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Abstract. Lehmer's method for finding a zero of a polynomial is a procedure for searching

the complex plane in such a way that a zero is isolated in a sequence of disks of decreasing

radii. In this paper modifications of the method that improve its stability are given. The

convergence of the method and the use of the resulting approximate zero to deflate the

polynomial are discussed.

1. Introduction. Lehmer's method [4] for finding the zeros of a polynomial

f(z) = a0 4- aiz + ■ ■ ■ + anzn ,        (aoa„ ^ 0) ,

is based on a procedure for determining if f(z) has a zero in the closed disk

D(s;p) - {z:\z-s\ £ p} .

This procedure is used to search the complex plane in such a way that a zero of f(z)

is isolated in a sequence of disks of decreasing radii. When a sufficiently small disk

containing a zero is found, the center of that disk is accepted as an approximate zero

to be divided out of the polynomial. The process is then restarted, using the reduced

polynomial. Of course, at any point in the process an iterative method such as

Newton's method may be applied in an attempt to find a zero contained in the

current disk.

The method as given by Lehmer tends to be numerically unstable. Specifically,

in the procedure for determining if f(z) has a zero in a disk, numbers must be com-

puted that may easily underflow or overflow the floating-point range of most com-

puters. In addition, the searching procedure is organized so that there is some pos-

sibility of the method breaking down prematurely. It is the object of this paper to

show how these difficulties may be eliminated by suitable modifications in the

method.

In the next section the modified method will be described and its differences

from the original method pointed out. In Section 3 the problem of convergence will

be discussed, with particular attention being paid to the consequences of dividing

out the approximate zero. Finally, in Section 4 a PL/I program, appearing in the

microfiche section of this journal, that incorporates the results of this paper will be

described.

2. The Modified Method. Lehmer's method uses the basic procedure for de-

termining if f(z) has a zero in a disk to search the complex plane for a zero of f(z).

One step of the search pattern goes roughly as follows.
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Starting with a disk D(s; p) containing a zero of f(z), an annulus

A(s';p') = {z:p'< \z-s'\ Ú2p'\

inside D(s; p) containing a zero of f(z) is determined. This annulus is then covered

by disks and one of them, D(s" ; p"), containing a zero oîf(z) is found. The process is

then restarted using the disk D(s"; p"). Except perhaps for the first step, each

annulus A(s'; p') is contained in D(s; p). Moreover, after the first step

P  Ú p/2

and

(2.1) p" = 7p'/8 ,

so that the process must converge.

Specifically, given the disk D(s; p), determine if it contains a zero of f(z). If it

does, determine the first positive integer i such that the disk D(s; 2~ip) does not

contain a zero of f(z), and set

p = 2    p .

If D(s; p) does not contain a zero of f(z), determine the first positive integer i such

that D(s; 2'p) does contain a zero of f(z), and set

P   = 2     p .

In either case, if s' = s, the annulus A (s' ; p') contains a zero of f(z).

If s tí 0, let

(2.2) u = -s/\s\ ;

otherwise let u be chosen so that |w| = 1. If

Sk  = s + — p'u exp (     4     m J ,        (fc = 1, 2, • • •, 8) ,

and p" is defined by (2.1), then the disks

Dk = D(sk';p")

cover the annulus A(s'; p'). Examine the disks Dk for zeros of f(z) in the order

Di, D$, D2, D-j, Di, D(,, Di; D5. Let D¡ be the first of these disks containing a zero

of f(z) and let s" = s/. This completes one step of the search.

The choice of a starting disk depends on whether a zero has already been found.

If one has, let s = 0 and p be equal to the outer radius of the first annulus obtained

in the search for the last zero. If no previous zero has been found, take s = 0 and

p = l.l|ao/an
1 In

This last choice insures that the starting disk D(0; p) contains a zero of f(z).

No disk after the first one can contain the origin. Hence the number u is well

defined by (2.2) except in the first step of the search. For the first step the choice of u

again depends on whether a zero has already been found. If none has, take u = 1.

If the last zero found is r, take
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(2.3) u = T/\r\ .

This choice of u is motivated by the expectation that f(z) will usually have real

coefficients and hence conjugate pairs of zeros. If u is defined by (2.3), then, having

found the zero r, the search immediately attempts to find a conjugate zero.

The procedure for determining whether f(z) has a zero in D(s; p) consists of three

steps. First note thai f(z) has a zero in D(s; p) if and only if

h(z) = f(Pz + s)

has a zero in the unit disk D(0; 1). Thus the procedures can be broken up into the

following three steps.

1. Calculate the coefficients of

g(z) = bo + biz 4- • • • 4- bnzn = f(z 4- s) .

2. Calculate the coefficients of

(2.4) h(z) = Co 4- ciz 4- • • • 4- cnzn = g(pz) .

3. Determine whether h(z) has a zero in the unit disk.

The polynomial g(z) is obtained from f(z) by shifting, and h(z) from g(z) by

scaling.

The shifting step can be accomplished by iterated synthetic division :

bn^P = <Jn_;,        (i = 0,1, ■ ■ -,n) ,

(2.5) bnlk) = bPk~l) ,        (¡b-0,1, •••,!»),

b^P = bnkli + sbnkli+l ,        (i = 1, 2, • • -, k + 1; fc = 0, 1, • • -, n - 1) .

The coefficients of g(z) are given by

bi = bt\        (i = 0, 1, •■■,n).

This straightforward scheme offers no special computational difficulties.

More care must be taken with the scaling step. Mathematically, the coefficients

of h(z) are given by

(2.6) a = p%i.

However, if n is large and p > 1, the absolute values of the c¿ may exceed, or over-

flow, the largest number representable in the computer performing the calculations.

Likewise, if p < 1, then the absolute values of the c, may underflow the smallest

positive number representable in the computer. Most computers have provisions

for setting the results of an underflow producing operation to zero. The following

scaling algorithm uses this feature.

Let Q be the largest positive number that can be represented in the computer.

Then a set of c,-, different from those of (2.6), are defined as follows:

1. Determine the largest number a satisfying

0 < a ^ 0,

a\bi\   ^ü, (i = 0, 1,  ■•-,«) .

2. If p < 1, set

e, = (ap')bi,        (i = 0, 1, • • -,n),



832 G.   W.   STEWART  III

where it is understood that c¿ = 0 if underflow occurs in its computation.

3. If p > 1, set

d = (ap'~n)bi,       (i = n, n — 1, • • •, 0) ,

with d = 0 if underflow occurs in its computation.

The nonzero c» defined by this algorithm stand in constant proportion to the c,-

defined by (2.6). Overflows cannot occur in the course of the algorithm. The effect

of setting underflows to zero is to produce a polynomial slightly perturbed from some

constant multiple of h(z) as defined by (2.6). To these perturbations in the co-

efficients there correspond perturbations in the zeros of h (z). The perturbations in

the zeros may be large; for if p < 1, the degree of the polynomial produced by the

scaling algorithm may be less than n. However, the searching procedure only re-

quires that the zeros of h(z) in and about the unit disk be well determined, and it is

just these zeros that are least sensitive to the perturbations generated by the scaling

algorithm.

The algorithm for determining whether a polynomial has a zero in the unit disk

is based on the following theorem due to Schur [5] and Cohn [3].

Theorem. With the polynomial

ho(z) = Co + CiZ +  ■ ■ ■ + cnzn , (Co 5¿ 0) ,

associate the polynomial

ho*(z)   =  Znho(z~1)   =  Cn + Cn-\Z +   ' • '   + CqZ» .

Let mo = Cn/co. Then, if \mo\ ^ 1, ho(z) has a zero in the unit disk. On the other hand,

if \mo\ < 1, the polynomial

(2.7) hi(z) = ho(z) - moho*(z)

is of degree less than n and has the same number of zeros in the unit disk as ho(z).

Moreover, fti(0) ^ 0.

The theorem may be applied repeatedly to generate a sequence of polynomials

hpz), all having the same number of zeros in the unit disk as ho(z), and a sequence

of associated constants m». The process terminates either when some m¿ ^ 1, in

which case h0(z) has a zero in the unit disk, or when some hpz) is constant, in which

case ho(z) has no zeros in the unit disk. This is the basic algorithm for determining

if ho(z) has a zero in the unit disk.

After some value s has been accepted as an approximate zero, it must be divided

out of the polynomial :

f(z) = (z - s)fi(z) + f(s) .

The search is then restarted with the deflated polynomial fi(z). It is given by

fl(z)   =   b!^  +  biln-2)Z +   ■ ■ ■   +  bn1^-1 ,

where the bpk) are defined by (2.5).

The method proposed in this section differs from Lehmer's original method in a

number of ways. In the search pattern the orientation of the disks covering an

annulus and the order in which they are examined have been changed to enhance

the tendency of the method to find smaller zeros first. This tends to increase the



ON  LEHMER'S  METHOD 833

stability of the deflation process [7, pp. 56-59]. However, the resulting improvement

is marginal, and other patterns may be preferable. The referee has suggested two

which may save machine computations. The first pattern takes u = 1 and examines

the disks in the order 1537246 8, which tends to capture real zeros first. The

second always examines the disks in the order 1472583 6, so that the fourth disk

examined is the first to overlap with its predecessors.

The procedure for determining if f(z) has a zero in a given disk must of course

be carried out with rounding error. This means that if a zero of f(z) lies very near

the boundary of the disk, the procedure may locate it inside the disk when it is

actually outside, and vice versa. In particular, if the covering disks do not overlap

the annulus sufficiently, a zero lying near the boundary of the annulus may be

located in the annulus but fail to appear in any of the covering disks. To avoid such

a premature breakdown in the search, the size and position of the disks have been

adjusted so that any point of the annulus lying near the boundary of one disk lies

well within another disk.

The scaling algorithm has been modified as described above to deal with the

problem of overflows and underflows.

The Schur-Cohn algorithm has been changed from its original form [3], which,

instead of forming the polynomial hi(z) of Eq. (2.7), works with the polynomial

(2.8) %i(z) = coho(z) - cnho*(z) .

While each of the polynomials h"pz) is a constant multiple of the hpz) obtained from

(2.7), their coefficients can increase or decrease so rapidly that overflow or underflow

becomes a serious problem. On the other hand, the coefficients of the polynomials

hi can at most double in size at each step. Note also the computation of hi requires

only half as many multiplications as the computation of ft<.

Finally, some comments on the stability of the Schur-Cohn algorithm are in

order. An error analysis of the algorithm in [6] shows that the algorithm can be

numerically unstable in the sense that the rounding errors made in computing the

hi and m, may correspond to large perturbations in the coefficients of ho- Such an

instability is signaled by the emergence of an m¡ with modulus very near unity. In

somewhat limited experiments, the author has not encountered a gross failure of the

algorithm; moreover, the overlapping of the disks mentioned above provides some

protection against mild instabilities. If, however, greater security is desired, one

can monitor the m¿ and, following Lehmer, enlarge the offending disk when an

instability occurs.

3. Convergence. In determining a convergence criterion for the method, two

points must be kept in mind. The first is that there is a limit to the accuracy ob-

tainable by the method, for when the disks become small enough rounding errors

will cause the search to fail to find a zero in the current annulus. The second point

is that the approximate zero finally accepted must be used in the deflation process.

If it is in error, its inaccuracies may be transmitted to the remaining zeros. Thus we

must answer two questions. First, how accurate must an approximate zero be before

it can be safely used in the deflation process? Second, can the method outlined in the

last section attain that accuracy?
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Wilkinson [7] has analyzed the deflation process in detail. The following is a

summary of his results.

The accuracy attainable in any zero is hmited by the sensitivity of the zero to

small relative perturbations in the coefficients of a size corresponding to changing

the low-order portions of the machine representation of the coefficients. Each

perturbation in the coefficients causes a corresponding perturbation in the zero, and

as the perturbations vary the perturbed zero traces out a region of indeterminacy

about the original zero. The best that can be expected of a numerical method

operating at a fixed precision is that it locate an approximate zero within this

region of indeterminacy. A zero having a small region of indeterminacy is called a

well-conditioned zero; one having a large region is called an ill-conditioned zero.

Wilkinson has shown that an approximate zero may be used in the deflation

process without unduly affecting the other well-conditioned zeros, provided first

that the zero divided out is among the smallest in absolute value and second that the

approximate zero lies in the region of indeterminacy. The search pattern of Lehmer's

method tends to find smaller zeros first, so that the first condition is satisfied. In [6]

arguments are given to indicate that for a simple zero Lehmer's method will break

down only when the center of the current annulus is near the region of indeterminacy

for the zero being located. There is numerical evidence for believing that this is also

true of multiple zeros. Thus it is recommended that Lehmer's method be allowed

to proceed until it breaks down, at which point the center of the offending annulus

is to be accepted as an approximate zero.

4. A PL/I Program. The program listed in the microfiche section of this journal

is a straightforward implementation of the method described in Section 2. The

program returns a set of approximate zeros and a set of condition numbers

cond (z) « /„(W)/|/'(2)| ,

where

fa(z) = \a0\ + \ai\z 4- • ■ • 4- |a„|z".

For a simple zero z, r¡ cond (z) gives an estimate of the perturbation induced in z by

relative perturbations in the coefficients of size n. This is treated in more detail in [6].

Since the program is quite slow, the user may wish to apply an iteration such as

Newton's method in an attempt to find a zero in the current disk. When this is done,

the iteration should be continued until the limiting accuracy described in Section 3

has been reached (see [8, pp. 461-464]; also [1] and [2]).

In the author's experience, the program produces a set of approximate zeros

that belong to a polynomial with coefficients very near those of the original poly-

nomial, a strong indication that the modified Lehmer's method attains the limiting

accuracy of a zero before it breaks down. Of course, the zeros themselves may be

quite inaccurate.
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