2. A. E. Sarhan \& B. G. Grefnberg, "Estimation of location and scale parameters by order statistics from singly and doubly censored samples," Ann. Math. Statist., v. 27, 1956, pp. 427-451 (Table I, pp. 428-433).
3. A. E. Sarhan \& B. G. Greenberg, Editors, Contributions to Order Statistics, John Wiley \& Sons, New York, 1962 (Table 10B. 3, pp. 200-20̄̄).
435.-Paul F. Byrd \& Morris D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin, 1954.
On p. 289, in Formula 800.07, the upper limit in the first integral should be 1 instead of K, and the third term in the third line should be $-\pi K^{\prime} / 2$ instead of $+\pi K^{\prime} / 2$.

Henry E. Fettis

Applied Mathematics Research Laboratory
 Aerospace Research Laboratories
 Wright-Patterson Air Force Base, Ohio 45433

Editorial note: For notices of additional errors, see MTAC, v. 13, 1959, p. 141, MTE 269; Math.Comp., v. 18, 1964, p. 532, MTE 352; p. 687, MTE 359; ibid., v. 20, 1966, p. 344, MTE 389; p. 639, MTE 397.
436.-A. Erdélyi, W. Magnus, F. Oberhettinger \& F. G. Tricomi, Tables of Integral Transforms, McGraw-Hill Book Co., New York, 1954.

In Volume II, on p. 350, in the denominator of the right member of Eq. 19.3(7), for $2^{\lambda+\mu}$, read $2^{\lambda+\mu+1}$.

Van E. Wood

Battelle Memorial Institute
Columbus, Ohio 43201

Editorial note: For earlier announcements of errata in this work, see Math. Comp., v. 15, 1961, pp. 319-321, MTE 304; v. 18, 1964, pp. 532-533, MTE 353; v. 19, 1965, p. 361, MTE 367; v. 20, 1966, p. 641, MTE 401; v. 22, 1968, p. 473, MTE 422; ibid., pp. 695-696, MTE 424.
437.-I. S. Gradshteyn \& I. M. Ryzhik, Tables of Integrals, Series, and Products, 4th edition, Academic Press, New York, 1965.

On p. 294, the right member of Eq. 3.248(1) should read

$$
\frac{1}{\nu} B\left(\frac{\mu}{\nu}, \frac{1}{2}-\frac{\mu}{\nu}\right) \quad[\operatorname{Re} \nu>\operatorname{Re} 2 \mu>0]
$$

instead of

$$
2^{2 \mu / \nu} B(\nu-2 \mu, \mu) \quad[\nu>2 \mu]
$$

This error has been reproduced from the tables of Bierens de Haan. (See the following erratum notice.)

It also appears on p. 308 in the Russian edition, entitled Tablitsy Integralov Summ Ryadov i Proizvedeniũ, published by Gosudarstvennoe Izdatel'stvo FizikoMatematicheskol̆ Literatury, Moscow, 1963.

Murlan S. Corrington

Applied Research
Radio Corporation of America
Camden, New Jersey 08102

Editorial note: For further corrections, see Math. Comp., v. 22, 1968, pp. 903-906, MTE 428.

On p. 325 the right side of Formula 6 in Article 3.411 should read

$$
\Gamma(\nu) \Phi(\beta, \nu, \mu)
$$

where

$$
\Phi(\beta, \nu, \mu)=\sum_{n=0}^{\infty}(n+\mu)^{-\nu} \beta^{n},
$$

according to the definition in Article 9.55, on p. 1075.
This confusion apparently arose from the authors' use of $\Phi(\alpha, \gamma ; z)$ to denote the confluent hypergeometric function ${ }_{1} F_{1}(\alpha, \gamma ; z)$ in Article 9.21, on p. 1058.

Henry E. Fettis

Applied Mathematics Research Laboratory
Aerospace Research Laboratories
Wright-Patterson Air Force Base, Ohio 45433

Editorial note: For additional errata in this edition, as well as references to errata in earlier editions, see Math. Comp., v. 20, 1966, pp. 616-617, RMT 85; v. 21, 1967, pp. 293-294, MTE 408; v. 22, 1968, pp. 903-907, MTE 428.
438.-D. Bierens de Hann, Nouvelles Tables d'Intégrales Définies, Hafner Publishing Co., New York, 1957 (corrected reprint of the edition of 1867).

On p. 48, in Table 21, the right member of Eq. 9 should read

$$
\frac{1}{q} B\left(\frac{p}{q}, \frac{1}{2}-\frac{p}{q}\right) \quad[\operatorname{Re} q>\operatorname{Re} 2 p>0]
$$

instead of

$$
2^{2 p / q} B(q-2 p, p) \quad[q>2 p]
$$

Murlan S. Corrington

[^0]
[^0]: Applied Research
 Radio Corporation of America
 Camden, New Jersey 08102

