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Chebyshev-Type Integration Rules of Minimum Norm

By Philip Rabinowitz and Nira Richter

Abstract Equal-weight integration rules are studied in the context of certain families of

Hubert spaces of analytic functions defined in a family of confocal ellipses containing

the interval of integration. Rules which minimize the norm of the error functional in these

spaces are shown to exist and several such rules are tabulated. Asymptotic properties of

these rules are studied for ellipses shrinking to the integration interval and for ellipses

expanding to cover the entire plane. In the latter case, an algebraic formulation for these

asymptotic rules is given and it is shown that they agree with the classical Chebyshev

integration rules whenever such rules exist.

1. Introduction. The classical Chebyshev integration problem is to find distinct

real abscissae x¡, i = 1, • • • , n, and a weight w such that, in the formula

lif)=  !   1(x)dx= m> ¿ /(*,) + E.Q) m Rn(f) + £„(/),
J-X ¿-1

the error term £„(/) vanishes for all polynomials of degree ^w. It turns out that this

problem only has a solution for n = 1(1)7 and n = 9, and that in these cases w = 2/n.

For all other values of n, some of the abscissae, which are the roots of a certain

polynomial, turn out to be complex. In the sequel, we shall call any integration rule

of the form

R.if) =»E /(*<).      -1 SS xt < xt <•••<*, á 1.
t-1

a Chebyshev-type integration rule (CIR), while a rule of the same form in which we

permit equality among abscissae will be called a generalized Chebyshev-type inte-

gration rule (GCIR). These latter come up as limiting forms of sequences of CIR's

in various contexts.

In addition to the classical requirements on integration rules that they be exact

for polynomials up to a specific degree, other criteria for integration rules have been

proposed in recent years, among these being the requirement that they minimize

the norm of the error functional Enj in a certain space. Rules with such a minimizing

property are called optimal rules or minimal rules and have been discussed by various

authors [1], [5], [7], [8]. To the authors' knowledge, the only work on CIR's with such

minimal properties is that by Barnhill et al. [2] who computed CIR's which minimize

the function

È [EYix')f,
i-0
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where n ^ k ^ °°. For k = n, these rules turned out to be the classical rules, when

such rules existed. In the other cases, the rules turned out to be GCIR's.

In the present work, we shall be concerned with CIR's which minimize the norm

of £■„(/) in two families of Hubert spaces. Each family is a one-parameter family of

Hilbert spaces of functions analytic in £„, p > 1, where £„ is the ellipse in the complex

plane with foci at (± 1, 0) and semimajor axis a = \{\/p + 1 /\/p). One family of

spaces, L2i&„), is defined by the norm

JJt   \Kz)\2 dx dy~^11/11 =

and the other, FYi&f), by the norm

=  [^J/(z)||l-zT''Vz|]1/2.

Our main interest will be the asymptotic behavior of minimal CIR's in the two cases:

(a) p -» »,

(b)p-»l.
In case (a), the two sets of minimal CIR's corresponding to L2(SP) and /^(S,) tend

to the same limit, namely, to a rule which integrates as many monomials as possible,

and if this number is less than n + 1, to a rule which integrates the next monomial

with a minimal error. In the first instance, we recover the classical Chebyshev rules.

In the second, we arrive at GCIR's.

In case (b), we consider the asymptotic behavior of two classes of rules in each

family of spaces:

(1) Minimal CIR's.

(2) CIR's minimal in the class of rules which integrate constants exactly, i.e.,

rules such that w = 2/n. This distinction in case (a) is of no interest since the limiting

rule there belongs to class (2). The asymptotic behavior for p —> 1 is derived using

some of the results in [7] which we quote without proof.

In Section 2, we formulate the problem and prove the existence of the GCIR's.

In Section 3, we characterize the asymptotic minimal GCIR's for p —> œ. In Section 4,

we give an algebraic approach for computing the rules discussed in Section 3, for

n = 8, 10, 11, 12, 13. In Section 5, we prove four theorems about the asymptotic

behavior as p —» 1 of minimal GCIR's in L2(8„) and i/2(Sp). Finally, in Section 6, we

give tables of the rules discussed in Section 4 and tables of minimal CIR's for p

approaching 1+ to illustrate the theoretical results of Section 5.

2. Formulation of the Problem. Let S„ designate the ellipse with foci at (± 1, 0),

semimajor axis a and semiminor axis b = (a2 — 1)'/2 where p = ia + b)2. The two

families of Hilbert spaces to be considered are the following:

(1) L2i&p)—the collection of all functions /(z) analytic in Sp, p >  1, such that

with the scalar product

¡L mï2 dx dy < co ,

(J. S) = //  1(z)8iz) dx dy.
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(2) /^(Sp)—the collection of all functions /(z) analytic in Sp, p >  1, such that

[    |/(z)|2|l-zTI/2|rfz|< -,

with the scalar product

(/.*)= [ mW)\i - z2\~l/2 \dz\.
JdS,

A complete orthonormal set \Pmiz)} for L2(SP) is given by suitably normalized

Chebyshev polynomials of the second kind [3, p. 241]:

(1) PJz) = -7-     ,+r + -,-1   ' UJiz),       m - 0, 1, 2, • • • ,
V" Lp     - p      J

where í/m(z) = sin (m + l)0/sin 6 with z = cos 6. For H2(&p), a complete ortho-

normal set {P„(z)} is given by suitably normalized Chebyshev polynomials of the

first kind [3, p. 240]:

PJY) = J-     „   ,     -»      TJY),        m = 1, 2, • • •,
(2) vi Lp   + P   J

/>o(z) = l/(27r)1/2,

where Tj(z) = cos «Ô with z = cos 0.

By the Riesz representation theorem, any bounded linear functional L in a

Hilbert space H determines a unique element I E H, called the représenter of L,

such that, for any / E H,

L(f) = (/, /)   and    ||£|| = ||/||.

The error in a given integration rule with abscissae in [—1, 1] is a bounded linear

functional E in both L2i&p) and H2i&„). Hence, there is a représenter of this func-

tional in each space. For a GCIR with abscissae xu •■■ , xn and weight w, the rep-

résenter is

»
riz) = cp(z) - IP X <bxl(z),

»-1

where <b(z) is the représenter of the linear functional

// = ¡max.

and 4>xt(z) is the représenter of the point functional

Ua, = /(*,).

Since in both spaces, convergence in norm implies pointwise convergence, the

above representers can be expressed in terms of the complete orthonormal set:

*W = ¿ \j   Pm(x) dxjPm(z),

to

(3) <p,,(z) =  £ Pm(xt)Pm(z),
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riz) =   E [EiPm)]Pmiz).
m-0

For a given set of abscissae, the problem of determining the weight w for which

the error functional E is of minimum norm is thus equivalent to the problem of

best approximating the function <f>(z) by the single function

¿(z) = ¿ <pxt(z).
i-X

Hence, w is determined by the condition:

U - w ¿*.i. ¿<M = 0
> ,-i ¿-i      /

and is given explicitly by:

(A\ -   — (o5,   / ,°-l <t>z,)

(Z^i-1 <Px¡,   2J.-I <Pn)

The norm of the corresponding error functional is given by

(5) ||£||2 = Ikir = (r.r) = i4>,4>) - *(<*>, Ê*«)*

By (1), (2), (3), (4), w is a real continuous function of the n abscissae as is, therefore,

the norm of the corresponding error functional. Since a real continuous function

attains its minimum value relative to a compact domain at a point therein, the

existence of a point (x,, • • • , xn) in the hypercube Sn: — 1 5¡ x{ ;S 1 for which the

norm of the corresponding error functional is a minimum is guaranteed.

Similar arguments prove the existence of a minimal GCIR in the class of rules

which integrate constants exactly, since in this case w = 2/n, and the norm of the

error functional is a real continuous function in S„. We formulate these observations

in the following theorem:

Theorem 1. For any p > 1, there exists an unconstrained minimal GCIR and a

constrained minimal GCIR with w = 2/n in each of the spaces L2(S„), H\&p).

We remark that although we have only been able to prove the existence of minimal

GCIR's, nevertheless, in practice, these minimal rules turn out to be CIR's. We

therefore conjecture that for every p > 1, the minimal GCIR is indeed a CIR, both

in the constrained and unconstrained cases in L\&p) and H\&p).

3. Asymptotic Behavior as p —> 00. The following theorem characterizes the

asymptotic behavior of GCIR's as p —> 00 :

Theorem 2. As p —» 00, the minimal GCIR's with n abscissae in both Z-2(SP) and

FY(&p) tend to the same GCIR, Rn, with the following properties:

(1) En(x') = 0, / = 0, 1, ■ ■ ■ , k — l,for as large a value ofk as possible.

(2) Ifk < n, then \E„(xk)\ is minimal.

In particular, w is given by 2/n.

Proof. The norm of the error functional is given, using (3), by:

\\r\\2 = (r, r) =  ¿ \E.(Pm)\2 =  ¿ f f Pm(x) dx - w ¿ Pm(x<)T-
m-0 m-0   L"'-! i-1 J
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In £(£„), this norm has the form:

IKII3 = ; ¿ [ m+r + -m-x En(Um)X
rr m-o Lp       — p J

and in IY(5P), the form

\\rY\\2 = zé'\ml-mEn(Tm)\\
rr m-o   Lp   + P J

where the prime indicates that the term for m = 0 is to be halved.

For p —» oo, the asymptotic expressions of the two norms are:

Ifcll = C^l"^-»-»))1" I««01 p"<i+1>/2 + o(p-<t+2)/2),

IMI = Cd + p-»))1'' IW*>I P"t/2 + o(p-(t+1,/2),

where k is the degree of the first polynomial in the orthonormal sequence which is

not integrated exactly. Now the larger k is, the smaller ||r|| becomes. Hence the

asymptotic rule R„, which minimizes ||r||, integrates as many polynomials in the

sequence as possible. If k < n + 1, there are n — k + 1 free parameters at our

disposal which are used so as to minimize \En(Pk)\.

Now, the conditions En(P¡) = 0, j = 0, 1, • ■ • , k — 1, are equivalent to the con-

ditions EJix1) = 0, j = 0, 1, • • • , k — 1. This implies that the parameter set which

minimizes \EJiPk)\ subject to the constraints £„(/',) = 0, j = 0, 1, • • • , k — 1, is

identical to the set which minimizes | £,(**) | subject to the constraints Enix') =

0, f = 0, I, •■• , k — 1. Hence, the resulting rule is of degree k — 1. By choosing

w = 2/n, we are assured that k > 0.

Theorem 2 gives an algebraic characterization of the asymptotic rule, which

suggests an algebraic approach to the problem of determining such rules explicitly

for various values of n. Another possibility is to compute minimal GCIR's for a

sequence of monotonically increasing values of p, by minimizing the norm of the

error functional as a function of the weight and abscissae. This numerical approach

failed for those values of n for which classical rules do not exist, since the norms

have many local minima, corresponding to rules which are exact for the maximal

number of monomials.

4. The Algebraic Approach. The abscissae, x¡, i = 1, ■ • • , n, and weight w

of the asymptotic GCIR, for p —> oo, satisfy the following conditions:

w ¿ x\ =   [   Y dx = 1 + (T,1)   ,       j = 0, 1, • • -, k - 1,
¿-1 J-\ J ~T   l

and the corresponding rule Rn is of degree k — 1. Taking w = 2/n to satisfy the

condition for j = 0, we rewrite the other conditions in the form

n

(6) g x\ - 2(/ ^      [1 + (-1)'] a a„        j= i, ... ,k - i.
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Let

n It

Qnix) =  u (x - x() s  2 «.-<*'.        Oo = 1.
<-l i-0

then Oo, a,, • • • , at_, satisfy the following recurrence formula [6, p. 356]

(7)        rar + «iflr-t + a2ar-2 + • • • + ar_ifl0 + ctr = 0,        r = I, ••■ ,k — I.

For the case /c = n + 1, a„ • ■ • , a„ are determined by (7) and the roots of QJjx)

are the abscissae of the integration rule. Since £î_0 x\ = 0 for j odd, the resulting

rule is symmetric.

For nonclassical rules which occur when the roots of ß„(x) are not all real, we

have that k < n + 1 and the following considerations apply:

Let 5„ • • • , än denote the coefficients obtained using (6) and (7). In order that

k he as large as possible, we must retain as many coefficients as possible in the above

sequence, at the same time ensuring that the polynomial Qnix) possesses n real roots,

preferably in [—1, 1].

For a rule of degree k — 1, the corresponding polynomial ß„(x) is a function

of the « + 1 — k parameters ak, • • • , a„, namely:

k-X n

QÁx) = Qnix; a„, • • • , O = x' + £ &¿r* + E «.*""•
i-l i-k

The parameters ak, ■ ■ • , an are to be chosen to satisfy the following two requirements:

(1) Qnix) has n real roots,

(2) \Enixk)\ is a minimum.

Using (7) to express 2\Z"<-x x) in terms of the coefficients of Qnix), we write |£„(x*)|

as follows:

\EÁxk)\ =
! + (-!)*      2 ^   k

k+1 nhXi

1 +(-1)"      2h-$

—;—;—;-¿_i a»a*-i + 2ak
k+1 n fr¡

where a1; ■•• , at_j are defined by (6). Thus, |£„(x*)| is independent of ak+u - • • , a.

and, since the right-hand side of the above equation vanishes for ak = äk, we see

that the closer ak is to äk, the smaller \Enixk)\ will be.

Since k is not known a priori, we proceed as follows: For n even, we first set

k = n. so that ß„(x) = Qn(x, an) and Qñix) is independent of a„. Let f,, • • • , fm

be the (not necessarily distinct) real roots of Qñix). The following two conditions

are necessary and sufficient that there exist an such that Qn(x) = xn + £"-1 äix"~i +

a, possess n real roots:

(a) m = n — 1

(b) r = max ß„(j\., 0) ^ min ßB(f,, 0) = s.
lS<Si»;0»"(f¡)>0 lSiSi»;O«"(fi)<0

(This can be seen most clearly from the graph of Qnix).) Condition (a) holds for

n = 8, 10, 12 while condition (b) holds only for n = 8, 10.
When both (a) and (b) hold, the a„ which lies in [—s, —r] and is closest to 5„ is

the required value which we denote by a*. Since ä„ $ [—s, —r], it follows that a*

is one of the endpoints of [—s, —r] and yields a double root for Qn(x). Since Qn(x)

is a symmetric polynomial, the rule Rn will have one double node when the double
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root of Qnix; a*) is at x = 0 (n = 8) and two double nodes, otherwise (n = 10).

For n = 12, k < n since s < r. Now k = n — 1 is not possible since any change in

On-x is equivalent to the addition of alinear function to the even function Qn(x; 5»_i, 0)

and this operation cannot reverse the relation s < r. Hence, the next trial value is

k = n — 2, which corresponds to a change in a„_2. Since for ä„_2, s — r < 0, we take

a*-î to be the closest value to g„_2 for which s — r S; 0, where r, s correspond to

Qnix; a„_2, 0, 0). For this value of a*_2, r = s, a* is taken to be —s and the resulting

Rn has two double nodes in each half-interval, since it is symmetric.

The procedure for n odd is similar, but starts with k = n — 1, since if k = n + 1

is rejected, then k = n cannot hold because, in this case, s = — r < 0. For n — 11,

13, Q'„'(x) has n — 2 roots in [—1, 1] and n < Sx where rx and s, are the analogues

of r and s with respect to ß£(x; 0). By confining a*_I to the interval [—slt — rj, we

guarantee that 2¿(x; a*_!) has « — 1 roots in [— 1, 1] and thus it remains to choose

a*-x to be the closest value to â„_i in [—Sx, —r,], subject to the condition that s —

r ï: 0. Since this occurs when s — r = 0, we found a*_x by treating s — r as a func-

tion of a„_, and using the method of bisection to obtain the desired root.

The resulting polynomial Qn(x; a*_¡, 0) is odd so that r = — s and since s —

r = 0, we have that r = s = 0 and hence a* = 0. Thus, the integration rule is sym-

metric with one double node in each half-interval.

In Table 2, we give the abscissae of the five rules computed for n = 8,10,11,12, 13.

Since all the rules are symmetric, only nonnegative abscissae are tabulated.

5. Asymptotic Behavior as p —* 1.

(I) The Spaces L2i&p), p > 1. In this family of spaces, the representers (3) can

be written explicitly, using (1) as:

(9) 0(z) = - ¿ (p2"*+1 - p-2-')-1 U2m(z),
AT m-0

(10) *„(*)  = - ¿ (m + l)ipm+1  - p-"-1)í/„(x<)c/m(z).
T m-0

Using the following result derived in [7]:

For p —> 1+ and —1 < x¡, x¡ < 1,

(p - i/p) ¿ 2(p2-+i - p-2-1)-1 £/*„(*) - f a - *2ri/2 + o(D,
m-0 -¿

(P - 1/P) ¿im+ D(pm+1 - p-"-1)-1Umixi)Umixi) = y 5./Ü - x2)-1 + oil),
m-0 *»

we find the asymptotic behavior of the following scalar products, for — 1 < x¡, x, < 1 :

-W) = 2(1 - x2Y1/2 + o(l),
P>

-) <P*<ixd = ^,(1 - x2)-1 + 0(1).
pi

Inserting these expressions into (4), we find the minimizing weight w corresponding

(11)

(p - -)(<?, <bxi) = (p ~

(p-) i4>xi,<S>x,) = \P —
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to a given set of abscissae xt, • • • , x„ in (— 1, 1) to be:

(12) W = -=;-/-^   ^„-—- =      - ^n-27-7T +  0(1)    [p-I-

By (5) and (11), the norm of the corresponding error functional is given by

l2

(r, r) = (<p, <p) - - [^I;1°/<     XX'?2 "r
7T        2^-1  d   ~  *<)

with

, <p) = /  *(*) dx = (p - -) '[2* + o(l)].

The set of abscissae of the asymptotic minimal rule is clearly that set for which

[E?-i a - *2r1/2]a

E"-t (i - *2>~'

is maximal. By the Cauchy-Schwarz inequality, we have that

rEí-i (i - x2)-'/2]2   * E?„ (i - x2)-'

E;-! (i - x2)-1  = E"- a - *?r' ~ "

and equality is possible only for x, = ±r;, / = 1, • • • , «, for a fixed value 17 with

17]I < 1. These results yield the following theorem:

Theorem 3. For a set of n abscissae in (—1, 1), the minimizing weight w of the

corresponding GCIR tends to zero, as p —* 1, according to (12) and the norm of the

error functional of this GCIR is asymptotically ||<p||, where

\\<P\\ = (p-~) ,/2[(2x)1/a + 0(1)].

All the abscissae of the minimal GCIR tend, as p —» 1, to a single point or two sym-

metric points, but the location of these points is unknown. The amount by which (r, r)

is reduced per abscissa is A/tr + o(l) which is negligible in the limit.

Remark. This latter quantity is identical with the asymptotic amount by which

any abscissa in the general minimal integration rule reduces (r, r) [7].

For a GCIR with w = 2/n, the norm of the error functional is given by:

a     n a       n

(r, r) = (<?, 0) - - E (*. *«) + -2  E  (*«.*.,)
n ,-x n  i,,.x

This yields the corresponding theorem.

Theorem 4. The abscissae in the minimal GCIR, constrained by w = 2/n, tend

to zero as p —» 1. Each point in this asymptotic rule contributes
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[5+■»]('-;)"
to the value of(r, r).

(II) The Spaces H\&p), p > 1. In this family of spaces, the representers (3) can

be written explicitly using (2) as:

(13) <p(z) = - ¿' [(1 - Am2)(P2m + p-2m)YlT2miz),
AT m-0

(14) <bxi(z) = - ¿' (p"1 + fTFTJMTJß).
AT m_o

Using the following result derived in [7]:

For p —» 1+ and — 1 < x,, x, < 1,

¿' (1 - 4m'rV" + p-,")-Xrî.(x<) = | (1 - x2f/2 + o(l),

\ P/  m-0
' (p" + p"")'1r.c«i)r.(«<) = J 5.,- + o(i),

we find the asymptotic behavior of the following scalar products for — 1 < x,, x, < l :

(<P, *.,) = <P(x.) = §(1 - x2)U2 + oil),

(p - -)(*„, *.,) = (p - -)4>.t(x,) = h Su + o(l).

Inserting these expressions into (4), we find the minimizing weight w corresponding

to a given set of abscissae xu • • • , x„ in (— 1, 1) to be:

(16) " - rV^'P'v-^ i - \~n ¿ (1 - '?)l/a + °(1)1(" - i)'
(¿MÍ.C   ¿ji-ltx,) L«   <-l J\ P/

By (5) and (15), the norm of the corresponding error functional is given by

(17) ir, r) = (<p, 0) - [¿ (¿ (1 - x2)'/2)2 + o(l)   (p - i) ,

with (<b, <p) = /i, (p(x) c?x = tt/4 + o(1).

By (17), the abscissae of the minimal GCIR's tend to zero since the choice xt =

O, i = 1, • • • , n, maximizes the quantity

These results yield the following theorem:

Theorem 5. For a set of n abscissae in (—1, 1), the minimizing weight w of the

corresponding GCIR tends to zero, as p —> 1, according to (16) and the norm of the

error functional of this GCIR tends to át/A. All the abscissae of the minimal GCIR

tend to zero as p —> 1 and the amount by which (r, r) is reduced per abscissa is asymp-

totically \(p — I/o) which is negligible in the limit.
Remark. This latter quantity is identical with the asymptotic amount by which

any abscissa in the general minimal integration rule reduces (r, r) [7].
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JÎ

Abscissa /Abscissae

2.0

1.5

1.1

1.03

1.01

1.001

1.0001

.7082893

.7115646

.7137813

.6165277

.4359713

.1906934

.0781855

,8659204

,8649953

,8628399

,8558165

7698833

3986599

,1712035

.4266340

.4374460

.4882539

.5212156

.4736271

.2348115

.1003360

.2610872

.2459727

.1787740

.1745388

.1595859

.0777661

.0331459

TABLE 5 :  Minimal CIR1s with w = -  in  L2(£ )
Pn

Ji

Abscissa Abscissae

2.0

1.5

1.1

1.03

1.01

1.001

1.0001

.7070938

.7068802

.6916330

.6351125

.5519835

.3338414

.1613753

,8658352

8645912

8555244

8394149

,7984626

5895055

,3232849

.4275668

.4401770

.4856001

.5000705

.4858830

.3534554

.1309153

.2598389

.2423468

.1786628

.1668131

.1626058

.1179710

.0632936

TABLE 6 :  Minimal CIR's with w = - in H2(£ )
Pn
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For a GCIR with w = 2/n, the norm of the error functional is given by:

This yields the corresponding theorem:

Theorem 6. For the minimization of (r, r), a// seis o/n abscissae in (—1, 1) are

equally good insofar as the highest order term in (p — l/p)_1 is concerned. Any such

set increases (r, r) asymptotically by (2/ri)(p —  1/p)-1.

We summarize the results of this section in Table 1.

6. Tables. In Table 2, asymptotic GCIR's as p —> °= are given for n = 8, 10, 11,

12, 13. The weight w is 2/n. Since the rules are symmetric, only nonnegative ab-

scissae are given. Double nodes are indicated by underlining, k is the degree of the

first power xk not integrated exactly by the rule.

In Tables 3-6, we give minimal CIR's with 3 and 6 points for various values

of a = KV'p + l/\/p)- These rules show the asymptotic behavior both for p —► oo

and for p —> 1. In Tables 3 and 4 are given minimal CIR's in L2(&p) and H2(&p) re-

spectively, while in Tables 5 and 6 are given corresponding minimal CIR's subject

to the constraint w = 2/n. Since all rules computed are symmetric, only positive

abscissae are tabulated, so that the 3-point rule consists of the tabulated abscissa

x, 0, and — x. All rules were computed by minimizing the norm of the error func-

tional as a function of the abscissae and weight, where pertinent, using the method

of Fletcher and Powell [4].

Remark. In Tables 3 and 6, we observe convergence of the abscissae to zero as

p —>• 1. We conjecture that this is true for all n; however, our theory is unable to

prove such behavior since it takes into account only first-order terms.
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