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A New Method of Evaluation of Howland Integrals

By Chih-Bing Ling and Jung Lin

Abstract. In this paper, two Howland integrals are evaluated to 25D when the index is

an odd integer. Those Howland integrals when the index is an even integer have been

evaluated to 18D by Nelson. A new method of evaluation is used.

The four Howland integrals were first evaluated to 5D by Howland himself,

partly with Stevenson, in the papers dealing with a perforated strip [1], [2]. Ling and

Nelson in an earlier paper [3] evaluated these integrals to 6D by using a different

method through some intermediate integrals. Later, Ling [4] reproduced the 6D

values and also added values of a group of related integrals. Recently, Nelson [5],

by using the same method, evaluated the integrals to 9D. In the process of computing

some related integrals arising from axisymmetrical problems, Nelson, in the same

paper, further evaluated the following two Howland integrals to 18D, when k is an

even integer:

Ik  _     1     f"       wkdw ik^l),

UJ It      2ik\) Jo   sinh w ± w '        ik ^ 3).

The aim of the present paper is to evaluate these two integrals to 25D, when k is

an odd integer, by using a direct method without recourse to the intermediate

integrals. We begin by expanding the integrands into series as follows:

k «     k  —v
w 2w e

sinh w ± w       i ± 2we"° - e~2"

we      2-, (Tl)/z„(H>)e     ,
n-0

where pn(w) is the Gegenbauer polynomial of degree n and order unity [6]. The

expressions are found to be different depending on zz being an even or an odd integer.

They are, for zz S: 0,

P2

(3)

ov)= £i-irn(nt W)(2w)2™,
m-o \   2m   I

,    -. \->   ,       .vi+m/ZZ   ~T   ZZZ  +   1 \..     ,2m+l

With the aid of the integral

(4) 1     wme "" dw = -sil ,        (a > 0)
Jo a
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the following series are obtained for any integral value of k under the restrictions

as indicated,

A _ « -r- OßLk)  , g¿k) _ qJm)  ,  qsik) _ ik £ 1)

where

\p) r*    —    IT    -fc + 2      T   ,4 + 3 *       ik + i     T    -i + 6        ' (V   >■    X\   '

q2ik) = 2ik + 1),

,,, QÁk) = 4k¿ + 12k- 1,
(o)

q.ik) = 8(/c + Dik2 + 5k - 2),

q,ik) = 16Ä:4 + 160Â:3 + 260A:2 - lOOzc + 409.

In general, qn(k) is a polynomial of k of degree zz — 1 with integral coefficients. The

general expressions are

q2

(7)

(1\ V   (       1Y»+"Y2W1   +   ̂    ("   +    W)!   -2»n ,      1s2n-2m>+i(k) =  2^ (— !)      I       ,        J7-T72   (2zz + 1)
^frí \      k      / in — m)\

f,\            V1   I       lV+m/2zZZ   +  ZC   +   l\  (ZI-J-WZ+I)!   -2M+1,. .     „.2:
+ 2^)   =    2^   (— i) I , j -',-^- 2 (2ZZ   +   2)

¿To \ k I      in — m)\

A*.-a„
</2»+

The preceding series for the integrals are rapidly convergent when A: is a large

integer but slowly convergent when k is a small integer. In particular, the series for

Ix and I2 are believed to be only conditionally convergent. For instance, an accuracy

of 25D can be attained with only the first five terms for k ^ 44, ten terms for k Ï; 33

and as many as fifty terms for k ^ 20. Hence, it is necessary to use some other method

to evaluate the early integrals. By a combined use of Cauchy's integral theorem and

Cauchy's theorem of residues, the integrals I2k-X and I2*k_x are developed into series

as follows: For k S: 1,

j_I )<x .        ,        x^        jna)

/"-1 ~ 2(2zc - 1)! \4 5kA + a h sinh na + na

y^     ttz""1 exp jirizja)

.gs n^i cosh2 (zm/2) sin (vzja).

hk-" - 2i2k
1_ 1     v^ _jna -\- |a)2*   _

- 1)! \a h sinh in + è)a + (zz + h)a

,    R    y>     xzz2^ ' exp jvizja)

6 ¿TÍ cosh2 (z„/2) cos (irr„/a),

and for k ^ 2,

)! I ¡frí sir
J_J ,    .       ,       v^_(zza)

(9)

2(2fc - 1)!  I       •'"   '       ¡fr, sinh zia - «a

,   R    y^  x(z*)2t-1 exp (irfe*/a)

+     6 m4í sinh2 (z*/2) sin («*/«)

z*
J2t-I    — ïïïrS

(zza + |a)
1    \2*-l

2(2* - 1)!  I    ¿=i sinh (zz + §)a - (zz + ¿)a

,   R    y. 7rz(z*)2t 1 exp (7riz*/a) \

"*" Ke „tri sinh2 (z*/2) cos (m*/«)/ '
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where a is a positive constant, 54,„ is the Kronecker delta, and zm and z* are the zzzth

complex zeros of sinh z ± z, respectively, in the first quadrant of the z-plane. The

results give two different expressions for each integral. The derivation will be

described later. Each integral can then be computed from one expression and checked

by the other.
It is seen that each expression consists of two series. The first one is a real series

and the second the real part of a complex series. It is also seen that the constant a

occurs only on the right-hand side of each expression. This constant can be fixed to

suit our convenience. The first series converges rapidly when a is large and the second

when a is small. In fact, the first series of the first expression of each integral represents

the value given by the trapezoidal rule, and the first series of the second expression

represents the value given by the rectangular rule. In both cases, a is the width of the

strip. Therefore, the second series of each expression may be regarded merely as a

correction, analogous to the second series in Gregory's formula [7]. By a proper

choice of a, the value of the second series can generally be made small in comparison

with that of the first series.

In the computation, the value of a is taken as unity. Unlike the series in (5), the

convergence of the first series becomes slower as k increases. To attain an accuracy

of 25D with this value of a, 65 terms of the first series are needed for k = 1, 130

terms for k = 15 and 200 terms for k = 35. The corresponding numbers of terms

needed to attain an accuracy of 18D are 47, 110 and 175, respectively. The number

of terms needed in each instance decreases to one half if the value of a is doubled.

In computing the second series, the 11D values of zm and z* computed before by

Ling [8] are available. Their accuracy can be improved readily, whenever needed,

by using the Newton-Raphson method. The convergence of the second series is so

rapid that when a = 1, at most two terms are needed for the present computation.

An alternative method for computing these values is to attempt to evaluate the

remainder term in (5). This remainder term has an integral representation of a similar

nature as Ik or 1% itself, but the integrand is more complicated. On the other hand,

when the Gauss-Laguerre quadrature rule was used in the evaluation, it was found

that, for small values of k, adequate precision could not be obtained without an

effort far exceeding that required when using (8) and (9).

The computation was carried out on an IBM 1620 computer. The following

relations were used as a further check:

¿ (1 - I2k.x) = Ix-\,
(10) t_1

¿ (/2V1 - 1) = 1.
i-2

Some typical values of Ik and 1% rounded to 25D are shown in the accompanying

table. The complete results for odd integral values of A: up to 91 appear in the

tables on pp. 334 and 335 of this paper.
Derivation of Expressions (8) and (9).   Consider the contour integral

(H) ~2t7í J (z - r)(sinh z + z) cos (zrz/a) '        (* ~ 1}'
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Table- Howland integrals  I,   and I* when k is   an odd  integer

^

i

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

0.76857

0.82771

0.92547

0.97269

0.99094

0.99718

0.99916

0.99975

0.99993

0.99998

0.99999

0.99999

0.99999

0.99999

0.99999

0.99999

0.99999

0.99999

0.99999

0.99999

0.99999

0.99999

0.99999

0.99999

0.99999

45381 11553

02958 85164

59977 84897

89930 38011

91791 22157

85753 87716

38232 58856

85587 66695

17185 56121

09793 21140

47619 05105

85704 29417

96126 92405

98957 07648

99720 62331

99925 49672

99980 20971

99994 76135

99998 61757

99999 63620

99999 90450

99999 97498

99999 99346

99999 99829

99999 99955

68096 76880

81343 56543

73778 40994

36576 56831

96577 36401

81086 85869

72120 94672

28941 74027

05194 10886

41769 14442

76299 10821

28762 07253

13473 89937

54992 23669

92616 96717

97929 12797

28404 08009

00127 56009

29356 59978

27195 72193

31297 57245

89046 47118

30079 16274

46975 65349

59108 05951

2.03871 06665

1.15686 43660

1.03925 13121

1.01087 01465

1.00308 47737

1.00087 61801

1.00024 71389

1.00006 90733

1.00001 91284

1.00000 52524

1.00000 14314

1.00000 03875

1.00000 01043

1.00000 00279

1.00000 00074

1.00000 00019

1.00000 00005

1.00000 00001

1.00000 ooooo

1.00000 ooooo

1.00000 ooooo

1.00000 ooooo

1.00000 ooooo

1.00000 ooooo

65932 70071 50016

75341 56854 09629

81494 86407 63193

33325 36251 87849

70445 49356 36804

93056 13024 90264

53388 81695 24967

57675 51266 51905

43795 33176 43980

98197 16132 17372

66414 40027 00505

53890 75565 46225

23990 59043 58713

41692 90959 92369

50834 66324 65526

79092 26267 56463

23872 90041 29141

38243 68310 21172

36379 84811 33639

09549 70171 39873

02501 11132 45368

00653 69942 54313

00170 53026 97001

00044 40892 25651
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Table. Howland integrals I and

(cont'd)

I, when k is an odd integer

xë

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

99999 99999

99999 99999

99999 99999

99999 99999

99999 99999

99999 99999

99999 99999

99999 99999

,99999 99999

99999 99999

.99999 99999

99999 99999

.99999 99999

,99999 99999

,99999 99999

,99999 99999

,99999 99999

.99999 99999

.99999 99999

.99999 99999

.00000 00000

99988 45368 07336

99997 00239 78562

99999 22284 38855

99999 79877 20771

99999 94795 82958

99999 98655 58931

99999 99653 05530

99999 99910 55332

99999 99976 96070

99999 99994 07077

99999 99998 47534

99999 99999 60825

99999 99999 89941

99999 99999 97419

99999 99999 99338

99999 99999 99830

99999 99999 99957

99999 99999 99989

99999 99999 99997

99999 99999 99999

00000 00000 00000

1.00000 00000 00011 54631 96458

1.00000 00000 00002 99760 21892

1.00000 00000 00000 77715 61199

1.00000 00000 00000 20122 79235

1.00000 00000 00000 05204 17043

1.00000 00000 00000 01344 41069

1.00000 00000 00000 00346 94470

1.00000 00000 00000 00089 44668

1.00000 00000 00000 00023 03930

1.00000 00000 00000 00005 92923

1.00000 00000 00000 00001 52466

1.00000 00000 00000 00000 39175

1.00000 00000 00000 00000 10059

1.00000 00000 00000 00000 02581

1.00000 00000 00000 00000 00662

1.00000 00000 00000 00000 00170

1.00000 00000 00000 00000 00043

1.00000 ooooo ooooo ooooo 00011

1.00000 OOOOO OOOOO OOOOO 00003

1.00000 ooooo ooooo ooooo 00001

1.00000 ooooo ooooo ooooo ooooo
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Table

1
3
5

15
25
35
55
85

0.76857
0.82771
0.92547
0.99975
0.99999
0.99999
0.99999
0.99999

45381
02958
59977
85587
96126
99994
99999
99999

h

11553
85164
84897
66695
92405
76135
99999
99999

68096
81343
73778
28941
13473
00127
22284
99999

76880
56543
40994
74027
89937
56009
38855
99989

2.03871
1.15686
1.00024
1.00000
1.00000
1.00000
1.00000

06665
43660
71389
03875
00005
00000
00000

It

65932
75341
53388
53890
23872
ooooo
ooooo

70071
56854
81695
75565
90041
77715
00000

50016
09629
24967
46225
29141
61199
00011

where the contour is taken round the circle \z\ = R through a sequence of values

such that the circle never passes through any pole of the integrand, t being any point

on the x axis inside the circle and a a positive constant. The integral tends to zero as R

tends to infinity. The poles of the integrand are

z = t, ±z„, z = ±zm z = ±(n + h)o

where m = 1, 2, 3, • • • , zz = 0, 1, 2, • • • , and a bar denotes the complex conjugate,

zm being defined before. Note that the complex zeros of sinh z + z in the entire

z-plane are symmetrically located in each quadrant with respect to both the x and y

axes. Furthermore, the origin z = 0 is also a zero. Both poles are of order unity.

It follows from Cauchy's theorems that the sum of residues at all the poles is

zero. Consequently, we find

2i-lTina + ig)2k
-zz2-:

1

(12)
(sinh t + t) cos (xf/a)     x tri sinh (zz + §)« + (« + i)a ina + Ja)2 — t2

- Re£
2z„,

Ti cosh2 (zm/2) cos iirzm/a) z„ — z2

Multiplying by cos (xi/a), integrating with respect to t from zero to infinity, and

making use of the following integrals

(13)

¡"°     cos jirt/a) dt

J0   ina + \af — t2

cos jirt/a) dtI — t
(2zz + l)a '

=  — — exp iirizja),
2zm

we find the second expression in (8).

Again, consider the contour integral

(14)
-U_
liti J   (z —

2k-\   j
z       dz

2x¡ J iz — i)(sinh z -f z) sin (xz/a)

The poles of the integrand are

(* à 1).

z = t,    z =  ±zm,    z =  ±zm,    z =  ±z7o:,
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where zzz = 1, 2, 3, • • ■ and zz = 1, 2, 3, • ■ • . In particular, when k = 1, an additional

pole is at the origin z = 0. By making use of the following integrals

i" t sin (xf/a) dt =  _(-l)"x

. Jo       ina)2 — t2 2      '

("° t sin iwt/a) dt x . ,    , ,
/    -2-"2- =  — -z exp iirtzja),

Jo zm — t I

we find similarly the first expression in (8).

By replacing sinh z + z with sinh z — z in the foregoing two contour integrals,

we likewise find the two expressions in (9) for k ^ 2.

It should be mentioned that two expressions for each I2k and I$k can be derived

in a similar manner. However, the resulting expressions appear to be less simple

since they also involve sine and cosine integrals. It should also be mentioned that

the foregoing method of evaluation can be generalized.
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