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A Fourth-Order Finite-Difference Approximation

for the Fixed Membrane Eigenproblem*

By J. R. Kuttler

Abstract. The fixed membrane problem Au + X« = 0 in St, u = 0 on an, for a bounded

region Í2 of the plane, is approximated by a finite-difference scheme whose matrix is

monotone. By an extension of previous methods for schemes with matrices of positive

type, 0(A4) convergence is shown for the approximating eigenvalues and eigenfunctions,

where h is the mesh width. An application to an approximation of the forced vibration

problem Au + qu = / in SI, u = 0 in dfi, is also given.

1. Introduction.   Let Í2 be a bounded region of the plane with smooth boundary

dQ. We consider the fixed membrane problem

(1.1) Ak(x) + Xh(x) =0,    x G £2.        u{x) = 0,    x G dÜ,

where A is the Laplacian. In [6], this problem was approximated by difference schemes

which were of positive type in the interior of the region. Here, we consider a difference

scheme for (1.1) which is only monotone. However, by appropriate modifications of

the techniques of [6], we can prove that this scheme yields 0{h*) approximations to

the eigenvalues and eigenvectors of (1.1). The principal result is Theorem 8.1. An ap-

plication to a forced vibration problem is also given in Section 9.

2. The Difference Scheme.   Let h > 0 be given and define the mesh Sk by

{{ih, jh) : i, j are integers}.

Points x, v G Sk will be called nearest neighbors if |x — y\ = h, where we write

|x - v| = ((x, - yZ? + {x2 - y2)2Yn.

Let Qka) be the set of points in Sh C\ Í2 having at least one nearest neighbor not in Í2.

One such point might be x = (x,, x2) with (x! — ah, x2), (xu x2 — ßh) G dí2 for

0 < a, ß g 2. If (x, + h, x2), (x, + 2h, x2), (x,, x2 + h), (x,, x2 + 2h) G Q, we define
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(2.1)

t»í t       \       3 — g   ,    3 — ßh lk{x, y) = —— + —p-

2(2 - g)

1 + a    '

2(2 - ß)

l+ß   '

1 - g

2 + a '

" 2 + /3'

= 0,

y = x,

y = {xi + h, x2),

y = {xi, x2 + h),

y = (xi + 2h, x2),

y = (*i> x2 + 2h),

otherwise.

Similar formulas apply at other points of Of. One special case may arise, as shown

in Fig. 1, where (x1( x2 + h), (xu x2 + 2h) do not lie in Q.

Figure 1

In such a case x would be excluded from the difference scheme altogether and the

point (xi + h, x2) would be added to Qk3\ For the new point, formula (2.1) would be

used with 1 < a g 2. If oß has bounded curvature and h is sufficiently small, there

will be no difficulty with the new point.

Next, let Qk2) be those points of Sh C\ Q, not in Qj-3) or excluded, which have a

nearest neighbor in Qk3). For x G 0^2) define

h2lk{x, y) =      4,        y = x,

(2.2) =  -1, |x - y\ = A,    yE Sk,

=     0,       otherwise.

Finally, let Q'k be those points of S„ f~\ ü not in £2j[2) U Qk3) or excluded. For x G Q'h

define

h2lh{x,y) =      5,

(2.3)
_     i—     Tí,

=    o,

y = x,

\x — y\ = h, y G S,,,

|x - y| = 2Ä, v G Sk,

otherwise.
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Let Qk = Sl'k U Qk2) U Qh3). We approximate the Laplacian of a function u vanishing

on du by

(2.4) -A„M(x) =   ¿2 lk{x, y)u{y),        x G ß».
»en»

Let us agree to use C as a generic constant, whose value may change at each usage,

but which is always independent of h. Then, if also u G Cf{Ü) {u has continuous sixth

derivatives on the closure of ti), it can be seen from Taylor series expansions that

(2 5) |A«(x) - A„k(x)| g Ch\        x G Oí,

úch2,     x g of un'3'.

Bramble and Hubbard used Ah in [2] in approximating the Dirichlet problem for

Poisson's equation.

Our difference scheme approximating (1.1) is

(2.6) AkUk{x) + \kUk{x) =0,       x G 0».

Problem (2.6) is equivalent to finding the eigenvalues and eigenvectors of the matrix

[lh(x, y)]x,veoh. In the next section, we develop some tools to use in studying this

matrix which, however, have some independent interest.

3. Monotone Matrices. Let A = (a,,) be an n X n matrix. We say A ^ 0 if

each a¡¡ ^ 0 and A^BiiB — A^O. The matrix A is monotone if Ax 2: 0 implies

x = 0 for all x. Thus, A is monotone if and only if A'1 exists and A'1 ^ 0. An easily

recognized type of monotone matrix is a matrix of positive type. The matrix A is of

positive type if A is indecomposable, the diagonal of A is positive, the off-diagonal

elements negative, and the row sums are nonnegative with at least one strictly posi-

tive. The following theorem is due to Price [8] :

Theorem 3.1. A is monotone if and only if there exists M monotone such that

(i)  M~\M - A) ^ 0,
(ii) piM'XM - A))< 1.
Here p denotes spectral radius, the maximum of the moduli of the eigenvalues. Here

and in the corollaries, the "only if part is trivial: take M = A. This theorem general-

izes Theorem 2.7 of Bramble and Hubbard [2]. There are a number of important corol-

laries:
Corollary 3.2. A is monotone if and only if there exists M monotone such that

if)  M^ A,
(ii) p{M-\M - A))<1.
Corollary 3.3. ^4 is monotone if and only if there exists M monotone and x > 0

such that

(i)  M ^ A,
(ii) Ax > 0.
Proof. By the Gerschgorin circle theorem (see [7, p. 152]),

p{M-\M - A)) ^ max [M~\M - A)x]i/xi < 1,
»

since

0 Ú [M~\M - A)x]¡ = x, - [AF'Axh < xiy

because Ax > 0, M'x ^ 0 and no row of M'x can be all zero.
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Corollary 3.4. A is monotone if and only if there exists M monotone and x ^ 0

such that

(i)  MU,
(ii) Ax > 0.
Proof. Let 8 = min, [Ax]¡ > 0 and let e = 8/(2 max^ ]£,• k/l). Then x + e > 0

and A(x + e) > 0, so the hypotheses of Corollary 3.4 are satisfied.

Corollary 3.5. A is monotone if and only if there exist Ml3 M2 monotone such that

M, g A á M2.

Proof. Let x be such that Mxx is the vector with all components 1. Since Mx is

monotone, x exists and x = 0. Also, Ax 2: Mxx > 0, so the hypotheses of Corollary

3.4 are satisfied.
Corollary 3.6. A is monotone if there is a > 0 such that A + al is monotone and

every eigenvalue X of A has positive real part.

Proof. Apply Corollary 3.2. We need only show p((A + al)'1) < of1. But

p{(A + cd)'1) = l/minx |a + X|, where X runs over the eigenvalues of A.

At this time, we also note the following:

Lemma 3.7. If the partitioned matrix

with A invertible has inverse

A

C

W

Y

B

D_

X

z\

then W - A'1 = -XCA'1. In particular, if X ^ 0, A'1 è 0, C g 0, then A'1 t% W.

Proof. Since

W    X

Y    Z.

A

C

B

D

I   0

0    /.

we have WA + XC = /. Multiply on the right by A

4. Discrete Green's Functions. The main tools in our investigations will be

discrete analogues of Green's function. These are inverses of matrices related to

[h2lk(x, y)]x,„e¡¡» and their nonnegativity is crucial to the investigation. This will be

established, using results of the previous section.

We define then

(4.1)   -Ak,xgk(x, y) = h~2 8(x, y), x G QÍ U Q"\    gk(x, y) = S(x, y), x G fi*8',

for all v G fi»- This is the discrete Green's function considered by Bramble and

Hubbard in [2, Eq. (4.5)]. From (4.1), we see that the matrix [gk(x, jOknen» is the in-

verse of the partitioned matrix

W =
A

0

B

I
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where A = [h2lkix, ^.„ev^i.i, B = [h2lk(x, yXUo»'un»c.>,„enAu>, and l is the

identity on Q(k3) X ®k3). It also follows from Lemma 3.7 that the matrix

[gh(x, y)]x.v<Eak'vakc> is the inverse of A. In [2], it was shown that

(4.2) gkix, y) ^ 0,        x, y G 0*.

i.e., 2JÎ is monotone. Since gk is the inverse, it follows that, for any function ff defined

on Oj, all x G fi*,

(4.3) Wix)=h2       £       g>.(x,y)l-AkWiy)}+    £    gk(x, y)W(y).

This is analogous to Poisson's formula. In [2], the following properties were proved

ofg*:

(4.4) £   gKÍx,y)ú 1,
»ea»i">

(4.5) £    gA(x, ̂ ) = C,
»eai<»>

(4.6) A2 £ gk(x, y) g C,

for all x G fi*. Using these in (4.3), we have the inequality

g C  max \AkW\ + h2 max \AkW\
L QV Ba<"> J

(4.7) max | W| g C  max |AÄ H^| + h' max \AkW\    + max |ÍF|.
a* L a*' o»<"> J        n»<>>

Now, on Qk3), we have

Wix) =     -A2A4W(x) - A2     Z     Wx, y)Wiy)   /A2«*, x),

and from this and (2.1), we see that

(4.8) max | W\ = Ch2 max \AkW\ + 0 max | W\,
Q*'1' n»<>) n»

where

6 =   max      2     |/A(x, v)|//A(x, x) < 1.

Putting (4.8) into (4.7) and rearranging, we have

(4.9) max \W\ g C  max \AkW\ + h2     max      \AkW\   •
a» L a*' a»<»>ua»<'> J

Let us now use (4.7) to estimate W = <£„ — p where p is the torsion function

defined by A<p = — 1 on 0, ^ = 0 on dQ and $A(x) = h2 23„eaA gi(x, v), which satisfies

A*$a = — 1 on Q'k yj Qk2). lîdti is sufficiently smooth, <p satisfies (2.5) and we see from

(4.7) that

max |$* — <p\ Û Ch* + max \$k — <p\ g CA4 + max |$h| + max |p|.
a* o»<«) a»<»> o»(«>

Now, p = 0 on an, so |^(x)| g Ch for |x — 3fi| = min^a \x — y\ ^ Ch. Also,

$* = A2 on Í2J¡3) by definition. Hence,

l*»(*)l =  |*>(*)| + max |$„ - ?| = CA
a»
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for |x - dû I = Ch, i.e.,

(4.10) A2  23ft(x, v) g Ch.
yea*

Next, we consider the function

Uix, y) = C, - C2 log (|x - v|2 + A2).

It is easily verified that

-AkJkix, y)^0, x G Oí U QJi2',    v =¿ x,

-A*.,M*, v) ^ A"2,       x G Oí W 0<2>,    v = x,

provided C2 ^ | log 2. If we choose

d = C2 max log (|x - v|2 4- A2),
«.»€0*

then fh(x, y) = 0 for x, v G fi- Thus, we see that

VMU - a) ^ 0,

and, since 5DZ is monotone,

(4.11) 0 g g„(x, >>) = C, - C2 log (|* - jf + A2)-

Analogous inequalities to (4.11) are proved by Bramble and Thomée in [3] for discrete

Green's functions of positive-type operators. Here, we see monotonicity was sufficient.

An easy consequence of (4.11) is

(4.12) A2  23 [g„(x, y)]2 g C.

5. More Inequalities for Green's Functions.   This section will be devoted to

derivations of some inequalities of more difficulty than those of the previous section.

Recall that © = [g„(x, v)]x.„ea» is the inverse of [A2/A(x, y)]m,„eak.

The inequality which we next wish to derive is

(5.1) 23   gk(x,y)£ C
»SB»"

for all x G fi», where Q'k' = {x G «Í: hix, v) ^ 0 for some y G fi*2> ̂J fi*3)}. The

method of proof is the matrix splitting technique employed by Bramble and Hubbard

in [2]. The analysis which follows is regrettably detailed.

Let us write

(5.2) ® - [/ - Ht - H%Tltirl.

where D is the diagonal matrix with

XI =1, xG fii3>,

= ï> x G fi* >

= h      xE Oí,
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and

[HXv = A, x G fií, |x - v| = A,

= h x G fiA2\ \x- y\ = h,

= 0, otherwise,

[H2]xv = Ts, xE fií,       \x - y\ = A,

=  -TfV, x G fií,       |x - v| = 2A,

= 1, x G fií2),   I* — y\ — h,

= 0, otherwise.

Let us define the diagonal matrix D by

W»)~' -  £ (I - #i)x. = A,       x G fií,
»eo»

=   2, x G  fi*    ,

= 1,        xG fif,

so that D(l — i^) has row sums one, i.e.,

(5.3) 23 [DU - HOU =   E iu - HXlD-'U = 1.
»ea» uea»

We write [I- Ht- H2] = [ZT'í/ - #)][#(/ - #0], where i/ = DH2(I - H.y'D'1.

Thus, by (5.3),

23 [ö_1(7 - £01« =   E   [ö"1^ - ff)l«[ß(/ - #i)]„
»ea» ï,«eoi

(5.4) =   23 [/ - Bi - BX. = 0,        x G fií U fi'2',
zea»

= 1,      *G fií3>.

Now, we consider the characteristic function of Q'k :

x(x) =1,       xE ßi,

= 0,     x e fi¿2) vj nl3)'»

Then

1 è x(x) = {[(/ - ff)-1/>][/)-'(/ - H)X]\X

= E [(/ - tfr'aufl"^/ - Ä)x]r
»ea»'

+     E    tu - ^r^uo-^/ - ä)X]„

= E [(/ - hy'du E tß_1(/ - #)],.
»ea»' :esj

-   E   K/ - HT"D]ZV[D-\I - H)il - x)]„

+ E [(/ - H)-1DU[D-\I - H)xl.
uGaki")ußi<»)
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By (5.4), the first term vanishes. Using the definitions of H and x, this can be written as

E  [(/ - HT1 D]„       E       [H2U - HX1 D~\,
(5 51        "eß*' »esji'iua»'"

E        [(/ - H)'lD\xv  E   IH2U - HtT'D-'U á 1.
ï6a»(">ua»(»> »sa»'

Now, we estimate the factors in each term. First, note that (7 — H)'1 ^ 0. This is

not obvious, but follows from H ^ 0 and p(H) < 1. That H ^ 0, is due to 0 ^

H2(I — HX1 = H* + 77277, +- • • • , since the negative terms in H2 are cancelled by

positive terms in 77277, as in [2]. That p(77) < 1 is due to p(77) = p((7 - TT/,)"^) < 1,

since the row sums of

(/-(/- HZT'H,) = (7 - HtT\l -Ht- H2)

- (7 - Ht - H2) + 77,(7 - Ht - HJ + • • •

are positive. Again negative row sums of (7 — 77, — H2) are cancelled by correspond-

ing positive row sums of 77,(7 — 77, — 772).

Next, for v G fií2'WO'3',

E   [772(7- T/,)-1/)"1],,,
f€a»'

á   E IH2ÍI - 77,r1JD-1Le =   E [7T1 - 7)-\7 - H)]„

=  1 -   E ID'\I - #)]„ =  1 -   E t* - Bt - 772L, Ú 1 •
«ea* 268»

Now, we consider, for y E fií', the term

(5.6) E        [772(7- 77,)-1/)-1]».
i6fli<»'UB»<»>

Expanding the summand in a Neumann series, it becomes

[(772 + 77277, + 772772 + • •  )D-\,.

If v G fií', z G fií2' W fií3) is such that \y - z\ = 2h, then [772]„, = -1/60. However,
let x be the point such that |v — x| = \x — z\ = h. Then [77277i]„, contains the term

[H2]VX[HX. = 4/225. Similarly, each negative term in 77277f is compensated for by a

positive term in 77277*+1. Thus, for y E fií',

E        [772(7 - 77,r1D-1]„, = |-¿ + r^r 1 -\ = ~
»6a»(->ua4<») L    60       225J  2       1800

It follows from (5.5) and the above that

(5.7) E   K7 - HY'DU = I8O0I1 + E        [(/ - 77)-1D]J-
»ea»" k »sBifxija»'*' )

By similar reasoning, using the function

x(x)=i,     xGfiiunr,

= 0,       x G fií3',

it can be shown that E«-en»<" [(7 — H)~xD\xa g C. The argument is carried out in

[2, Lemma 3.3]. Finally, we note from (5.4) that
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(5.8) 1 - E [U - 77)"1Z)L„ E [7>_1(7 - H)]„ =    E    [(/ - H)~lD]xu.
»ea» «ea* »ea*<">

Combining the above with (5.7), we see that

(5.9) E   [(7 - 77)-1/JL„ Ú C.
»68»"

From (5.2) and (5.3), we finally have

E sax, y) =  E  [(' - t/, - BMyxBrlu = i E  t(7 - Bt - H2y\v
»ea*" i/ea*" »ea»"

= sE E      {[ö(7- Ä,)r1}„[(7- HT1 Dl.,
»6ß»"   íG8»'Ua»<»)

á I     max       E   [(/ - 77)-1£>L„,
«ea»'ua»<»> »ea»"

or, from (5.9),

(5.10) E   8n(x,y) = C,
»sa»"

the desired estimate.

We next define another Green's function Gh by

(5.11) -A*G»(x, y) = A"2 5(x, y),       x, y E Q».

Although Gk may not be nonnegative, it is a perturbation of gk. We have

Theorem 5.1.   For any mesh function S,

max E I [<?*(*, .y) - gk(x. y)]S(y)\
i6a» »ea»

(5.12) r "j

^ C  max | S| + max E #*(*> JO 1^0)1   '
La»<"> xea»"ua*<»>ua»<»> »sa» J

/"roo/. Let x0 G fi be the point where E»6a» \[Gk(x, y) — gk(x, y)]S(y)\ attains its

maximum and let

Wix) = E [G»(*. j') - &(*, y)]S*iy),
»ea*

where S*(y) = \Siy)\ sgn [G»(x0, v) - gk(x0, y)]. Employing (4.9), we have

max | W\ = C max |A2AA W\
a» a»'*>

è C\ max |5| + max | E i»(*. v)5*(v)|    ,
La*<"> i6a»"ua»<»>ua»<"> J

and (5.12) follows.
Corollary 5.2. For all x, z E fi»,

(5.13) E |G»(x,v)| = C,
»6B»"ua»(»>U8»(">

(5.14) A2 E  |G»(x, v)| = C,
»68*

(5.15) |G»(x,z)| = C|logA|,

(5.16) A2 E |G*(x, v)|2 ^ C,
»ea»
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and for \x — dü\ ^ Ch,

(5.17) A2 E |G»(x, y)| è Ch.
»ea»

TVoo/ For (5.13), employ the characteristic function of Qk' U S2¿2> W Of as 5 in

(5.13). Then apply the triangle inequality and (4.4), (4.5), and (5.10). For (5.14),

let S= h2 and use (4.6) and (4.10), respectively. For (5.15), let S(v) = 8{y, z) in (5.12),

apply the triangle inequality and (4.11). For (5.16), let x0 be the point where

maxl60» h2 E»ea* |G,,(x, v)|2 is attained, and let S(y) = h2Gh(xa, y) in (5.12), from

which it follows that

h2 E |G»(x, y)\2 Ú Ch2  max   |GA(x0, v)| + max A2 E 8h(x, y)Gk(x0, y).
»68» »6fl»<"> »68» »68»

Again, using (5.12) with S(y) = h2gh(x, y) for x fixed,

h2 E G„(x0, y)g»(x, y) =■ CA2  max   |g»(x, y)\ + max A2 E Shix0, y)£»(x, y).
»ea» »ea»<»> x.sa»       »ea»

By (4.11), this term can be seen to be bounded. Finally, letting S(y) = h2 8(y0, y) in

(5.12), we have, for any y0 E fi»,

|A2G»(x0, y0)| á C A2 + max A2gA(x, y0)    ,
L »sa» J

which indeed tends to zero as h does, by (4.11), and (5.16) follows. For (5.17) use

S = h2 and (4.10).

We require yet one more Green's function G'k defined by

(5.18)    -AkG'kix, y) = A"3 Six, y),    x E fií,        Gí(x, y) = 0,    x G OÍ" W Qks),

for ail y G fi». Thus, the matrix [G'k(x, y)]x. „e04- is the inverse of the symmetric matrix

S = [A2/»(x, y)]..»6B»'. We show 8 is monotone by applying Corollary 3.6. First, we

show 2 + \I monotone from Corollary 3.5: we define M, by

r*,ï 16[A7,J„ = — , x = y,

= —j .        I* - y| = A,

= 0, otherwise,

for x, y G fií, and we define

[MîU = V^2 '       X=L y'

_z
V'12

y| = h,

= 0¡ otherwise:

Since Af: and Afj are of positive type, they are monotone, hence, so is M\¡ and it is

easy to see that
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Thus, 8 is monotone if its eigenvalues, necessarily real by symmetry, are positive. But

these are h2pk\ where pki} is the z'th eigenvalue satisfying

(5.19) AkVÍ°(x) + lik0Vk<)(x) = 0,   xE fií,        KÍ*'(x)= 0,   xG fií2'W Of.

In the next section, we shall show that indeed \pk° — X(,) | —> 0 as h —» 0, for Xa' the

z'th eigenvalue of (1.1), which is strictly positive. Thus, for h sufficiently small, 8 is

monotone and G'k nonnegative. Thus, as a consequence of Lemma 3.7,

(5.20) 0 á Gí(x, y) ^ g*(x, y),        x, y G fi».

From (5.20), we see that all of the inequalities proved for gh hold for G'k. In particu-

lar, the difficult inequality (5.10) does, from which we prove the key inequality

(5.21) max | W\ = C  max \AkW\ +     max     \W\\ ,
8* L   8»' 8»<">vja»<"> J

for all W defined on Qk. To prove this, let

W*ix) =  Wix),       x G fií,

= 0, xG fií2'Wí2Í3'.

Then, by (5.18),

W*ix) = A2  E   Gi(x,y)[-A^*(y)]
»68»'

= h2  E   Gi(x, y)[-AhWiy)] + A2   E   Glix, y)[AkWiy) - A,fF*(y)],
»ea»' »ea*"

and (5.21) follows from (4.6), (5.10), and (5.20).

6. Convergence of /u»n) to X("'.   In this section, we show that the eigenvalue

MÍ"' of

(6.1)    A»F»n)(x) + pkn)Vkn)ix) = 0,   x G fií,        VÏ\x) = 0,   x G fi»2> W 0<3\

converges to X(n' of (1.1) for each n. We will use the variational principles associated

with (1.1) and (6.1), and a technique of Weinberger [9].

The nth eigenvalue of (1.1) can be characterized by

'/¿",fe(6.2) Xtn) = min max 7>(«)

where u = a,«, -)■••• -|  anu„, the max is with respect to the scalars au • • • , a», the

min is with respect to choices of linearly independent u», • • • , un, continuous, piece-

wise differentiable functions vanishing on di2, and D(u) is the Dirichlet integral.

Similarly, the nth. eigenvalue of (6.1) can be characterized by

*£[«*
h2   „2       ,   As

a* 2- I ul, + m. + - vu ^ Yi **•'
(6.3) pZ' = min max-s -=—2-

A E f

where f = a.T : J, ■ • • H a„i7„ the max is with respect to the scalars au • • • sa„ the

min is with respect to choices of lineaily independent mesh functions Ult ••• , Ua

vanishing on Q™ U UkS}, the sum is over the mesh points of 0^ and subscript x¡ (*,-)
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denotes forward (backward) difference quotient in the x¡ direction, i =  1, 2, i.e.,

Ux,iyu y2) = [U(yt + h, y2) - U(yu y2)]/h, etc.

First, we show

(6.4) M»"' = X("' + 0(A).

Let un), • • •,«'*' be eigenfunctions associated with X(1>, • • • , X(n) in (1.1),

u = a,«a) + • • • + a„w<n), and define

uix) = A"1 f       uiy) dy,       x E fií,
J0»U)

= 0, x G fií2' W Í2<3\

where ß»(x) = {(y„ y2): |x, — y,| = JA, |x2 — y2| ^ JA} is the square of side h

centered at x. Put this U in (6.3). Employing inequalities (2.14), (2.22) and (8.6) of

Weinberger [9], we see that

pkn> ^ max
°^um-m*

[ u  dx - ih2/x2)Diu)
•la

and Hubbard [5, pp. 568-569], has shown

HS)'+(S)V ^'-'> •
From these, (6.4) follows.

Next, we show

(6.5) X("' = pi"' + Oih).

Let Vkl\ • • ■ , Vkn) be eigenvectors associated with /*»"> ' • • » M»*' m (6-1),

U = a,^1' + • • • + anVkn), and define u to be the continuous, piecewise linear

function interpolating U (see [9, Section 6]). Then, by (6.4), (6.7) of [9] we see that

.o < h2 E(t/2, + ul)
X      ê max -j—

£= max

a2E c2-iA4E(<+ <)

h2T,[ul+ vl + £ uU + y2 it.*]

«  h* 23 u2 - \h2 E [ul + t*. + ^ c/2lfl + \-2 ul.u\

M»

1 — i" M*

and we obtain (6.5). Combining (6.4) and (6.5), we have

(6.6) |mÍb' - X""| -»0    as A-»0,

for each n = 1, 2, • • • .
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7. Convergence of Xin> to X(n) by Perturbation. Next, we will show that

the XÍ"' are a perturbation of the pkn), and that as h tends to zero, \hn) tends to juin),

hence to X(n), by Section 6. We employ the following theorem of Wielandt:

Theorem 7.1. If A, B are v X v matrices and A has an orthonormal basis of eigen-

vectors, then the eigenvalues ofB lie in the union of the v discs \pM — z\ ^ \\A — B\\2,

where the p{,) are the eigenvalues of A. If k discs are disjoint from the others, they

contain exactly k eigenvalues of B.

In the theorem, 11 • 112 is the spectral norm of a matrix, defined by

||M||2 = sup HMEMlÉlU,    where ||f||, = (¿ fovY

for a ^-vector £ = (£„ • • • , £,). For a proof of the theorem, see [6].

We apply the theorem as follows. For A, we take the matrix [h2G'kix, y)]».„eo».

Note that the minor [h2G'k(x, y)]»,„ea»' is symmetric, while A2G4(x, y) = 0 for x E

Qk2) W Of, so that A has an orthonormal basis of eigenvectors, and the eigenvalues

are simply [mÍ*']-1 plus some zeros. For B, we take the matrix [h2Gk(x, y)] whose

eigenvalues are [X¿°]~\ Thus, we must estimate ||A2(GA — GA)||2. However, for any

matrix,

||M||2 á [PÍMMT)]1/2 = \\MMT\\Y2,

where ||-1|, is the maximum of the absolute row sums of the matrix. This is a con-

sequence of the Gerschgorin circle theorem (see, e.g., [7, p. 146]). Thus, we need to

estimate

(7.1) A4 max E
»ea» »ea»

E [G»(x, z) - Gi(x, z)][G„iy, z) - G'hiy, z)]
268»

Let x0 be the point where the max is attained and put

ciy) = sgn E [G»(x0,z) - G'kix0,z)][Gkiy,z) - G'kiy,z)¡.
.68»

Then, let

Wix) = A4   E    [Gkix, z) - G'kix, z)][Gkiy, z) - G'hiy, z)]tr(y)
».268»

in (4.9). Then, (7.1) is bounded by

CA4  max   E  |G»(y, z) - Gi(y,z)|

+ CA4 max   E  Gi(x,z) E |G»(y, z) - Gi(y,z)|.

,* 2i «ea»<'> »ea»

»ea»" »ea»'

Now,

A2 E |G»(y,z) - Gi(y,z)| ^ C max [|G»(y,z)| + G'kiy,z)] ^ C|log A|,
»ea» »..ea»

by (4.11), (5.15) and (5.20). Using this in (7.2) and also (4.10) and (5.20), we have
(7.2) bounded by CA|log h\, which tends to zero as h tends to zero. Thus, the radii

of the discs in Theorem 7.1 tend to zero as h does. Since the p™ tend to the Xe"',

which have no finite accumulation point, the disc associated with fri»"']-1 for any
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fixed n eventually becomes disjoint from the remaining discs. Consequently, for any

fixed n and e > 0, there is h sufficiently small that

(7.3) |X»"' - X(n'| < 6.

8. Main Theorem.   We are now ready to state and prove our main theorem:

Theorem 8.1. Let X(n' be the nth eigenvalue o/(l.l), let \hH} be the nth eigenvalue

of (2.6) with associated eigenvector U(kn). For each n = 1,2, • • • , there are constants

Cn, h„ such that for h < hn

(8.1) |X<"> -X("'| < CnA\

and there is an eigenfunction uin) associated with X<n) such that

iS.2) max \Ukny - z/n) | < Cnh\
a»

Proof. With the machinery generated in the previous sections, our proof will have

exactly the form of the proof of the corresponding Theorem 5.1 of [6]. For this reason,

we only sketch the proof.

By (7.3)

(8.3) |Xi"'| = C.

By (5.11), (2.6) is equivalent to

(8.4) lfC\x) = Xi"'A2 E G»(x, y)Ui"\y),        x E fi».
»ea»

Let us use the notations

(u, V)k =■ A2 E  UiyjVïy),        \\U\\k s (u, u)Y2,
»ea»

(U, V)'h =- A2  E   Uiy)W),        ||£/||i s (U, U)'k1/2.
»ea»'

If [/<n) is normalized by requiring ||[/kn,||» =  1, then (8.4), (8.3), the Schwarz in-

equality, and (5.16) show

(8.5) max | £/»"' | Ú C..
a»

From (8.4), (8.5) and (5.17), we see that for |x - dQ\ g Ch

(8.6) |í/í"'(x)| = CnA.

Let us suppose that X(n' = X<n+I) = • • • = X("+m) is an eigenvalue of multiplicity

m + 1. Since Ak restricted to 0Í is symmetric, the eigenvectors Vlkmi of (6.1) are a

complete orthonormal basis on 0¡¡:

(Vï\ K")i= 8(i,J).

If we set

K" = 23 <oi°. vk°yk V{Z\      I - n, •••.«+ m,

then
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(8.7) u Uk° -   fí°||»' = CA,        i = n, ■■■ ,n+ m.

This follows from Parseval's identity:

Ul (uï\ tf°>í+    E    Kdí". ̂ ")íl
íVn, • * • ,n + m

(uii),Ktyk+    E MÍ"
MÍ"

177 <77»*\  Fí">í

where Hk° is uniquely defined by

A»Jf7Í°(x) = 0,    x G Oí,        Hï\x) =   í/í°(x),    x G Oí2' W OÍ3'.

It follows from our hard-won inequality (5.21) that

max \Hk°\ =      max      \Uk"\ = C,A,
a» a»<ä>ua»<''

by (8.6), and so

iiüí4) - nnwe - iic(,)ii»2 - <üí°. ^°>í = ça2.

In a very similar manner, we show that if

h° =   E (UU\  Vln)i VV\ i= n,--- ,n+ m,

then

(8.8) Kí0||í g CA,        i = n, n -\- m.

From (8.8), we can conclude that the (m + 1) X (m + 1) matrix [(«"', Ki0)fc],

z, y = n, • • • , n + m, is nonsingular. In particular then, there are eigenvectors

«£" = E«.¿W«(,).       í = ». •••,»+ m,

in the eigenmanifold associated with X<n) such that

(8.9) <ni",  Vkn)'k = (C°,  VÏ%        i, j =«,•••,«+ m.

Moreover, the coefficients a¡¡ih) are bounded independently of h.

Then, it follows from (8.9) and Parseval's identity that

11 DÍ" - «i° 112 = A2     E      I ÜÍ" - "»" Ia +      E       K DÍ"
a»!"U8»<'> iVn,....n+m

= a2    E    |oí°-«ÍT
8*<»>Ufl*<'>

«T,    Kí'')í|2

(Í)
M»

jVn.....n + m   \ph ^h
(O   (#»'    ,    Vk    )i

V* /«(O      „lili

M»"-X<

where 77Í'' is defined by

AA77i"(x) = 0,   x G Oí,        ¿7»"(x) = «¿"(x),   x G 0<2) W 0.

Since |uí°(x)| £ C4A for |x - dO| ^ CA, we see that

(8.10) lit/»" -«ni» = CA.
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From (8.10), we also have

(8.11) |<t£0.i¿0)»|fc 1 -c,h\

Inequality (8.11) is the key inequality needed to prove the first half of Theorem 8.1,

for now

(X»° - X(<))(C(Í', «Í") = (C(<>, A«i° - A*,«'1')»

(8.12) = (Uï\ rkuï\ - («í°, r»«í°>» + (rA«í°, «<")»

+ (Uki) - «»".A»«?' - AtHÍ°>»,

obtained by adding and subtracting terms. We have used the notations

m¿° = A«íí} - a»«í°

for the truncation error, and A*k for the adjoint of Ak defined by

A*» Vix) =   E kiy, x) Viy).
»ea»

Recall by (2.6) and our smoothness assumption on uM that

|t»hÍ"| = CA4,       onß»,

^ CA2,       on 0<2) \J 0<3'.

However, on Of W Oi3) both E/»" and «»" are bounded by CA, while the number of

points in 0i2) W 0Í3' is only proportional to A"1. From these considerations, we see

that the first three terms on the right side of (8.12) are bounded by C¿A\ As for the

remaining term,

AA«i°(x) - A*A«i"(x)

vanishes for x $ û,' U Of U Of, and is bounded by

CA"2 max |»i° | ^ CA-1
B»"U8»<»>UB»<»>

for x G fií' W Oí2' VJ OÍ3>. Again noting that the number of points in 0£' W Of \J Of
is only proportional to A-1, the last term on the right of (8.12) is bounded by

C        max |£/f -ni°|.
fl»"ua»<">ua»<»>

Thus, using (8.11) we have the inequality

(8.13) |Xf-XCi)| = c|        max |£/f _ Hf | + A*L
Le»"ua»<»>ufl»<»> J

We next employ the discrete Green's function to write

ff (x) - «f (x) = A2 E G»(x, y) A„[«f(y) -  U^iy)]
»ea*

(8.14) = - A2 E G*(x, y)Tkul0iy) + X(<V E G»(x, y)[ C/f(y) - u{k°iy)]
»ea» »ea»

+ (Xi" -X(i')A2E Gkix, y)Uki\y).
»ea»

Using inequalities (5.13) and (5.14), we see that the first term on the right of (8.14) is

bounded by C.A4. By (5.14) and (8.5) the last term on the right is bounded by



APPROXIMATION FOR THE FIXED MEMBRANE EIGENPROBLEM 253

ClXf - \<0|, or if |x - d0| = CA, (5.17) shows the last term bounded by C,A
|Xf — X(,'|. Using (8.3), (5.16) and Schwarz's inequality bound the middle term on

the right by || t/f - «f ||», or, if |x - Ô0| = CA, (5.17) bounds it by
CAmaxQl |t/f — t/f |. In summary,

(8.15) max | U(kn - «f | ^ C[|| Ul° - «f II» + |Xf - X(i'| + A4],
8»

(8.16) max | f/f - z/f| è C A h max \ Uk° - «f | + A |Xf - X(i)| + A41 •
B»"ua»<»)ua*<»' La» J

Finally, we use Parseval's identity and (8.9) to conclude that

II c/f - «ni! = a2    E    I tf° - «¡°la +    E    l(^(i) - «"', vTXW
Bjf'iua»^) iVn,...,n+n

and by a straightforward computation

foi" - \WMfi - uu\ Kn)L = <(Xf - X(i')i/r' - r»z/f + 77f, K'%

where Jïf is defined by

A»75f(x) = 0, xGfii, 77f(x) = C/f (x) - «f (x), x G ßf W Of.

It follows that

(8.17) 11 t/f - «f II» â C|        max | t/f - «f | + |Xf - X(i>| + A4 | •
La»"ua»<>>ua»i>> J

Combining (8.13), (8.15), (8.16), and (8.17) yields the proof of Theorem 8.1.
Let us observe some simple consequences of Theorem 8.1. Since the X(° are real,

we have

(8.18) |ReXf - X("| ^ CA4.

Also, when X(i> is simple, Xf will be real for A sufficiently small. This is because the

matrix [lh(x, y)]z, „eß» is real. Thus, if Xf were complex, its conjugate [Xf ]" would also

be a distinct eigenvalue of Ak converging to Xf. But this is impossible, since [Xf ]-

must converge to some X(I' ^ Xu>.

We normalized £/f by requiring ||C/i° ||* = 1. This determines Uh{) only up to a

multiplicative constant of modulus 1. If we specify this constant by requiring that

(Uk°, Vk° )'k ̂  0, then when X('' is simple, wf is a real multiple of uw, as can be

seen from (8.9).

Theorem 8.1 shows that t/i° approximates to 0(h*) an eigenfunction wf which

depends on A. Properly normalized, however, £/f will approximate to G(A4) an eigen-

function wf such that /a |«f |2 dx = 1, independently of A. In particular, when Xu> is

simple, Uki) will approximate the unique normalized eigenfunction uM. This normal-

ization is

A2 E «»00 I C(i)(y)|2 = I.
»ea»

where a» is given in the appendix of [6]. For a proof, see [6, Corollary 6.2].

9. Forced Vibration Problems. Let us remark that all of the results of the pre-

vious sections hold for the problem

(9.1)        A«(x) + iqix) + X)«(x) = 0,    x G fi,        "(x) = 0,    x G 30,



254 J. R. KUTTLER

where q is nonpositive and smooth on 0, and for the discrete Green's function Gh de-

fined by

(9.2) (A,,, + <?(x))C(x, y) =  -A"25(x, y),        x, y E 0».

The proofs require only that the additional term q be carried along throughout. We

make this remark because we next wish to consider the problem

(9.3) A«(x) + Kx)w(x) = Fix),    x G fi,        «(x) = 0,    x G dÜ,

for F and r given smooth functions on 0. Problem (9.3) is a forced vibration probl

and an 0(A2) analogue of it was studied by Bramble in [1].

Let us rewrite (9.3) in the form

(9.4) Aw(x) + qix)uix) + fsup rjuix) = Fix),    x G fi,        «(x) = 0,    x

where q(x) =; r(x) — supa r = 0 on 0. A unique solution » of (9.3) or (9.4) exists if

and only if sup r is not an eigenvalue of the operator A + q. Now, we consider the

difference approximation

(9.5) A»C(x) + r(x)t/»(x) = Fix),        x E 0»,

where Ak is the difference operator defined in Section 2. We prove:

Theorem 9.1. If (93) has a unique solution u E C8(fi), there are constants C, h0 such

that for A < A0, (9.5) has a unique solution Uhfor which

max \Uk - u\ < CA4.

em

dQ,

Proof. Let Gh be the discrete Green's function defined in (9.2). Then, for x G 0k,

|C(x)-«(x)| = A2 E G»(x, y)[A„«(y) + qiy)uiy) - AkUkiy) - qiy)Ukiy)\
»ea»

Û sup \q\ A3 E  |G»(x, y)| | CO) - «0)| + Aa E IC(x, y)| |r4t/(y)|
a »ea» »ea»

Therefore, using (5.13) and (5.14) for Gk of (9.2) and (2.5),

(9.6) | t/»(x) - uix)\ ̂  C\ A2 E |G»(x, y)| | COO - «001 + A*
L      »eat

Employing (5.17), this yields

(9.7) max     | Uk - «| á C\ k max | Uk - u\ + A*    ,
flit")UBi'«: L Bi J

while (5.16) and Schwarz's inequality yield

(9.8) max \Uk      u\ i  V[\\l\ ■    u\\ ■■[  hl\

From (9.7) and (9.8X we sec

IIC '    «II» ■-   IIC      "Hi   :   Ch1"     mar     \Uk ■    u[

I, ' »c ■   u\\i : c' ;u: ne    «H»-] A4J:
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which implies

(9.9) ne - «ii» ̂  cue-«iii + a4].

Finally, we complete the proof by using Parseval's identity to estimate

(9.10) lie - «Hi = [e l(e - «, K"xi2]''2,

where Ff is the eigenvector associated with jtf in the symmetric problem

A» Ff (x) + iqix) + /if) FÍ" (x) = 0,    x G Oí, Ff (x) = 0,    x G fií2' U Of.

Define 77A by

A»77A(x) + qix)Hkix) = 0,   x G Oí,        Hh(x) =   C(x) - «(x),   x G 0Î2) W OÍ3'.

From (5.21), we have

max | Hk | 5Í C     max      [ Uk — u \ ,
a*' 8*<»>ua»<»'

or, employing (9.7), (9.8), (9.9),

(9.11) max|77,| ^ C[A He - «Hi + A4].
8»'

Then, we have

tíf <C - «,  Ff >i = (77, + u -  C, (A* + q)Vlk°yk + pl'\Hh,  Ff )i

= ((A» + «)(#» + « -   C),  KÍ")Í + Mf (77,,  Kf )í

= (supi-XC - «,  K°)í - (nil.  Fí")í + ,tf <7f»,  *f> >¿.

Now, since sup r is not an eigenvalue XU) of A + q and /if —> X(,) as A —> 0, there

are constants C, A0 such that for A < A0,

max |/tf — supr|_1 < C,        max /if/|/uf — sup r| < C,
i i

and so

|(C - «,  I'f >í| ̂  C[|<r»«,  Ff >i| + «77»,  Kf >í¡].

Using this in (9.10), we see that

He - «Hi á C[||r»«||i -!   ||77»||i] g C[hl + A IIC - «IIÍL

by (9.11), from which it follows that

lie-  u[\í í c*\

completing the proof.

Let us remark that by employing the results of [6], the above technique of proof

will show that a unique solution of the forced vibration problem

u(x) ■■   o. x f   ."::.
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can be approximated to 0(A2) by using the symmetric difference scheme given in [6] at

the beginning of Section 7.
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