Some Factors of the Numbers
 $G_{n}=6^{2^{n}}+1$ and $H_{n}=10^{2^{n}}+1$

By Hans Riesel

Abstract

All numbers $G_{n}=62^{2^{n}}+1$ and $H_{n}=10^{2^{n}}+1$ are searched for factors of the form $p=u \cdot 2^{s}+1<3.88 \cdot 10^{11}$ for $s \geqq n+1$, and odd u. The search limit for u was 60000 for G_{n}, and 156250 for H_{n}. A number of factors are found in this range. The numbers G_{6} and H_{6}, lacking small factors, are proved composite by calculating $5^{\left(G_{6}-1\right) / 2}\left(\bmod G_{6}\right)$ and $3^{\left(H_{6}-1\right) / 2}\left(\bmod H_{6}\right)$, the residues found being different from ± 1. The smallest numbers G_{n} and H_{n} with unknown characters are G_{11} and H_{10}.

In analogy to the Fermat numbers $F_{n}=2^{2^{n}}+1$, the numbers $A_{n}=a^{2^{n}}+1$ do not possess any algebraic factors, unless $a=b^{k}, k \neq 2^{t}$. It might thus happen that a number of this form is a prime. A simple way to investigate the primality of A_{n} is to search for small factors of A_{n}, at least if a factor is found. The author has undertaken such a search for the numbers $G_{n}=6^{2^{n}}+1$ and $H_{n}=10^{2 n}+1$. Because of Legendre's theorem, only primes of the form $p=u \cdot 2^{s}+1$, with $s \geqq n+1$ and u odd, need to be tried as factors of A_{n}. All $p=u \cdot 2^{s}+1<3.88 \cdot 10^{11}$, with $u<60000$ for G_{n}, and with $u<156250$ for H_{n}, were tested as factors in all G_{n} and all H_{n}. (Since

Table 1. Factors $p=u \cdot 2^{s}+1$ of $G_{n}=6^{2^{n}}+1$.

n	u	s	p
0	-	-	G_{0} is prime
1	-	-	G_{1} is prime
2	-	-	G_{2} is prime
3	1	4	17
3	6175	4	98801
4	11	5	353
4	53	5	1697
4	4599	10	4709377
5	43	6	2753
5	2275	6	145601
5	155117027389401	7	19854979505843329
6	-	-	G_{6} is composite
7	1	8	257
7	2983	8	763649
8	11	9	5633
9	79	10	80897
9	1641	11	3360769
10	45903	13	376037377
15	1	16	65537
19	13	20	13631489
25	37	26	2483027969
25	1137	27	152605556737
27	193	28	51808043009

Received June 27, 1968.
$n \leqq s-1$, and s is bounded, this means, of course, only a finite number of numbers A_{n}.) The results are given in the following Tables 1 and 2, which also include previously known factors for small values of n.

As a result of Table $1, G_{0}-G_{2}$ are primes, $G_{3}-G_{5}$ are completely factored, and $G_{11}=6^{2048}+1$ is the smallest G_{n} with unknown character. Any factor of G_{11} must be >245760000.

Table 2. Factors $p=u \cdot 2^{s}+1$ of $H_{n}=10^{2^{n}}+1$

n	u	s	p
0	-	-	H_{0} is prime
1	-	-	H_{1} is prime
2	9	3	73
2	17	3	137
3	1	4	17
3	367647	4	5882353
4	11	5	353
4	7	6	449
4	5	7	641
4	11	7	1409
4	2183	5	69857
5	155	7	19841
5	15253	6	976193
5	96679	6	6187457
5	6518964113895	7	834427406578561
6	-	-	H_{6} is composite
7	1	8	257
7	15	10	15361
7	1771	8	453377
8	21	9	10753
8	16121	9	8253953
9	1479	10	1514497
12	56021	13	458924033
15	1	16	65537
15	11	19	5767169
16	63	17	8257537
17	335	19	175636481
18	305	21	639631361
19	67	20	70254593
19	101439	21	212733001729
20	5	25	167772161
26	17	27	2281701377
29	49	30	52613349377
29	135	31	289910292481

As a result of Table 2, H_{0} and H_{1} are primes, $H_{2}-H_{5}$ are completely factored, and $H_{10}=10^{1024}+1$ is the smallest H_{n} with unknown character. Any factor of H_{n} is >320000000. Lacking small factors, G_{6} and H_{6} had to be investigated by other means. We thus calculated

$$
\begin{array}{r}
5^{\left(G_{6}-1\right) / 2} \equiv 450320534345255512244223550543120 \\
115404534124205120033225131314\left(\bmod G_{6}\right)
\end{array}
$$

and

$$
\begin{aligned}
3^{\left(H_{6}-1\right) / 2} \equiv 9006579554778287158476877626890521 \\
452500021898583442576923855471\left(\bmod H_{6}\right)
\end{aligned}
$$

and thus G_{6} and H_{6} are composite, since the residues $\neq \pm 1$. The residue for G_{6} above is given in the number system with the base $=6$. The primality of the large factors of G_{5} and H_{5} was established by trying all factors $64 k+1$ smaller than the square root of these numbers.

The computing time on TRASK was graciously put at our disposal by Datasystem AB, Sweden.

Måbärsstigen 2
Stockholm-Vällingby
Sweden

