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Best Rational Starting Approximations and

Improved Newton Iteration for the Square Root

By Ichizo Ninomiya

Abstract. The most important class of the best rational approximations to the square root

is obtained analytically by means of elliptic function theory. An improvement of the Newton

iteration procedure is proposed.

1. Introduction. The most efficient computing procedure for calculating v x on an

interval [a, b~\ (0 < a < b) is to apply the Newton iteration,

Rt = (*,_! + x//V,)/2 = N{R,.t) = N\R0),

to an appropriate starting approximation R0. The function commonly used for a

starting approximation is a polynomial or a rational function of some prescribed

degree which is the best with respect to a certain optimality criterion. Several writers

have obtained various best starting approximations with respect to different criteria

[2]-[7].
A seemingly reasonable criterion is Chebyshevs,

max\R0(x)/y/x — l| = min,

but a more reasonable one is Moursund"s,

max\R,{x)/Jx - 1| = min,       i = 1,2,...,

since our purpose is to optimize the quality of R, for some i > 0, not R0 itself. Mour-

sund [7] has pointed out that a function R0 satisfying his criterion for ; = 1 satisfies

it for every i > 1. Another familiar criterion is, say, the logarithmic criterion,

max|log(/?o(x)/v/x)| = min.

It is believed that this criterion has been used by many writers [2]-[5] for technical

reasons to make the analysis simpler. Recently, Sterbenz and Fike [9], King and

Phillips [8], and the present author [10], discovered independently a surprisingly

simple relationship, Theorem 2 in Section 2, among the three criteria.

This paper presents two new contributions concerning the computation of the

square root. The main contribution is a complete analytical theory for the most

important class of the best rational approximations to the square root. As a matter

of fact, it is a simple modification of the classical but practically unknown theory

which Ahiezer [1] credits to Solotarev. On the basis of the theory, the tables of the

best rational approximations in Moursund's sense are computed anew. The secondary
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contribution is an improvement of the Newton iteration for the square root itself,

which leads to a striking acceleration of the convergence.

2. Preliminaries. In this section, various definitions and theorems concerning the

characterization of, and the relation of the best rational approximations to the

square root will be given for later references.

Let R(p, q) denote the set of rational functions of the form R(x) = P(x)/Q(x),

where P(x) and Q(x) are mutually prime polynomials of degrees not exceeding p and q,

respectively. For any R e R(p, q) which is not identically 0, its degree D(R) is defined by

(1) D(R) = p + q- min[p - p*,q - «*],

where p* and q* are the exact degrees of P and Q respectively.

A function jR* e R(p, q) is called the C-approximation, the M-approximation, or the

L-approximation, respectively, of the class (p, q) on [a, b], if it satisfies

(2) £,(/?*) = min[£/(R) ;   R e R(p, q\       I = C, M, or L,

where

(3.1) EC(R) = max[|R(x)/N/x - l|;   x e [a, bj],

(3.2) EM(R) = max[|(R(x) + x/R(x))/(2jx) - l|;    x e [a, bj],

(3.3) £L(R) = max[|log(R(x)/7x)|;   xe[a,fc]].

These best approximations will be abbreviated as C-approx., M-approx. and L-approx.

hereafter.
We shall now state two theorems of which Theorem 1 characterizes the best ap-

proximations and Theorem 2 clarifies the relation among them.

Theorem 1. A function R e R(p, q) is the M-approx. (the C-approx.) of the class (p, q)

on [a, ft], if and only if r(x) = R(x)/y/x attains the minimum r' and the maximum r"

alternately at D(R) + 2 points of [a, b~\, and satisfies

(4) r'r" = 1        ((r' + r")/2 = 1).

Theorem 2. Let Rc, RM and RL be the C-approx., the M-approx. and the L-approx.,

respectively, of the same class on the same interval, then there holds the relation,

(5) Rl = Rm = Rc/y/{í - e2),

where e = Ec(Rc)-

Theorem 1 is a special case of the more general Theorem 4 of [10]. Theorem 2 is

given in [9], [10] and partially in [8].

3. Analytic Theory. In this section, we shall show that the Af-approx. and the

C-approx. of the classes (p, p) and (p, p - 1) can be obtained analytically with the

help of elliptic function theory. The Jacobian elliptic function dn(u, k) has the pair of

fundamental periods (2K, AiK'), where K and K' are the complete elliptic integrals

of the first kind corresponding to the modulus k and the complementary modulus k',

respectively, i.e.,

k2 + k'2 = 1,        K = F(k),       K' = F(k'),
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Ml

F(p) = de/Jil - p2sin20).

Now, letting n be a positive integer, we consider the dn function with the pair of

fundamental periods (2K/n, 4iK'). The function in question is seen to be of the form

dn(u/M, h). The modulus h and the constant M should be so determined that we have

(6) H'/H = nK'/K,       M = K/(nH) = K'/H',

where

h2 + h'2 = 1,       H = F(h),       H' = F(h').

The modulus h above is determined uniquely, since F(p')/F(p) decreases monotoni-

cally from infinity to 0 when p increases from 0 to 1. The function

dn(v, h) = dn(u/M, h)

thus determined, has, as a function oft), the pair of fundamental periods (2H, 4M') and

therefore, as a function of u, the pair of fundamental periods (2K/n, 4iK').

The transformation L(n) : dn(u, k) -* dn(u/M, h) which plays a fundamental role in

this paper, is called an L-transformation of order n. The L-transformation of order 2

is the familiar Landen transformation, and the following formulas are well known :

dn(u/M, h) = (k' + dn2(u, k))/((l + k') dn(u, k)),

(7) h = (1 - /c')/(l + k'),       h = 2jk'/(l + k'),

M = 1/(1 + k').

On the other hand, it is shown in [1] and [13] that the following formulas are valid

when n is odd :

dn(u/M, h) = dn(u, k) \\ - '      v- ,
„=i C(2m) + S(2m) dn¿(u, k)

[n/2] [n/2]

(8) ri = fc" F]  S2(2m - 1),        M =   [1  (s(2w - 1)/S(2m)),
m=1 m=1

[n/2]

h' = k'2-" f]  ö2(2m - 1),
m=l

where

SO) = sn2(jK/n, k),

C(j) = cn2(jK/n, k) = 1 - S(j),

DU) = dn\jK/n, k) = 1 - k2S(j).

We now assert that, with the exception of the last formula for h', the first three formu-

las of (8) are valid for any value of n. The assertion can be confirmed without any

serious difficulties from (7) and (8) by mathematical induction on the largest integer m

such that 2m divides the order n.
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Let us now proceed to the derivation of the M-approx. and the C-approx. on an

interval [a,b\. Putting

(9) k = J{(b - a)/b),       k' = J(a/b),

we define the functions R and R* by the parametric equations on the interval [0, X]

of«:

(10.1) x = a/dn2(u, k),

(10.2) R{x)/Jx = r(x) = dn(u/M, h)/Jh',

(10.3) R*{x)/Jx = r*(x) = 2 dn(u/M, h)/{l + h').

By using (8) and (10), the functions R and R* are given explicitly as

m= i C(2m)x + S(2m)fl

(IU)        «*>-7^n^-'»:%V1)'-1 + h m=! C(2m)x -I- S(2m)a

Therefore, R and R* are rational functions. Furthermore, it will be seen that

R, R* e R([n/2], [(« - l)/2]),       D(R) = D(R*) = n - 1.

Note here that, when n is even, the denominator of the last factor in each of (11.1)

and (11.2) is equal to the constant a.

Theorem 3. R and R* are the^M-approx. and the C-approx., respectively^ of the class

([n/2],[(n- l)/2])o«[fl,b].

Proof. Let us examine the behavior of the function r(x) on [a, b~\. When u varies

from 0 to K, dn(u, k) decreases from 1 to k' and hence, x increases from a to b mono-

tonically. On the other hand, it will be observed from the periodic property that

dn(u/M, h) attains the maximum 1 and the minimum h' alternately at n + 1 points

uj = jK/n,      j - 0,1,..., n.

Therefore, by (10.2), r(x) attains the maximum r" = l/Jh' and the minimum r' = Jh'

alternately at n + 1 points

Xj = a/dn2(Uj, k),       j = 0, 1,..., n.-

Since   D(R) + 2 = n + 1,   r'r" =1,   we conclude, from Theorem 1, that R is the

M-approx. of the specified class, i.e., of the class (p, p) when n = 2p + 1, and of the

class (p,p — 1) when   n = 2p.   Quite analogously, it will be shown that R* is the

C-approx. of the same class. This completes the proof.

The maximum relative errors of R and R* are given by

(12.1) e = EC(R) = l/y/h' - 1,

(12.2) e* = EC(R*) = (1 - h')/(l + h).

Another important observation concerning these best approximations is their

symmetry property:

(13.1) r(y) = r(z),       r*(y) = r*(z)       (n: even),
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(13.2) r(y)r(z) = 1       («: odd),

whenever y,ze [a, b~\ and yz = ab. This follows from the property of an functions [12] :

dn(nK — u,k) = dn(u, k)       (n : even),

dn(nK — u, k) = k'/dn(u, k)       (n: odd),

¡ince to any such y, z there correspond v, w e [0, K] such that

y = a/dn2(v, k),       z = a/dn2(w, k),       v + w = K.

The best approximations thus obtained analytically are defined to be the M-approx.

and the C-approx., respectively, of order n.

We now turn to the practical determination of the M-approx. of the first five

orders on intervals of the form [a, 1], typical values of a being 1/2,1/4,1/10, etc. Thus,

throughout the rest of this section, k and k' have the values

(14) k = V(l - a),       k' = Ja.

Case 1. n = 1. This is the trivial case of the constant approximation. From (11.1),

(8) and (14), we obtain

(15) R{x) = al>\       h = V(l - a),       tí = Ja.

Case 2. n = 2. This is the case of linear polynomial approximation. From (7), (10)

and (14), we obtain

R(x) = Atx + A0,

A, = l/v/(2fl1'4(l + »),

(16) A0 = JaAu

h = (i- Va)/(i + »,

tí = 2a1/4/(l + Ja).

In the above two cases, the same results could be obtained by elementary means

without resort to the present theory.

Case 3. n = 3. From (11.1) and (8), we obtain

R(x) = J(a/h'){C(l)x + S(1)a)/(C(2)x + S(2)a),

h = k3S2(l),       tí = D2(l)/k'.

Putting u = K/3 in the well-known formulas [12],

sn(K — u,k) = cn(u, k)/dn{u, k),

(17) cn(K - u,k) = k'sn(u, k)/dn(u, k),

dn(K - u,k) = k'/dn(u, k),

we have

(18) S(2) = C(l)/D(l),        C(2) = flS(l)/£»(l).
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Elementary algebra, using (14) and (18), yields the results:

R(x) = A0 - B/(x + C),

C = C(l)/S(l),

A0 = C/fl1/4,

(19) B = (C2 - aya1'4,

Jh = (l- a)^S(l),

Jh' « D^/a1'4.

The only remaining task is the computation of

S(l)'= sn2(K/3, k),

C(l) = cn2(K/3, k) = 1 - S(l),

D(\) = dn2(K/3, k) = 1 - (1 - a)S(l).

This could be done by an algorithm for Jacobian elliptic functions, but we take an-

other elementary way here. From the first of the duplication formulas [12],

sn2u = 2snucnudnu/(l — k2sn4u),

(20) cn2u = (1 - 2sn2u + k2sn4u)/(l - k2sn4u),

dn2u = (1 - 2k2sn2u + k2sn4u)/(l - k2sn4u),

we have

sn(2K/3, k) = 2s J ((I - s2)(l - /c2s2))/(l - k2s4),

where s stands for sn(K/3, k). On the other hand, the first equation of (18) is rewritten

as

sn(2K/3, k) = 7(1 - s2)/7(l - fc2s2).

Eliminating sn(2K/3, k) from these equations, we obtain a quartic equation

(21) k2s4 - 2/cV + 2s - 1 = 0,

whose unique root in the interval [1/2, 1] is the value of sn{K/3, k). This root can be

easily obtained by Newton's method with the initial approximation 1/2.

We notice that the same equation as (21), Eq. (9) of the appendix of [4], appeared

in Maehly's analysis, for the present case.

Case 4. n = 4. From (11.1) and (8), we obtain

,     _ (C(l)x + S(l)fl)(C(3)x + S(3)a)

W 7(fl/i')(C(2)x + S(2)a)

h = k4S2{l)S2(3).

Fortunately, there is no computational problem in this case, since sn's and en's for

integral multiples of K/4 are known to be expressed in closed forms as functions of k'

only [12]. Thus, we have
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m = (i - 7(fe'/(i + fe')))/(i + 7*7,

S(2) = 1/(1 + k),

s{3) = (i + 7(fc'/(i + fc')))/(i + 7k'),

c(i) = 7*'(i + i/7(i + fe'))/(i + 7*').

C(2) = fc'/(l + k'),

c(3) = jk'(i - i/7(i + k'))/(i + 7fe').

Now it is a simple matter to obtain the following results :

R(x) = AiX + A0 - B/(x + C),

A, = l/{{4Ay'\l + a114)),

A0 = (Ja + A)AU

(22) B = JaAAu

C = Ja,

Jh = (1 - a1/4)/(l + fl1/4),

Jtí = (4A)l/4/{l + a1'4),

where A = 2a1/4(1 + Ja).

Case 5. n = 5, From (11.1) and (8), it follows that

, (C(l)x + S(l)fl)(C(3)x + S(3)q)

K(x) - VW«)(C(2)x + s(2)a)(c(4)x + S(4)a) '

h = k5S2(l)S2(3),

tí = D2(l)D2(3)/k'3.

On the other hand, putting u = K/5, 2K/5 in (17), we have

S(4) = C(l)/D(l),        C(4) = aS(l)/D(\),

S(3) = C(2)/D(2),       C(3) = aS(2)/D(2),

D(3) = a/D(2),

which, when substituted, yield

(C(l)x + 5(l)fl)(S(2)x + C(2))

1 ; (C(2)x + S(2)a)(S(l)x + C(l)) '

h = (1 - a)5/2S2(l)C2(2)/D2(2),

tí = JaD2{l)/D\2).

Now we transform R into a continued fraction, and find after some algebraic manipu-

lations the results :
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A0 - B/(x + C - D/(x + £)),

a1/4F/G,

A0(F + a/G - G - a/F),

aA0(F/G - G/F)/B,

F + a/G - E,

CE - aF/G,

(1 - fl)5'4S(l)C(2)/D(2),

a1/4D(l)/D(2),

where F = C(l)/S(l), G = C(2)/S(2). Since C(l) = 1 - S(l), D(l) = 1 - (1 - a)S(l),
and S(2), C(2) and D{2) can be computed from S(l) by the duplication formulas (20),

the only nontrivial task is the computation of S(l) = sn2(K/5, k). This can be done

most efficiently by Salzer's algorithm [11] for Jacobian elliptic functions.

The tables of the M -approxs., given at the end of this paper, were computed on

the basis of the above theory. The computations were carried out on the NEAC-2203

computer of Nagoya University, using floating-point double-precision arithmetic

with 2-place exponent and 18-place mantissa.

4. Improvement of Newton Iteration. Let us investigate the quality of successive

iterates S¡ calculated from an arbitrary starting approximation S0 by the Newton

iteration

Si+1(x) = N(S,(x)) = (S;(x) + x/S,(x))/2

on an interval [a, b~\. By defining s,(x) as s¡(x) = S,{x)/Jx, it follows that

si+1(x) = iV*(Si(x)) = (sf(x) + l/s;(x))/2.

The function N* defined by

N*(y) = (y+ lly)l2       (y > 0)

has the properties :

N*(y) ̂  JV*(1) = 1,

(24) yz = 1 - N*(y) = N*(z),

(yz - l)(y - z) > 0 ¿± N*(y) > N*(z).

Here, for the sake of simplicity, we agree that any r and s symbols with prime or

double primes denote the minimum or the maximum, respectively, of the corre-

sponding function.

Now, it follows, from (24), that

s'i^l,       i = 1,2,...,

where the equality holds only if

só =g 1 g s'¿.

398

(23)

R(x)

Ao

B

E

C

D

V«
Jh'
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At any rate, we have

sW > 1,       i = 1, 2.

This inequality means, in view of Theorem 1, that every iterate S¡ is biassed upward,

and is not satisfactory for subsequent iterates. A remedy for this drawback of the

conventional Newton iteration is to readjust every iterate by a correcting factor so

that the above mentioned inequality may be turned into an equality.

The improved Newton iteration which incorporates the readjustment into the

conventional one is defined by

Ri+1(x) = Ci+1N(Rt{x)),

(25) Ro(x) = CoSo(x).

From (24), the correcting factors are given by

Co  =   1/7(5050),

(26) C= l/7N*(r;'-,),       i =1,2,...,

where /-¡(x) = R¡(x)/Jx.
Let us compare the convergence rates of the conventional and the improved

Newton iterations. We may assume C0 = 1 for simplicity, since, otherwise, the

situation would be more favorable for the improved version. Letting e¡ and /¡ denote

the maximum relative errors of R¡ and S¡, respectively, we have

et = r'/ - 1,

ft = s- - 1,

(27) ei+l =7(1 + e,2/(2(l +e,)))- 1,

fi+l = ff/{2(l + re-

starting with e0 = f0, we obtain

e, = 7d + /i) - 1 = A/2-

Since it is difficult to obtain similar relations between e¡ and f¡ exactly, wc content

ourselves with approximate relations. Thus, applying the approximate recurrence

formulas

ei+1~ef/4,       fi+l~ff/2,

instead of the exact ones of (27), we obtain

e2~f2ß,       e3~/3/128,...,

and, in general, e¡ ~ /¡/22'"1. This shows a remarkable acceleration of convergence

accomplished by the use of the improved Newton iteration. Incidentally, it is an

open question to prove or disprove the inequality

ex < fi/22''1.

The excellence of the improved Newton iteration illustrated above suggests the
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natural question : What is the result when it is applied to the M-approx. of order n?

The following theorem is a very interesting answer to this question.

Theorem 4. IfR0 is the M-approx. of order n on an interval [a, b], then R¡ obtained

from R0 by the improved Newton iteration is the M-approx. of order 2'n on [a, b~\.

Proof. As shown previously in Section 3, R0 is given by

x = a/dn2(u, k),

(28) R0(x)/Jx = r0(x) = dn(u/M0, h0)/Jh'0

on the interval [0, X] of u, where

k = J((b - a)/b),

dn(u/M0, h0) = L{ri) • dn(u, k).

If we assume that the theorem is true for i — j, then we have

Rj{x)/Jx = r/x) = dn(u/Mj, hj)/Jh'j,

(29^ dn{u/Mj, hj) = L{2'n) ■ dn(u, k).

Since r) = Jh), r] = Í/Jtíj, r'/¡ = 1, it follows, from (24) and (26), that

C,+ 1 = l/jN*(Jh'j) = J(2jh'j/(l + h))).

When use is made of this value of Cj+1 in the equation

rJ+l(x) = Cj+lN*(rj(x)),

which is a direct consequence of (25) for i = j, we obtain

0+1(x) = (h'j + dn2(u/Mj,hj))/(Cj+l(l + h'j)diiu/Mj,hj)).

Comparing this with Eqs. (7), we find that

Gj+1 = Jhj+1,

rj+l(x) = dn(u/Mj+1,hj+1)/Jh'j+1,

hj+1 =(1 -h'j)/(l +h'j),

(30) h'j+l =2jh'j/(l +h'j),

Mj+1 =Mj/(l +h'j),

dn(u/Mj+ i,hj+1) = L(2)• dn{u/Mj, hj).

The last equation of (30), when combined with the second one of (29), yields

dn(u/Mj+ !, hJ+ i) = L(2J+ ln) ■ dn(u, k),

since, in general, the composition of L(p) and L{q) is L(pq). Thus, the theorem is proved

for i = j + 1, and, therefore, for every i by induction.

In order to carry out the improved Newton iteration described in Theorem 4, the

correcting factors C¡ should be computed in advance. The following recurrence

formula
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(31) Ci+ ! = 7(2Cy(l + Cf)),       C0 = Jh'0 = 1/(1 + e0),

which is easily established from (30), serves for this purpose.

If, as is often the case with the computation by a computer, the number of itera-

tions is prescribed, then it is desirable to obtain a C-approx. rather than an M-approx.

in the last step. Fortunately, this is accomplished without altering the algorithm

largely. It is sufficient to replace only the last step, say, the mth step, with

R*(x) = C*N(Rm-1(x)),

where C£ is given, from (10.3) and (30), by

(32) C* = 2C2/(1 + C2).

R„(x), thus computed, is the C-approx. of order 2mn and its maximum relative error

is given by
e* = 1 — C*

Let us now summarize the computing procedure into an algorithm.

Algorithm. Improved Newton iteration.

Preparation. Determine the number of iterations m, and the order n of the M-approx.

used for a starting value. Compute Ci/2, C2/2,..., Cm_ J2, and C£/2 by (31) and (32).

First Step. Compute the starting value R0(x).

Loop. For 1 í£ i = m - 1, iterate

J?,(x) = (Ci/2)(Ri-1{x) + x/Ri-tix)).

Last Step. Compute R%(x) by

RSix) = (C*/2)(Rm-iW + x/RM_,(x)).

5. Practical Considerations. The improved Newton iteration discussed in the last

section is an excellent computing procedure. For one iteration, it requires the same

amount of computational effort, an addition, a multiplication and a division, and is

nevertheless more than two times as accurate as the conventional one. The only

conceivable disadvantage is that the multiplications of the factors C¡/2 are a little

slower than those of the factor 1/2 in binary computers.

The important problem which is left untouched is the choice of the order of the

M-approx. to be used as the starting approximation. The number and the kinds of

arithmetic operations required for computing an M-approx. of the order n expressed

in a continued fraction are shown below, where A stands for addition-subtraction,

M for multiplication and D for division.

AMD

n-.odd        n - 1       0       (n - l)/2
n: even        n — 1        1        n/2 — 1

In view of the fact that the result obtained from an M-approx. of order n after one

iteration is identical with an M-approx. of order 2n and is more accurate than an

W-approx. of order 2n - 1, we compare the amounts of computation required for

the three cases. The results of the comparisons are shown in the following table.
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Mi
M2

C x JV(Mi)

0
1

1

M

0
1
1

D

0
0
1

D

M3

M4

C x N(M2)

M

0 1
1 1

2 1

M5

M6

C x N(M3)

A

4

5
3

M

0

1
1

D

2
2
2

M7

M8

C x N(M4)

A M

6 0
7 1
4 2

D

3
3
2

Inspecting the table we find that the choices n = 1 and n _ 6 should be excluded

from consideration, since the same or even better approximations could be obtained

by other choices with less computational effort. It is interesting to note that the choice

n = 4 is unexpectedly superior to that of n = Zat least in the count of multiplications

and divisions. We can say hardly anything further, however, for the remaining four

choices. There are many other conditions to be taken into account which cannot be

discussed here in general.

Table of M-approximations on [a, 1]

At
Ao

to

Ar
A0

Co

Ao

B

C

t'o

n = 2,       R(x) = AiX + A0

a = 1/2
0.59017 85321
0.41731 92422
0.00749 77743

a =  1/710
0.65327 65093
0.36736 43780
0.02064 08873

a = 1/2
2.54163 91882
4.83752 82229
2.13725 52822
0.00032 28502

a = 1/4
0.68658 90480
0.34329 45240
0.02988 35720

a =  1/10
0.82190 09419
0.25990 78987
0.08180 88406

a = 1/16
0.89442 71910
0.22360 67977
0.11803 39887

a = 1/100
1.19891 57337
0.11989 15734
0.31880 73070

n = 3,       R(x) = A0 - B/(x + C)

a = 1/4
2.18518 30604
3.02289 91727
1.54515 77602
0.00252 93327

a =  1/16
1.68212 58623
1.28977 37082
0.84106 29311
0.01877 95823

A0

B

C
e0

a =  I/71O
2.29635 64606
3.53268 53812
1.72202 44124
0.00146 11372

a = 1/10
1.82780 35809
1.70087 90336
1.02784 94879
0.01107 77906

a = 1/100
1.27346 54826
0.48120 83248
0.40270 51447
0.07479 71524
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n = 4,       R(x) = AiX + A0 - B/{x + C)

a =  1/2
Ai        0.29508 51497 68
A0 1 05584 61593 35
B 0.59905 34042 71
C    0.70710 67811 87
e0 0.00001 39494 67

a = 1/710
Ai 0.32660 41728 27

Ao 0.94895 58546 26
B 0.43035 57848 93
C    0.56234 13251 90
e0 0.00010 43520 80

a = 1/4
0.34322 01291 85
0.89968 99069 52
0.36403 99211 80
0.50000 00000 00
0.00021 67553 51

a = 1/10
0.41031 63482 08
0.73716 05228 76
0.19207 89905 24
0.31622 77660 17
0.00154 54483 60

a = 1/16
0.44582 68699 84
0.66874 03049 76
0.13932 08968 70
Ö.25000 00000 00
0.00311 04574 65

a = 1/100
0.58823 15087 81
0.46805 64499 08
0.04092 33299 03
0.10000 00000 00
0.01908 49315 04

n =  5,   R(x) = A0 - B/(x + C - D/(x + £))

a =  1/2
A0 4.23606 54239 70
B 24.27865 63619 77
C 6.72879 05912 69
D 0.32178 82625 97
E 0.42215 13205 04
e0 0.00000 06028 07

a = I/7IO
A0 3.82726 28073 50
B 17.84758 11560 46
C 5.46681 44323 38
D 0.20546 54759 00
£ 0.33280 96905 39
e0 0.00000 74573 53

a = 1/4
3.64197 75773

15.34365 23620
4.93393 81498
0.16349 79998
0.29411 22236
0.00001 85948

a = 1/16
02 2.80378 55369 82
24 6.85055 23463 25
86 2.83472 72475 43
78 0.04321 24689 6"
87 0.13887 95558 48
42 0.00051 85424 23

a = 1/10
3.04643 17009 11
8.86587 47888 42
3.38925 64040 23
0.06766 96256 53
0.17980 64913 92
0.00021 64864 94

a = 1/100
2.12519 04940 28
2.84184 47997 55
1.52183 61874 77
0.00758 48567 14
0.04914 41073 35
0.00496 90136 43
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