Some Factors of the Numbers

 $G_n = 6^{2^n} + 1$ and $H_n = 10^{2^n} + 1$

By Hans Riesel

Abstract. All numbers $G_n = 6^{2^n} + 1$ and $H_n = 10^{2^n} + 1$ are searched for factors of the form $p = u \cdot 2^s + 1 < 3.88 \cdot 10^{11}$ for $s \ge n + 1$, and odd u. The search limit for u was 60000 for G_n , and 156250 for H_n . A number of factors are found in this range. The numbers G_6 and H_6 , lacking small factors, are proved composite by calculating $5^{(G_6-1)/2}$ (mod G_6) and $3^{(H_6-1)/2}$ (mod H_6), the residues found being different from ± 1 . The smallest numbers G_n and H_n with unknown characters are G_{11} and H_{10} .

In analogy to the Fermat numbers $F_n = 2^{2^n} + 1$, the numbers $A_n = a^{2^n} + 1$ do not possess any algebraic factors, unless $a = b^k$, $k \neq 2^t$. It might thus happen that a number of this form is a prime. A simple way to investigate the primality of A_n is to search for small factors of A_n , at least if a factor is found. The author has undertaken such a search for the numbers $G_n = 6^{2^n} + 1$ and $H_n = 10^{2^n} + 1$. Because of Legendre's theorem, only primes of the form $p = u \cdot 2^s + 1$, with $s \geq n + 1$ and u odd, need to be tried as factors of A_n . All $p = u \cdot 2^s + 1 < 3.88 \cdot 10^{11}$, with u < 60000 for G_n , and with u < 156250 for H_n , were tested as factors in all G_n and all H_n . (Since

Table 1. Factors $p = u \cdot 2^s + 1$ of $G_n = 6^{2^n} + 1$.

\boldsymbol{n}	u	8	p
0			G_0 is prime
1		_	G_1 is prime
$egin{array}{c} 1 \\ 2 \\ 3 \\ 3 \end{array}$	_	-	G_2 is prime
3	1	4	17
3	6175	4	98801
4	11	5	353
4	53	5	1697
4	4599	10	4709377
5	43	6	2753
5	2275	6	145601
5	155117027389401	7	1985497950584332
6	_	_	G_6 is composite
7	1	8	257
7	2983	8	763649
8	11	9	5633
9	79	10	80897
9	1641	11	3360769
10	45903	13	376037377
15	1	16	65537
19	13	20	13631489
25	$\overline{37}$	26	2483027969
25	1137	27	152605556737
27	193	28	51808043009

414 HANS RIESEL

 $n \leq s - 1$, and s is bounded, this means, of course, only a finite number of numbers A_n .) The results are given in the following Tables 1 and 2, which also include previously known factors for small values of n.

As a result of Table 1, $G_0 - G_2$ are primes, $G_3 - G_5$ are completely factored, and $G_{11} = 6^{2048} + 1$ is the smallest G_n with unknown character. Any factor of G_{11} must be > 245760000.

Table 2. Factors $p = u \cdot 2^{s} + 1$ of $H_{n} = 10^{2^{n}} + 1$

\overline{n}	u	8	p
0	_		H_0 is prime
1	_		H_1 is prime
1 2 3 3 4 4 4	9	$\frac{3}{3}$	73
2	17	3	137
3	1	4	17
3	367647	$\frac{4}{5}$	5882353
4	11		353
4	7	6	449
4	5	7 7 5 7	641
4	11	7	1409
4	2183	5	69857
5	155		19841
5	15253	6	976193
5	96679	6	6187457
4 5 5 5 5 6 7 7 8 8	6518964113895	7	834427406578561
6	_	_	H_6 is composite
7	1	8	257
7	15	10	15361
7	1771	8	453377
8	21	9	10753
8	16121	9	8253953
9	1479	10	1514497
12	56021	13	458924033
15	1	16	65537
15	11	19	5767169
16	63	17	8257537
17	335	19	175636481
18	305	21	639631361
19	67	20	70254593
19	101439	21	212733001729
20	5	25	167772161
26	17	27	2281701377
29	49	30	52613349377
29	135	31	289910292481

As a result of Table 2, H_0 and H_1 are primes, $H_2 - H_5$ are completely factored, and $H_{10} = 10^{1024} + 1$ is the smallest H_n with unknown character. Any factor of H_n is > 320000000. Lacking small factors, G_6 and H_6 had to be investigated by other means. We thus calculated

$$5^{(G_6-1)/2} \equiv 450\ 3205343452\ 5551224422\ 3550543120$$
$$1154045341\ 2420512003\ 3225131314\ (\text{mod } G_6),$$

 $3^{(H_6-1)/2} \equiv 9006\ 5795547782\ 8715847687\ 7626890521$ $4525000218\ 9858344257\ 6923855471\ (\mathrm{mod}\ H_6),$

and thus G_6 and H_6 are composite, since the residues $\neq \pm 1$. The residue for G_6 above is given in the number system with the base = 6. The primality of the large factors of G_5 and H_5 was established by trying all factors 64k + 1 smaller than the square root of these numbers.

The computing time on TRASK was graciously put at our disposal by Datasystem AB, Sweden.

Måbärsstigen 2 Stockholm-Vällingby Sweden