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Asymptotic Properties of Minimal Integration Rules

By Philip Rabinowitz and Nira Richter

• Abstract. The error of a particular integration rule applied to a Hubert space of functions

analytic within an ellipse containing the interval of integration is a bounded linear functional.

Its norm, which depends on the size of the ellipse, has proved useful in estimating the

truncation error occurring when the integral of a particular analytic function is approximated

using the rule in question. It is thus of interest to study rules which minimize this norm,

: namely minimal integration rules. The present paper deals with asymptotic properties of

such minimal integration rules as the underlying ellipses shrink to the interval of integration.

1. Introduction. In the numerical integration of analytic functions, it is possible

to define nonclassical integration rules, called Minimal Integration Rules, having a

minimizing property relative to a subclass of analytic functions. To define these

rules, we introduce Hubert spaces of functions, analytic in simply connected domains

B in the complex plane, which contain the interval of integration /. The error in any

integration rule, with abscissae in /, defines a bounded linear functional in each such

Hilbert space. A rule for which the corresponding error functional is of minimum

norm, relative to a particular Hilbert space, is called a minimal rule.

For the standardized interval [—1, 1], various minimal rules have been computed.

In [8] Valentin dealt with Hilbert spaces of functions, analytic in circles with radius

R >|l. He proved that, as R —» °°, the rules tend to Gaussian rules with the same

number of points. A similar asymptotic behaviour was found by Barnhill [1], con-

sidering Hilbert spaces of analytic functions inside ellipses e„, with foci at (±1, 0)

and semimajor axis a = KVp + 1/Vp)- In this case the minimal rules tend to

Gaussian rules, as the areas of the ellipses tend to cover the complex plane (p —> °°).

The proofs given in [1] deal with spaces with an area integral as a scalar product.

Similar proofs can be carried over for the case of a line integral scalar product [5].

In this work we discuss the asymptotic behaviour of minimal rules, as the ellipses

collapse to the interval / (p —* 1). For the two types of scalar products, the considera-

tions are along the same lines, but the asymptotic behaviour turns out to be different.

Using the same technique, we deal as well with minimal rules in the class of rules

which integrate constants exactly.

The asymptotic behaviour of the minimal rules was checked numerically by

computing minimal rules for various values of p, monotonically decreasing to 1. The

numerical results agree with the theoretical ones, as demonstrated in Section 7.

In Section 2 we introduce the two families of Hilbert spaces, L2(ep), H2(ef), and

formulate the two problems we deal with.

In Section 3 we cite a result which characterizes the minimizing weights in the
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general case, and prove a theorem, concerning the minimizing weights in the class of

rules which integrate constants exactly.

In Section 4 we deal with the asymptotic behaviour of minimal rules, in the one-

parameter family of spaces L\ep), as p —> 1. In Section 5 we give the analogous

results in the family of spaces H2{ef). In Section 6 we give a table which summarizes

the results of Sections 4, 5.

In Appendices A, B, we investigate the asymptotic behaviour, for p —► 1, of some

infinite sums, the results being used in Sections 4, 5.

2. Formulation of the Problems. Let e„ designate the ellipse with foci at (± 1,0),

where p = (a + b)2, a is the semimajor axis and b is the semiminor axis, b = (a2 — 1)I/S.

Two Hilbert spaces of analytic functions inside e„ are considered:

(a) The collection of all analytic functions which satisfy:

/{ "(Z)I
dx dy < oo

This collection [2, p. 207] constitutes a Hilbert space, £2(ep), with a scalar product

defined by:

</.«>-/£* z)g(z) dx dy.

A complete orthonormal set of functions in Z-2(ep) can be expressed by the Chebyshev

polynomials of the second kind [2, p. 241]:

(1) P»V) = (4(ii + DA(p"+1 - p—l))wUM,

where Un(z) = sin (n + l)0/sin 0, 0 = arc cos z.

(b) The collection of analytic functions which satisfy

f       |/(2)|2|1   -ZT"2   \dz\   <    »
Jit,

constitutes a Hilbert space, H\e0), with a line integral scalar product

(/.*)= f /(Ä)|i -z2r1/2l<fe|-
•'a«,

A complete orthonormal set of functions in H2(ef) can be defined by the Chebyshev

polynomials of the first kind [2, p. 240]:

(2) PAz) = (2A(pn + p-))1/2rn(z),       n è 1,

Po(z) = l/(2ir)1/2,

where rn(z) = cos nO, 6 = arc cos z.

Any bounded linear functional L, in a Hilbert space //, determines by Riesz's

representation theorem, a unique element I £ H, called the représenter of L, which

satisfies:

£(/) = (/. o.    /e#,     iilii = ||/||.
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The error in a given numerical integration rule, with abscissae within the interval of

integration [—1, 1], is a bounded linear functional, E, in both L\ea) and H\ef)

(referred to as Hc). Hence:

£(/) =   f   /to dx - ¿ ¿,/to) = (/, r),        / G Hf,
J-l i-l

where {jCí, ̂4¿}?_i are the abscissae and weights of the integration rule, and r(z) is

the représenter of E. Now:

n

r(z) = 0fc) -  2 ¿i<Mz).
i-i

where <£(z), <pxi(z), i = 1, • • • , n, are the representers of the following functionals:

f i /to Ac = (/, <b), f e H„

/(*,) = (/,*„),       /£i/„    /= 1, ••• ,«.

Using the complete orthonormal set of functions in H, analytic expressions for the

above representers can be derived :

(3) <f>(z) = ¿ [f J\.to dxJp-W.

(4) *,,<» = £ P-GOP-CO.        « = 1, ■ • • , «.

For a fixed set of n distinct points in [— 1, 1], two problems can be formulated:

Problem a. Determine the weights which minimize the norm on the error func-

tional of the corresponding integration rule.

Problem b. Determine the weights which minimize the norm of the error func-

tional, in the class of rules which integrate constants exactly. This restriction is

equivalent to the side condition 2*-i ^¿ = 2.

Having the minimizing weights as functions of the n abscissae, it is possible to

look for that set of n abscissae, for which the corresponding error functional is of

minimum norm, relative to any other set of n abscissae in [—1, 1]. This set will be

referred to as the set of minimizing abscissae, and will lie in (— 1, 1) [6].

In what follows, we consider, for both problems, the asymptotic behaviour, as

p —> 1, of the minimizing weights, as functions of the abscissae, and the asymptotic

behaviour of the minimizing abscissae as p —* 1.

3. Some Properties of the Minimizing Weights. The minimizing weights, in

Problem a, satisfy the system of normal equations [2, p. 175]:

n

(5) (<P,<t>xl) =  X ^;(<kf><k.)> ' =  1» •••  . "■
j-i

System (5) possesses a unique solution whenever 4>xfz), ■ •■ , <t>x.(z) are linearly

independent, which is the case when xu • • ■ , x„ are distinct.
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The norm of the error functional, with the set of minimizing weights, is given by:

*

(6) (r, r) =(*,*) -   E   ¿«jM*.,.*«).
¿,i-i

For the set of minimizing weights in Problem b (M.W.b), the following theorem is

proved:

Theorem 1. Given a set ofn distinct points in (— 1, 1), xu ■ ■ ■ , x„, the set of weights

which solve the problem :

n

min       <j> —  £ Ai<pxi
A,.An .-1

subject to the side condition ¿~Zl-i ^< = 2, is unique. This set satisfies the following

linear system of equations:

(7) (*. *„) -  E At(<pMI,<pxi) = ix,        i = 1, • //.

where ß is determined by the side condition.

Proof. Let

n n

r = <P -  zZ ¿¿a = 4> - 2-/-,, -  Z M<t>zi - *„).
■-1 ,'-2

The solution to the problem min^s ... ¿„ ||r|| is given by the normal equations:

n

(8)        (4 - 2<¿>Xl, <^,. - 0X1) =  £ ¿,fof - *„, *„ - 0Xl),        i - 2, • • • , n.
1-2

Since the set of n — 1 functions j^,. — <px,\"„2 is linearly independent, A2, • • ■ , Aa

are uniquely determined, and with At = 2 — Z"_2 A¡, the set of M.W.b is unique.

Rearranging the terms in (8) we get:

n

(*.*«) - Z ^i(*.,.*,«)
i-2

= Í2 - ¿ A,, 0„) + (0, *„) - ¿ TM,,, 4>„) - (2 - ¿ Ä,*J,
\ i-2 / ,_2 \ i-2 '

i = 2, , n.

Substitution of A¡ for 2 — Z"_2 ^/» yields the desired result, namely:

n n

(*. *„) -  Z ¿ifo*,. *«) = (*. *„) -  E ¿i(*./. *x.).        ¿ = 2, • • • , «.
1-1 Í-1

Corollary 1. The vector of weights A = (Au ■ ■ ■ , A„), which satisfies (7), is given

by: A = A„ — v ivAere A„ is ¿Ae solution of (5), an*/ v = (vls • • • , cn) ù determined

by the system:

zZ P»(*«i. ̂,) = M.        i=l,
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4. The Family of Spaces L2(ep), p > 1. Explicit expressions for the representers

<t>(z), </>If(z) in L\ef), can be written, according to (1), (3), (4), in the following way:

(9) <p(z) = (8/x) ¿ (p2m+1 - p-2"-1)-1 U2m(z),
m-0

co

(10) <pxi(z) = (4/ir) £ (m + l)(pm + I - p-'-'y'U^xOU^z).
m-0

In (9) we used the known result: JL, i/„(x) dx = [1 + (-l)1/(/w + 1). Let
xu ■ ■ • , x„ be any set of n distinct points in (— 1, 1). For p > 1 the normal equations

(5) multiplied by (p — 1/p)2 will yield the minimizing weights:

n

(11) Z Mp - l/pf(.<bxi,<pxi) = (p - l/p)2(tf>, *„),        j = 1, • • • , n.
■ -i

Now:

(p -  l/p)2(<2., </>„.) =  (p -  l/p)2(8/1r) Z (P2ra+I -  P^'V^to)
tn-0

and

(p - l/p)20k,., 0„) = (p - l/p)2(4/x) Z (m + l)(pm+1 - p"~1ylUm{xt)Umi{xi).
wl-0

Since all the coefficients of system (11) are real, the solution of (11) is also real. Using

the results of Appendix A, the above expressions, as p —> 1, are asymptotically:

(12) (p - l/p)2(4>, *„) = [2/(1 - *2)1/2 + o(l)](P - 1/p),

(p - l/p)2(<k,, <*..,.) = [x/(l - x2)] 5„- + o(l).

Inserting the expressions in (11), we get:

n

Z M.i/d - x2) + o(l)]/l, = (p - l/p)[2/(l - x2)1/2 + o(l)], ; = 1, • • • , n.
• -i

To first order in (p — 1/p) the solution of the above system is the following:

(13) A, = [2(1 - x2)1/2/tt + o(1)](p - 1/p),        « = 1, • • • , n.

For this set of weights, (r, r) is given by (6). Inserting (12) into (6), we get for p —» 1 :

n

(r, r) = (0, <*>) -   Z   WO - *2)(1 - *?))V2A2 + 0(1)1^5,,/(l - x2) + o(l)]
* , Í -1

n

= (<t>, <P) -  Z 4/r + o(l) = (<p, 0) - An/r + o(l),
i-l

where

(tf>, <*>)=/   ^to rf* = 2(p - l/pF'^dVd - ^2)V2 + "(1)J

= [2,r + o(l)](p - 1/p)"1.
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These results yield the following theorem:

Theorem 2. For any set ofn distinct points xu • • ■ , xn in (—1, 1), the minimizing

weights converge to zero as p —» 1 according to (13). Each point in (—1, 1) contributes

asymptotically the same amount to the reduction of (r, r), this amount being asymp-

totically 4/tt. The ratio of this amount to the value of((j>, <b) is [2/ir2 + o(l)](p — 1/p),

and (r, r) is asymptotically equal to (<p, 4>), where

(<b,<¡>) = [2* + o(l)](p- 1/p)"1.

The minimizing weights of Problem b can be expressed, using (13) and Corollary 1,

in the following way:

A( = [2(1 - *2)1/2A + o(l)](P - 1/p) - wt,       i = 1. •• • , n,

where vu ■ ■ ■ , vn are the solution of the system:

ft

Z fo-WO - x2) + o(l)>, = M(P - 1/p)2,        i = 1, • • • , n.
<-i

p. is determined by the condition Z"-i ¿< = 2, namely:

»

[2(1 - x2dU2h + o(l)](p - 1/p) - 2 =  £ Vi.
■ -i

Now Vi — m[(1 — *?)/t + o(l)](p — 1/p)2 and so we have:

ß = -|_2x/ £ (1 - x2) + o(l)J(p - 1/p)"2

and

(14) A{ = 2(1 - x2) / £ (1 - x2) + o(l).

This result furnishes the first part of the following theorem:

Theorem 3. For any set ofn distinct points in (— 1, 1), the minimizing weights which

satisfy £"_i At = 2, are asymptotically given by (14). The norm of the corresponding

error functional behaves asymptotically as (ir/£"_! (1 — x2))1/22(p — 1/p)-1, and

the minimizing abscissae tend to the midpoint of I, namely to zero. The corresponding

minimizing weights tend to be equal, each tending to 2/n.

Proof. The general form of (r, r) is:

i% n

(15) (r, r) -(*,*)- 2 £ Ai(<p,<pxi) +   £   AtA{((l>„,<pal).
• -1 i.I-1

Inserting the asymptotic expressions, (12) for the scalar products, and (14) for the

weights, we get after some manipulations:

(r, r) = [4*/ £ (1 - x2) + o(l)J(p - l/p)"a.

From this expression we conclude that the minimizing abscissae tend to maximize
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the sum £".j (1 — x2), namely x{ —> 0, i = 1, • • • , n. By (14) the corresponding

minimizing weights tend to be equal:

Ai = 2(1 - *2)/£(l - x2) + o(l)-»2/n.
'       i-l

5. The Family of Spaces H2^,), p > 1.   The representers <p(z), <bXi(z) in #*(«,)

are expressed, using (2), (3), (4), in the following way:

CO

(16) <p(z) = (4/t) £' [(1 - 4m2)(p2" + p-2m)]-¡T2m(z),
m-0

CO

(17) *,,&) = (2/x) £' (pm + p-,0",r.(ie1)r.w,
m-0

where the prime indicates that the term for m = 0 is to be halved. In (16) we used

the known result:

f Tm(x) dx - [i + (-m/u - /m2),     « 7* 1,

= 0, /n=l.

Let Xi, • • ■ , xn be a set of n distinct points in (— 1, 1). For p > 1 the normal equa-

tions (5) multiplied by (p — 1/p) yield the minimizing weights:

n

(18) £ Ai(p - i/pX*.,.*„) = (p - i/p)(<i>,*.,),     y = i, • • • , B.
¿-i

Now:

CO

(p - 1/pX*«.*.,) = (p - i/p)(2/t) £' (p- + p-r^.GOr.Ge,).
m-0

and

CO

(p - i/p)(0, *„) = (p - i/p)(4/x) £' [(p2™ + p-2m)(i - 4»l2)]-1r2Mto).

Since all the coefficients of system (18) are real, the solution of (18) is real as well.

Applying the results of Appendix B, the above expressions, as p —> 1, are asymp-

totically:

(19) (p ~ 1/p)(<k"<k<) = *a" + o(1>>

(p - l/p)(<b, <pxl) = [i(l - *2)1/2 + o(l)](p - 1/p).

Inserting these expressions in (18), we get:

(20) £ rj5„ + o{l)] At = (p - l/p)ß(l - x2)U2 + o(l)],        y = 1, • • • , b.
• -i

The solution of (20) to first order in (p — 1/p) is:

(21) Ai = [(1 - *2)1/2 + o(1)](p - 1/p),        i = 1, • • • , b.
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For these weights, (r, r) can be written by (6) and (19) in the following way:

n

(r, r) = (0, <p) - (p - 1/p)  £   [((1 - x2)(l - x2))1/2 + o(l)][K,. + o(l)]
i. i-l

.      = (0, 0) - (p -  l/p)|j £ (1 - x2,) + 0(1)

where

(<», <(>) =   Í   «to dx = \ Í   (1 - x2)1/2 ¿x + o(l) = tt/4 + o(l).

Thus the minimizing abscissae tend to maximize £?_, (1 — x2), so that x, —» 0,

i = 1, ••• , n.

These results are formulated in the following theorem:

Theorem 4. For any set ofn distinct points xu • • • , x„ in (—1, 1), the minimizing

weights tend to zero as p —> 1, according to (21). The norm of the error functional,

for this set of weights tends to \\<j)\\ = \Ar/2, and the amount by which any point xf,

reduces (r, r) is asymptotically §(1 — x2)(p — 1/p). The minimizing abscissae tend to

zero, as p —> 1, and the corresponding minimizing weights turn out to be equal.

The minimizing weights of Problem b, by (21) and Corollary 1, are:

Ai = [(1 - x2)1/2 + o(l)](p - 1/p) -Vi,        i = 1, • • • , n,

where pu • ■ • , vn are the solution of the system:

n

Z [Ri + 0(1)](P -  1/pVi -it, i =  l, • • •  , B,
i-l

and p is determined by the condition:

- £ Vi: = 2 - (p -  l/p)|~£ (1  - x2)'/2 + 0(1)1 ■
¡-i L,-i J

Now:

Vi = [2p + o(l)](p - 1/p),

ß =  [-l/n + o(l)](p -  1/p)"1

and

Ai = 2/n + o(l),        i = 1, ••• ,n.

Inserting this result in (15) and using (19), we get after some manipulations:

{r,r) =  [2/n + o(l)](p -  1/p)"1.

These results are summarized in the following theorem:

Theorem 5. For any set ofn distinct points in (—1, 1), the minimizing weights, in

]■
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the class of weights which satisfy £"., A¿ = 2, are asymptotically equal, each tend-

ing to 2/n as p —> 1. The norm of the corresponding error functional increases as

(2/n)1/2(p — l/p)-1/2. Each point in (—1, 1) is "equally good", with respect to the

asymptotic contribution to the reduction of(r, r).

6. Summary of Results.

LKt.) BK*,)

Minimal Rules

Minimizing

Weights
for Fixed

Abscissae

Ai ~ (2/,rXl - x,y\p
||r||~2«<p- Vp)-"2

1/p) Ai~(\ -xlY'Kp- 1/p)
IWI-x/4

Rules with

Minimizing

Abscissae

Xi ~ not known

^.~(2/xXi - x*y<Xp - i/p)
||r||~(2*/(p- 1/p))1"

x,i~0

Ai ~ (p — 1/p)
IMI-t/4

«*,) #=(<„)

Minimal Rules with 51 "-i ^» = 2

Minimizing

Weights
for Fixed
Abscissae

Ai ~ 2(1 - x2)/!: (1 - X?)
¿-i

/     » \1/s

~2Í*/¿(1 -*Î)J   (p- 1/p)"1

>4< ~ 2/n

|r||~(2//I)1"(p-l/p)-1'«

Rules with Xi: ~ 0

Minimizing ^4,- ~ 2/n

Abscissae ||r|| ~ 2(x/n)1,!(p - 1/p)-1

Xi ~ not known

Ai ~ 2/n

||r||~(2/n)1«(p-l/p)-1'«

7. Tables. The following four tables demonstrate the asymptotic behaviour, as

p —» 1, of minimal rules with 2, 3, 4 abscissae.

Since all the rules turned out to be symmetric, the given abscissae are all non-

negative.

In Table 1 the rules are unconstrained minimal rules in L2(«p), while in Table 2

the rules are minimal rules with £?_, A¡ — 2. Tables 3, 4 are the analogous tables

for H\tp).
Remark. In Table 1 the minimizing abscissae are inaccurite, since any point in

(—1, 1) is "equally good" in this case, and the function (r, r) is very "flat". However,

by inspection, we conjecture that the minimizing abscissae converge, as p —» 1, to

the roots of U„(x), namely: xt —» cos íV/(b + 1), i = 1, • • • , n. This behaviour cannot

be proved by our methods, since it depends on higher orders of (p — 1/p).
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Table 1

Minimal Rules in L2(e„)

si \ X\ -^1    3*2 ''-i jC\ A\

1.01 .5179 .3078 .7288 .2462 0.0 .3596 .8303 .1994 .3208 .3389
1.005 .5127 .2185 .7225 .1760 0.0 .2546 .8243 .1441 .3174 .2413
1.001 .4972 .0988 .7180 .0793 0.0 .1138 .8271 .0640 .3420 .1070
1.0005 .4954 .0699 .6940 .0580 0.0 .0806 — —
1.0001 .4936 .0313 .6916 .0260 0.0 .0360 .8192 .0207 .3395 .0339

Table 2

Constrained Minimal Rules in L2(ep).( £ A, = 2
\ , =i

Xj A i X2 A2 X\ A\

1.01 .2471 1.0 .4485 .6323 0.0 .7354 .6211 .4311 .2140 .5689
1.005 .1911 1.0 .3480 .6457 0.0 .7086 .4849 .4590 .1625 .5481
1.001 .1040 1.0 .1914 .6600 0.0 .6800 .2695 .4869 .0883 .5131
1.0005 .0795 1.0 .1470 .6627 0.0 .6746 .2077 .4921 .0679 .5079
1.0001 .0419 1.0 .0782 .6655 0.0 .6690  —

Table 3

Minimal Rules in H2(ep)

X\ A\ %i J\ 2     X\ s\\

1.01 .3240 .6195 .5266 .4958 0.0 .5374 .6605 .3977 .2281 .4560
1.005 .2698 .4930 .4525 .4187 0.0 .4418 .5829 .3547 .1974 .3888
1.001 .1629 .2586 .2879 .2403 0.0 .2450 .3895 .2225 .1282 .2301
1.0005 .1279 .1898 .2294 .1803 0.0 .1826 .3148 .1709 .1030 .1746
1.0001 .0703 .0891 .1292 .0872 0.0 .0876 .1812 .0853 .0590 .0859
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Table 4

Constrained Minimal Rules in ifie^.l £ A¡ = 2j

X\ -**1 X2 Sl'2 "\ **-\

1.01 .3566 1.0 .5572 .6505 0.0 .6990 .6832 .4678 .2374 .5322
1.005 .3054 1.0 .4919 .6570 0.0 .6860 .6169 .4800 .2107 .5200
1.001 .1956 1.0 .3342 .6644 0.0 .6712 .4403 .4947 .1463 .5053
1.0005 .1569 1.0 .2732 .6655 0.0 .6690 .3659 .4973 .1209 .5027
1.0001 .0898 1.0 .1614 .6665 0.0 .6670 .2223 .4995 .0730 .5005

In Table 4 we observe a slow convergence of the minimizing abscissae to zero, a

behaviour which cannot be predicted by the theory.

The minimization of (r, f) as a function of the abscissae and weights, was per-

formed by the method of Fletcher and Powell [3].

Appendix A

The first two results are cited from [7, Chapter 1].

Result 1 (Abel). If b, ^ b2 ̂  • • • ^ bn ̂  • • ■ ̂  0, and if m < a, + a2 + ■ • • +

an í£ M for all values of n, then :

b¡m ^ ají»! + a2b2 + • • • + anbn ^ »iM,        for all values of n.

Result 2 (Abel). Let £¡°_0 an\¡/„(x) be uniformly convergent in any closed interval

contained in (a, ß). If £"_0 a» < m, and if 0 < i/<„(x) S 1 for x G (a, ß), and

\p,(a) = 1, then £"_„ an\pn(x) is uniformly convergent in a ^ x :£ ß1 < ß, and

o» 00

lim £ a„^„to =   £ a,.
x-*a   n-0 n-0

In what follows i/„(x) denotes the Chebyshev polynomial of the second kind, £/„(x) =

sin (« + l)0/sin 0, with 0 = arc cos x.

Lemma 1. For — 1 < x < 1,

lim (p - 1/p) £ 2(p2ra+1 - p-2-1)-1 U2m(x) = r/2(l - *2),/2.
P-*l+ Bl-0

Proof Substitution of 0 = arc cos x in the left-hand side of the above expression

yields:
m

2(p -  l/p)(sin 0)'1  £ (p2" + 1 - p"2—1)-1 sin (2m + 1)0
m = 0

= (2/(1 - x2)1/2) £ (p2m + P2"-2 + • • • + p-2T' sin (2m + 1)0
m-0

m

= (2/(1 - x2)1/2) £ 6m(p)a„(0),
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where

bm(P) = (2m + l)/(p2" + • • • + p-2-),

and

am(0) = sin (2m + l)0/(2m + 1).

Now 0 < bjp) < 1 for any p > 1 and om(l) = 1. By [4, p. 38]

£ a„(0) = t/4.
m-0

The sum £„_„ bm(p)am(d) is uniformly convergent for any p jg p* >  1. Applying

Result 2 we get:

CO CO

lim £ 6m(p)am(0) =   £ am(0) = x/4,
P-*l    m-0 m-0

and the desired result follows.

Lemma 2. For — 1 < x¡, x, < 1, x, ^ x,,

lim (p - 1/p)2 £ (m + l)(p"+1 - p      'r't/.to)£/„(*,) = 0.
P->1+ m-0

Proof.

(P - 1/P) £ (m + l)(p"*+1 - p-m-1)-1í/„(x,)í/„(x,)
m-0

CO

=  [(1 - x2)(l - x2)]-1/2 £ ¿>„(p)am(0,, 0,),
m-0

where

6m(p) = (m + l)/(p~ + ••• + p""*),

am(0,, 0,0 = sin (m + 1)0, sin (m + 1)0,

with 0; = arc cos xi5 0, = arc cos x,, and 0 < 0,, 0, < t.

Now a»^, 0,) = Mcos (m + l)a - cos (m + l)/3] where a = |0< — 0,| ¿¿ 0, and

/S = 0, + 0, < 2ir. For any p > 1, 0 < è,„(p) < 1 and 6m+i(p) < o„(p). This is true

since with p = ex, x > 0,

o„ = (m + 1) sinh x/sinh (m + l)x

and

Ah
T-2 = sinh x cosh (m + l)jc[tanh (m + 1)* — (m + l)*]/sinh2 (m + l)x,
dm

but tanh y — y < 0 for y > 0, and thus dbjdm < 0. Using the identity [4, p. 30]:

...                                V"i        ,                nx   .   (n + l)x x
(1) ¿-i cos *x = cos — sin-cosec -

*-o 2 2 2
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we get

£ a„
na   .   (n + l)a a
— sin-cosec -
2 2 2

nß   .   Qi + l)ß ß\
—-sin-cosec —f .
2 2 2J

and for any value of N, —M ^ £m_0 am ^ AÍ, where Af = |[cosec a/2 + cosec /3/2].

Applying Result 1, we get:

— Mb0 ^  £ ambm ^  Mb0,
m-0

and since b0 = 1, we have for p > 1 :

(P - 1/p)2 £ (m + l)(p™+1 - p-"-1)-1í/m(x,)í/mto)

g (p - l/p)M/((l - x2)(l - *2))1/2.

This relation yields the desired result when p —> 1+.

Lemma 3. For 0 < 0 < t,

lim Up - 1/p)2 £ m(pm - p-'T1 sin2 m0
i-,l+    ( m-l

- (P - l/p)2d/2) £ mip" - p-)"1} = 0.
m-l J

Proof. For any p > 1 we have:

CO GO

2(P - 1/p) £ m(pm - p'")'1 sin2 mO - (p - 1/p) £ m(pm - p-)'1
m—1 m — 1

co co

= (P - 1/p) £ m(pm - p-"r'(2sin2 mO - 1) =  £ ¿>„(pK.to,
m-l m —1

where a„(0) = 2 sin2 m0 — 1 and ¿„(p) = m(p — 1/pXp™ — P~")_1- Applying the

known result [4, p. 30] :

A   . 2     „       JV      cos(A^ + 1)0 sin N6
2^ sin   m0 = —-.     -
±LÍ 2 2 sin 0

0   <    0   <   7T,

we get the relation: — 1/sin 0 ^ £»_i am(0) Ss 1/sin 0. Since 0 < Z>„+1 < bm, as

proved in Lemma 2, it is possible to apply Result 1 and get for any value of TV the fol-

lowing inequality:

£ amb„ ^ 1/sin 0.

Hence for any p > 1 :

co

(P - 1/p)2 £ (p" - p-"r1(2sin2 mO - 1)
m-l

and as p —> 1+ the above expression tends to zero.

g (p - l/p)/sin   0
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Lemma 4.*

00

lim (p — 1/p)2 £ mtp" — p~my'  = ir2/2.
P—1 + m-l

Proof.   The substitution p = ex, x > 0 yields :

(P - 1/P)2 £ "KP" - P-V = 2 sinh2 x £ -j-f^
m-i m-i sinn mx

co 2

x"       „TÍ sinh mx

Now

AMI

*f si»'(m-l)i SI

■V a>   <      (m — l)x

sinh mx       J(..,|, sinh y      sinh (m — l)x

since >>/sinh y is monotonically decreasing for y > 0. Hence

y dyr  y dy   <   y,     mx       <   j"° _y_
Jx   sinh y =  ~z\ sinh mx ~ J0   sirsinh y

and in the limit x —* 0+ (p —» L) we get:

2 sinh  x ^i     mx" ~   l"°  y dy        w
lim -r— £ ^T- = 2 /    -f-r^- = —•
x-o+        x " sinh mx J0   sinh >■        2

An immediate consequence of Lemmas 3, 4 is:

Corollary 1.    For — 1 < x < 1,

lim (p - 1/p)2 £ (m + l)(p-+1 - p-"1)-1 Ul(x) = x2/4(l - *2).
p-»l+ m-0

A summary of the results, which are referred to in Section 4, is given below :

For p —> 1+ and —1 < x,, x, < 1:

(1) (p - 1/p) £ 2(p2"+I - p-2-1)"1 t/^to) = t/2(1 - x2)W2 + o(l),
m-0

(2) (p - 1/p)2 £ (m + l)(pm+1 - p-"-1r1i/,„(x,.)[/„(xI.) = 7r25,,/4(l - x2) + o(l).
m-0

Appendix B

In what follows 2"„(x) denotes the Chebyshev polynomial of the first kind, T„(x) =

cos «(arc cos x).

Lemma 1.   For — 1 < x < 1,

lim  £' (1 - 4m2)-'(p2m + p^T'r^x) = 0r/8)(l - x2)1/2.

* This lemma was proved by Dr. H. Dym.
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Proof The sum above converges uniformly for any p ä p* > 1. Since

£' (1 - 4m2)"1 cos 2m0 = -w sin 0/4,
m-0

for 0 < 0 < n [4, p. 39], and since 1 < p2m + p"2"', for p > 1, it follows from Result

2 of Appendix A, that ££," „ (1 — 4m2)_1(p2m + p~2m)T2m(x) is uniformly convergent

for p ^ 1, and that this sum equals t(1 — X0'/2/8 when p = 1.

Lemma 2. For —1 < x,, x, < 1, x, 9^ x, ,

m

lim (p - 1/p) £' (p" + p-myiT,n{.x¡)Tm{.x¡) = 0.
p—l* m-0

Proof. Let x, = cos 0,, x, = cos 9¡, 0 < d¡, 0, < ir, then the above sum has

the form

00 OB

(p - 1/p) £' (Pm + P'm) cos m0, cos m0; = (p -  1/p) £' i)„,(p)«,„(0i, 0,),
m-0 m = 0

where bm(P) - (pm + p-*T\ and

am(6i, 0¡) =  cos m0, cos m0; =  [cos /na + cos m0]/2.

with a =  ¡0, — 0,| 5¿ 0, /S =  0, +  0,  < *"■

Using identity (1) of Appendix A, we get:

if «   , i3! ̂    V-        ̂   ! T aj #1
—-    cosec - + cosec -    5=   2^ w« = ^    cosec - + cosec -   ■

For p > 1, 0 < b„+1 < b,„. Hence by Result 1 of Appendix A

-baM <  £ bm(p)am(6i, 0,) i% b0M,
m-0

where M = ^[cosec a/2 + cosec ß/2] and f>0 = h- Now

£' o„(p)a„(0,, 0,) =     £ o„(p)a,„(0,, 0,)    - ± ,
m-0 Lm-0 J ^

and we have the following relation :

(p — 1/p) £' (p™ + p '") ' cos me, cos m0j

which yields the desired result.

Lemma 3. For —1 < x < 1,

^ (p - 1/p)1(! + ;)■

lim {(p - 1/p) £' (p'" + P"'")''?!« - (p -  1/p) £ [2(pm + p-)]-'} = 0.
P-»l +     k m-0 m-0 J

Proof. For any p > 1 the above left-hand side can be written as :

(è)(p - 1/p) £ (p" + p~'")(2 cos2 me - 1) = \(p - 1/p) £ am{e)bm(p),
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where am(0) = 2 cos2 m6 - 1 and bm(p) = (pm + p-")-1. Using the identity [4, p. 31]:

A      2             N  .   cos (N + 1)0 sin NO
X, cos me = —A-TTÜTi-•
„-i 2 2 sin 0

we get the following relation:

£ a„(0) g cosec 0.

By Result 1 of Appendix A we have for any p > 1 :

£a„(0)ôm(p)   g biM,
»-i

where 6, = (p + 1/p)"1 and M = cosec 0. Hence:

(P - 1/P) £' (p" + P"")_1rito - (p - 1/p) £ [2(p" + p-)]'
m-0 m-0

g  M(p - l/p)(p + 1/p)"'

and in the limit p —> 1+, the left-hand side tends to zero.

Lemma 4.
a»

lim (p - 1/p) £ (p" + p-)"1 = t/2.
p-»l+ «i-O

Proo/ By the substitution p = e1, x > 0, it remains to prove that

sinh x ^       x t

Now:

lim
i->0        x

-£_if(m + l)x      J.:

^ cosh mx

dy

cosh (m + l)x = Jmx        cosh j» — cosh mx '

since 1/cosh _y is monotonically decreasing for y > 0. Hence:

dy    ^  ^       x       ^   f°°    dyÍ ^ £
cosh y      £?0 cosh mx

and in the limit x —» 0+ (p —» 1+) we get:

/;

sinh * •A       x /*
hm - ¿_, —Z- =   /
-_o+     x     _rí cosh mx      J0

cosh y

dy

+ x,

o   cosh y

An immediate consequence of Lemmas 3, 4 is:

Corollary 1. For — 1 < x < 1

lim (p - 1/p) £' (pm + p-r'TKx) = x/4.
P-*l + m-0

The results, which are referred to in Section 5, are summarized below:

For p —» 1+ and — 1 < x,, x, < 1 :

(1) £' (1 - 4m2rV" + p—)-,rta(x<) = t(1 - *2)1/2/8 + o(l).
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(2) (p -  1/p) £' (p" + p-TXCx.Ormto) = T«„/4 + 0(1).
m-0
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