [1] in his definitive guide to tables of elliptic functions

mentions no tables of piu; g2, gz) when g2 and ¡73 are real and the discriminant is

positive.

J. W. W.

1. Alan Fletcher, "Guide to tables of elliptic functions," MTAC, v. 3, 1948, pp. 229-281.

7[7].—Robert Spira, Tables of Zeros of Sections of the Zeta Function, ms. of 30

sheets deposited in the UMT file.

This manuscript table consists of rounded 6D values of zeros, a + it, of 2"=i n~s

for M = 3(1)12, 0 < t < 100; M = 10*, k = 2(1)5, -1 < a, 0 < t < 100; M =
1010, 0.75 < a < 1,0 < t < 100. No zero with a > 1 was found. A detailed discussion

by the author appears in [1] and [2].

J. W. W.

1. R. Spira, "Zeros of sections of the zeta function. I," Math. Comp., v. 20, 1966, pp. 542-550.
2. R. Spira, "Zeros of sections of the zeta function. II", ibid., v. 22, 1968, pp. 163-173.

8[7, 8].—W. Russell & M. Lal, Table of Chi-Square Probability Function, Depart-

ment of Mathematics, Memorial University of Newfoundland, St. John's,

Newfoundland, Canada, September 1967, 77 pp., 28 cm. One copy deposited

in the UMT file.

Herein are tabulated to 5D the values of the chi-square distribution function
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1 _ Fnix) = [2nl2Yin/2)Tl Txnl2-le-xl2dx
X2

for n <= 1(1)50, x2 = 0.001(0.001)0.01(0.01)0.1(0.1)107. As explained in the intro-

ductory text, those values that round to 0 or 1 to 5D have been omitted. It should

be particularly noted that the tabulated values are those of the complementary

function, 1 — Fnix2), and not those of F„(x2) as implied in the introduction.

The tabulated values were obtained by appropriately rounding 8S floating-point

values calculated on an IBM 1620 Mod. I system, employing an iterative procedure

due to R. Thompson [1].

A spot check made by the authors with corresponding entries in the tables of

Pearson & Hartley [2] revealed no discrepancies.

The abbreviated bibliography contains no reference to the extensive tables of

Harter [3], which include 9D values of the incomplete gamma-function ratio

fx2
IOu, p) = 2-nl2{ Tin/2) p1 /    e-x,2xn,2-xdx ,

J 0

where u = x2/(2«)1/2 and p = n/2 — 1.

Hence, we have the relation Fre(x2) = /(x2/(2n)1/2, n/2 — 1), which reveals that

entries in the two tables are generally not readily comparable.

Because of the conveniently small increment in x2 throughout, the present table

should provide a useful supplement to the cited tables of Pearson & Hartley.

J. W. W.

1. Rory Thompson, "Evaluation of In(b) = 27r~' /J (sin x/x)n cos (bx)dx and of similar
integrals," Math. Comp., v. 20, 1966, pp. 330-332.

2. E. S. Pearson & H. O. Hartley, Biometrika Tables for Statisticians, Vol. I, third edition,
Cambridge University Press, Cambridge, 1966.

3. H. Leon Harter, New Tables of the Incomplete Gamma-Function Ratio and of Percentage
Points of the Chi-Square and Beta Distributions, U. S. Government Printing Office, Washington,
D. C, 1964.

9[9].—Dov Jarden, Recurring Sequences, Second Edition, Riveon Lematematika,

12 Gat St., Kiryat-Moshe, Jerusalem, 1966, ii + 137 pp. Price $6.

The second edition, which has been produced on a more durable paper, is an

enlargement and revision of the first. The enlargement comes from the inclusion of

eight new articles, while the revision consists mainly of the inclusion of many new

prime factors in the two factor tables in the work.

In general, the book is a collection of short papers by the author on various

questions concerning the Fibonacci numbers Un, their associated sequence Vn, and

other recurring sequences. Representative titles are, "Divisibility of Umn by UmUn

in Fibonacci's sequence," "Unboundedness of the function [p — (5/p)]/a(p) in

Fibonacci's sequence," and "The series of inverses of a second order recurring

sequence." There is also a large chronological bibliography on recurring sequences.

Among the new articles is one of general interest to Decaphiles, "On the perio-

dicity of the last digits of the Fibonacci numbers," where the period mod 10d is

shown to be 60, 300, and 15 • 10a-1 for 1, 2, and d è 3 final digits.
The two revised factor tables, which were provided by the reviewer, are at

present the most extensive in the literature.
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Of these, the first table is a special table giving the complete factorization of

5Un2 ± 5s7„ + 1 for odd n g 77, the two trinomials being the algebraic factors in

V,n/Vn = ibUn2 - 5Un + l)(5s7„2 + 5í7n + 1) ,

n odd.
The second table is the general factor table for Un and Vn with n ^ 385. The

overall bound for prime factors is 235 for n < 300 and 230 for 300 ^ n ^ 385. It also

shows that Un and Vn are completely factored up to n = 172 and n = 151 respec-

tively. The table gives as well an indication for the incomplete factorizations whether

their cofactors are composite or pseudoprime. The introduction to this table pro-

vides the further information that Un is prime for n g 1000 iff n = 3, 4, 5, 7, 11,

13, 17, 23, 29, 43, 47, 83, 131, 137, 359, 431, 433, 449, 509, 569, 571, while Vn is prime

for n g, 500 iff n = 0, 2, A, 5, 7, 8, 11, 13, 16, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79,
113, 313, 353. The number U3M, which was only known to be a pseudoprime at the

time of publication of the tables, has since been shown to be a prime by the re-

viewer.

John Brillhart

University of Arizona

Tucson, Arizona 85721

10[Q].—K. E. Kloss, M. Newman & E. Ordman, Class Number of Primes of the

Form An + 1, National Bureau of Standards, 1965,15 Xeroxed computer sheets

deposited in the UMT file.

This interesting table lists the first 5000 primes of the form An + 1—from

p = 5 to p = 105269. For each such prime p is listed the class number hip) of the

real algebraic quadratic field Ä(Vp). Alternatively, this is also the number of

classes of binary quadratic forms of discriminant p. The table is similar to that

announced in [1], and was computed about five years ago on an experimental

machine, the NBS PILOT. The method used was the classical one of listing all re-

duced forms and counting the "periods" into which they fall. Appended are short

extensions : the class numbers for the first 100 primes An + 1 > 106 and for the first

35 > 107.

In [1], Kloss reports that about 80% of these primes have class number 1. We

have tallied the following more detailed statistics: the number of examples with

class number 1, 3, 5, etc. that occur among the first 1000, 2000, etc. primes.

Table

h = 1    3       5      7     9     11    13    15    17    19   21   23   25   27   29   >30

1000 816 101 35 22 9 6 5 2 1 — 1 — — 1 — 1
2000 1622 213 70 36 19 10 8 7 2 2 12 1 3 — 4
3000 2420 306 111 58 34 13 14 13 7 5 2    2 4 3 1 7
4000 3198 422 145 79 50 19 20 16 9 8 5    3 7 4 2 13
5000 3987 522 183 98 66 29 28 20 11 11 7    4 10 4 4 16

It will be noted that Kloss's 80% is remarkably steady. Similarly, a little over

10% have class number 3, 3.6% have class number 5, 2% have class number 7,

1.2% have class number 9, etc. Queries: What is this 80%? More generally, what is
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this distribution? Can it be deduced now from some heuristically reasonable postu-

lates, if not yet more rigorously? Gauss, in §304 of his Disquisitiones, raises the

question whether the number of examples of one class/genus does not tend to some

fixed fraction of the total number of examples as the determinant goes to infinity.

There are two differences between his population and the present one. Gauss is

concerned with all (nonsquare) positive determinants, and here we have the An + 1

prime discriminants. This latter implies that we have one genus only here, and an

odd class number. Nonetheless, the similarity of the two propositions is obvious.

It may be helpful to add that for primes p = 8n + 1 the class number is the

same whether p is regarded as the discriminant or the determinant. And the same is

true for those primes 8n + 5 where there is a solution of

x2 — py2 = A ,       x = y = 1 (mod 2) .

But if there is no solution, as for p = 37, 101, etc., then Gauss's class number (for

determinants) is 3 times that listed here (for discriminants). The distribution for

determinants would therefore differ somewhat from that shown above, but it should

also be studied, particularly as its analysis may be easier. There are then simpler

relations among the class number, the solution of the Pell equation, and the corre-

sponding Dirichlet series. It would also be of interest to study the distribution for

the primes 8n + 1 taken alone. Here, the prime 2 must be represented by one of

the quadratic forms, and that should have a heavy influence on the outcome.

Turning our attention to a different aspect of this data, we list the sequence of

primes p = An + 1 for which a larger class number occurs than for any smaller

prime.

p h p h p h

229 3 401 5 577 7
1129 9 1297 11 7057 21
8761 27 14401 43 32401 45

41617 57 57601 63 90001 87

It will be noted that most of these p are of the form (4m)2 + 1. This guarantees a

relatively small solution for the Pell equation, and, therefore, a relatively large class

number. In fact, one has

and since the Dirichlet series on the right can grow as 0 (log m), and since it does so

grow if p has numerous small prime quadratic residues: 3, 5, 7, etc., the class num-

bers shown are therefore roughly proportional to m. In a case such as p = 14401 =

1202 + 1, where the Dirichlet series, L = 1.964, is fortuitously large, the class num-

ber, h = 43, is also fortuitously large—ahead of its time, so to speak.

D. S.

1. K. E. Kloss, "Some number-theoretic calculations," J. Res. Nat. Bur. Standards Sect. B,
v. 69B, 1965, pp. 335-336.
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11 [12].—Allen Forte, SNOBOL3 Primer, The Massachusetts Institute of Tech-

nology, Cambridge, Mass., 1967, ix + 107 pp., 21 cm. Price $3.95.

SNOBOL is the most powerful string-processing language which is at present

widely available. In its most recent form, SNOBOL4, it permits data which are

character strings, patterns, real numbers, and arrays, as well as a facility for pro-

grammer-defined structures. It has sophisticated and convenient facilities for string-

assignment, concatenation, pattern matching, and substitution, and permits com-

pilation and execution of statements computed during execution. This short paper-

back book describes an earlier and less powerful version, SNOBOL3. It is directed

at the nonscientist and nonprogrammer, and is written in a simplified and informal

style, with a tendency to be cute. A total of 86 pages are used to describe the lan-

guage, compared with 48 in the original paper introducing SNOBOL3.

The material presented is interspersed with a number of exercises and their solu-

tions. The author uses the notion of assigning a name to a string, rather than the

usual and more accurate one of assigning a value to a name, and fails to point out

explicitly that statements are executed sequentially in the absence of branches. The

combination of a typographical error on p. 65 and a further error at the top of p. 66

renders the explanation of the interpretive CALL function highly confusing. This

reviewer thinks that an introductory book such as this should teach mainly by

example, giving explanations as they are necessary. The author does this very

effectively in describing indirect referencing by showing successive simplifications

and generalizations of a simple program. Perhaps this should have been done earlier

in the book.

A more serious objection is that SNOBOL3 is not upward compatible with

SNOBOL4. However, the book does provide a less intimidating introduction to pro-

gramming for the linguist or musician, and could serve excellently as either inci-

dental reading for courses in the humanities or as a path to the more stimulating

and informative reference papers on SNOBOL.

Malcolm C. Harrison

New York University

Courant Institute of Mathematical Sciences

New York, New York 10012


