
mathematics of computation, VOLUME 25, NUMBER 115, JULY, 1971

On Jacobi and Jacobi-I ike Algorithms
for a Parallel Computer

By Ahmed II. Sameh

Abstract. Many existing algorithms for obtaining the eigenvalues and eigenvectors of

matrices would make poor use of such a powerful parallel computer as the ILLIAC IV.

In this paper, Jacobi's algorithm for real symmetric or complex Hermitian matrices, and

a Jacobi-like algorithm for real nonsymmetric matrices developed by P. J. Eberlein, are

modified so as to achieve maximum efficiency for the parallel computations.

1. Introduction. With the advent of parallel computers, the study of compu-

tationally massive problems became economically possible. Such problems include,

for example, solution of sets of partial differential equations over sizable grids, and

multiplication, inversion, or determination of eigenvalues and eigenvectors of large

matrices.

An example of a parallel computer is the ILLIAC IV.* This computer is es-

sentially an array of coupled arithmetic units driven by instructions from a common

control unit. Each of the arithmetic units, called processing elements (PE's), have

2048 words of 64-bit memory with an access time under 420 nanoseconds. Each PE

is capable of 64-bit floating-point multiplication in about 550 nanoseconds. Two

32-bit floating-point operations may be performed in each PE in approximately the

same times. The PE instruction set is similar to that of conventional machines with

two exceptions. First, the PE's are capable of communicating data to four neigh-

boring PE's by means of routing instructions. Second, the PE's are able to set their

own mode registers to effectively disable or enable themselves. For a more detailed

description of this system, the reader is referred to [2], [8], [9], [12].

The purpose of this paper is to introduce modified Jacobi and Jacobi-like algo-

rithms for the computation of the eigenvalues and eigenvectors of large real sym-

metric or complex Hermitian matrices, and real nonsymmetric matrices, respectively,

that are suitable for a parallel computer.

2. Jacobi's Algorithm. In the classical method of Jacobi (1846), [13], a real
symmetric matrix is reduced to the diagonal form by a sequence of plane rotations

Ak+1 = RkAkR'k (k = 1, 2, • • •), where Ai = A is the original matrix and each ro-

tation Rk = R(p, q, a™) in the p, q plane through an angle a^J eliminates the off-

diagonal element a™ (and hence a™), and affects only elements in rows and columns

p and q. See the Appendix for the appropriate value of a^ to annihilate the element

a™. Because of symmetry, only the off-diagonal elements above the main diagonal

are considered in what follows.
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It is possible, however, to modify the present Jacobi algorithm for a parallel

computer so as to eliminate more than one off-diagonal element. For example, for a

matrix A of order 4, if the orthogonal transformation R is chosen as,

(2.1) R =
0

-s,

0

c2

0

0

Ci

0

0

s2

0

where c{ = cos at, s¡ = sin a, (j = 1, 2), then RAR' would have zero elements in

positions (1, 3) and (2, 4) provided that the angles c^ and a2 are properly chosen.

«! and a2 are determined by (an, a33, a13) and (a22, a44, a2i), respectively.

Define m by [(n + l)/2], where n is the order of the matrix A and [x] is the greatest

integer less than or equal to x. Let each (2m — 1) orthogonal transformations be

denoted by a sweep. Observing that there are n(n — l)/2 off-diagonal elements,

and that the maximum number of these elements which can be annihilated by an

orthogonal transformation of the type (2.1) is [n/2], then the modified Jacobi algo-

rithm will attain maximum efficiency of parallel computation if the following two

conditions are satisfied:

(i) Each orthogonal transformation Rk should be constructed so as to annihilate

[n/2] off-diagonal elements.

(ii) Each sweep should annihilate each off-diagonal element only once, i.e., each

of the (2m — 1) orthogonal transformations in a sweep should annihilate different

[n/2] off-diagonal elements.

Several annihilation regimes that satisfy the above requirements are possible.

Two different regimes are discussed below.

First Annihilation Regime. For a given sweep, each of the (2m — 1) orthogonal

matrices Rk consists of the elements,

Ri RQa   —  cos ava , Rva   —
-R P < a,

(2.2)
=   —sin aVQ , p > q,

where p and q are sequences defined by

(a) for    k = 1, 2, • • • , m — 1,

q =  m — k -\- \, m — k -\- 2, ■•■  , n — k,

p = (2m - 2k + 1) - q, m - k + 1 g q S 2m - 2k,

(2.3) = (Am - 2k) - q, 2m - 2k < q ^ 2m - k — 1,

= n, 2m — k — 1  < q,

(b) for    k =  m, m + 1, ■ ■ •  , 2m — 1,

q = 4m — n — k, Am — n — k + 1, • • • , 3m — k — 1,

p = n, q < 2m — k + 1,

(2.4) = (Am - 2k) - q, 2m - k + \  ú q Ú Am - 2k - \,

= (6m - 2k - 1) - q,        Am - 2k - 1  < q.
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The remaining elements of Rk are zero except for n odd, then R2km'-k,2m-k = 1. For a

given k, the angles a^*' are determined for all (p, q) such that a^/ eliminates the

element a™; see the Appendix.

Let n = 8 and k = 2, then the pairs (p, q) are given by ¡(2, 3); (1, 4); (7, 5); (8, 6)}

and P2 is of the form

ii
,(2)
14

R(2) r(2)n22 n23

_p(2) R(2)
K23  K33

(2)_
l14

(2)"44

,(2)_
55

(2)
'57

,(2)
,57

,(2).
66

(2)
A77

(2)
^68

,(2)
68

(2)

while for k = 1 the pairs (p, q) are ¡(8, 1); (7, 2); (6, 3); (5, 4)| and P7 is of the form

,(7).
ii

»(7)
18

,(7).
22

(7)
27

¡(7)-
33

,(7!
36

p(7) R(7)R44 R45

_p(7) R(7)"45 "55

(7).
^36

(7)

-R (7)
27

(7)
A77

(7)
x18

(7)
'88

If the order of the matrix is odd, say n = 7, then for k = 3 the pairs (p, q) are given

by ¡(1, 2); (7, 3); (6, 4)) and R3 is of the form
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p(3) R(3)
Kll K12

.R(3) „(3)"12 "22

,(3).
33

,(3)^37

(3).
44

-R <3'-"46

,(3)
46

(3)^66

(3)
'37

(3)
^77

For example, in a given sweep, denoting each element eliminated in the Mi

transformation by the integer k, the patterns of the annihilated elements for matrices

of orders 16 and 15 are shown below.

X     7   ©    6

*   6 ©

*

2 ®  1 0!©

© 4 © 3 ©

U)   5   ©   4   ©    3   ©

5   ©   4   ©    3   ©    2

3 © 2 ® I ®@ 7 j@

3 © 2 © 1 ®@ 7 @|@

ÍS) 2 ® 1 ®© 7 © 61©

2   ®    1   ®@   7   (Í4)    6   (ÍS)\(Ía,

*    1  ® ©  7 (;

'    7   ©

©

(15)

Second Annihilation Regime. This regime satisfies conditions (i) and (ii) for matrices

of order n = 2y, where y is an integer. The elements of each orthogonal transforma-

tion, in a given sweep, Rk (k = 1,2, • • • , n — 1) are given by (2.2). For k — 1,

2, • • • , n/2, the pairs (/>, q) are defined by

9 = 2, 4, 6, ••• , n,

p = q + (n - 2k + I),        q < 2k,

= q - 2k + 1, q ^ 2k.

Let n = 8 and fc = 3, then the pairs 0, 9) are {(5, 2); (7, 4); (1, 6); (3, 8)| and R3

(2.5)
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is of the form

3 <3)_
in

,(3)'.16

,(3)•22 ,(3)*25

»(3).
33

_p'(3)_"25

? (3).he

<3L
44

(3)

,(3)
38

,(3)
M7

(3)
'66

-R (3)
47

(3)'77

(3)_
A38 (3)'88

In order to construct the orthogonal transformations Rk for k = n/2 + 1, n/2 +

2, • • • , n — 1, consider the sequence L = \, 2, • ■ ■ , y — 1. For each value of L,

there are N = 27_L_1 orthogonal matrices Rk given by

(2.6) Rk = diag (H[k), H[k), ■■■ ,H?\

where t = 2L 1, k = n(l — 2 L) + I, and / = 1, 2, • • • , N. The sequences/? and q

for each Hff (M = 1, 2, • • ■ , t), are defined by

p = i + AN(M - 1),        i = 1,2, ■■■ ,2N,

q = p + 2(N + I - 1) - 2JV[0(1)],

where

O(l) = 0,        i + 2(7V + / - 1) á 47V,

= 1,       otherwise.

Let n = 8, L = 2, and / = 1, then k = 1, and the pairs (p, 9) are given by {(1, 3);
(2, 4); (5, 7); (6, 8)} and R7 is of the form

*(7)-
,11

i(7)-<13

,<7)_
122

*24

,(7)
;i3

^33

(7)*24

R(7)K44

,(7)_
,55

,' (7).^57

,(7).
,66

,(7).57

*77

,(7)
,68

=i'(7)-^68
'(7)

'88
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The pattern of the annihilated elements in one sweep for a matrix of order 16

is shown below, where those elements annihilated in the kth transformation are

denoted by the integer k.

X  1©2@3©4®5©6©7©8

X  8©7©6©5®4©3©2©

X  1©2©3©4©5©6©7

X  8©7©G©5®4©3©

X  1©2©3©4®5©6

X  8©7©6©5©4©

X  1©2©3©4©5

X  8©7©6©5©

X  1 © 2 © 3 © 4

X  8 © 7 © 6 ©

X  1 © 2 © 3

X  8 © 7 ©

X 1    © 2

X  8 ©

*  1

X

Using one quadrant of the ILLIAC IV (64 PE's), then for a 128 X 128 matrix,

the 64 angles of each transformation are determined simultaneously, one angle per

PE. Once the transformation matrix Rk is determined, the matrix Ak+l = RkAkRk is

computed in parallel [7]. Assuming that the matrix has converged, (using some cri-

terion [13]), to the diagonal form after u sweeps, or after r — 1 = u(2m — 1) or-

thogonal transformations, then the diagonal elements of Ar = WAW' are taken to be

the eigenvalues of A. The columns of Wl — (VuVu_i ■ ■ ■ Kx)' are the corresponding

eigenvectors, where for the y'th sweep V¡ = Ht-i"1 (-^*)í (J ~ *» ̂ > ■ • ' > ")•

A similar algorithm as that described above [11] has been programmed in ILLIAC

IV assembly language and successfully tested on an ILLIAC IV execution simulator [1].

3. A Jacobi-Like Algorithm for Nonsymmetric Matrices. Eberlein [3], [4]

showed that for an n X n matrix A, complex in general, there exists a matrix U =

^X¡ U¡(k, m) generated from a sequence of two-dimensional transformations Ut(k, m),

where (k, m) is the pivot pair, such that AL = U'1 AU is arbitrarily close to being

normal, i.e., the matrix (AhA% — AfAL) is arbitrarily small. At each stage of the

iteration, based on the elements of the kth and mth rows and columns, the parameters

of Ui were chosen such that the decrement of the Euclidean norm of At is given by

N\A,) - NXUT'AtUt) £ [l/3«(ii - l)]-N\AiAf - AfAt)

where N\A) = £,,, j^2.
In this paper, the above algorithm has been modified for parallel computation.

The transformations í/¡ are n-dimensional, and their parameters are based on all

the elements of the matrix A ¡. A lower bound on the decrement of the Euclidean

norm of A ¡ is given by

N2(A¡) - N*(V7lA,U,) ^ (\/An)N2(AlAr - AfAt).



ON   JACOBI   AND   JACOBI-L1KE   ALGORITHMS 585

Once the matrix is practically normal, one can use the optimal procedure of Gold-

stine and Horwitz [5] for reducing it to the diagonal form ; thus the eigenvalues and

eigenvectors of A are obtained.

Since a nondiagonable matrix cannot be similar to a normal matrix, then this

procedure yields its best results for diagonable matrices (see Example 7 in [3, p. 84]).

Let the original matrix A be real, diagonable, and of an even order n = 2r (if n

is odd A is replaced by diag (A, v) of order n + 1), then it can be partitioned as

follows

(3.1)

An     Ai2

A2i     A22

Air

A2r

_Ari     Ar2 Arr_

where each submatrix Akm, (k, m = 1,2, • • • , r), is given by

~a2k-i,m-i    a2k.i,2;
(3.2)

Let

(3.3)

and

(3.4)

Akm —

a2k,2m-l a-ik.2m   J

Dkm   =    (a2k-\.im-l C2kt2m),

Ekm   =   (a2k-l,2m a2ki2m-i),

Bkm   —   (a2k-i,2m   "T   Ö2t,2m-l)>

Ki(A) =  £ (DJL + E2km),
k, m

K2(A)   =     2   DkmEkm.

Assume also that A has been scaled  such that N2(A)   ^   1,  and denote  the

matrix (AA' - A'A) by C.

Lemma 1.   Let  A'   =   Q''AQ,  where  Q   =   diag  (Su  S2,   ■■■   ,   Sr),   and

S, = ^2 = • • • = Sr = S is given by

(3.5) 5 =
cosh \¡/    sinh \\i

sinh ip    cosh \J/_

Define \p by

(3.6) tanhAiP = -2k2(A)/kí(A).

Provided that k^A) > 2\k2(A)\, the following relation holds

(3.7) AN2(A) ^ k22(A)/ki(A),

where AN2(A) = N2(A) — N\A') is the decrement of the Euclidean norm of A.

Proof.   The elements of each submatrix A'km = S~1AkmS are given by
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aík-i^m-i = «2t-i,2m-i cosh2 ^ — a2k,2m sinh2 i> + %Ekm sinh 2\¡/,

,, 0s a'2k.2m = —a2t-i,2m-i sinh2 tp + a2k,2m cosh2 \p — \Ekm sinh 2^,
(.J.SJ

a'tk-i.tm = 2 At™ sinh 2^ -f- a2k^,2m cosh2 ^ — a2k¡2m_i sinh2 \p,

a'2k,2m-i = —è ö*m sinh 2^ — a2i_i,2m sinh2 t¿- + a2l,2„-i cosh2 rp.

Therefore,

7V2(^L) =  N\Akm) + (Z)L + PL) sinh2 2* + DkmEkm sinh 4^

and consequently,

(3.9) AAr2(^J =  - DkmEkm sinh 4¿ - \(D2km + PL)(cosh 4¿ - 1).

Since N\A) = £*.„, JV2(/ltra), then

(3.10) AJV2(/1) = -Kcosh 4^ - I)ki(^) - (sinh A<P)k2(A).

A necessary condition for AN2(A) to be an extremum with respect to \f/ is

(d/dtf AN2(A) = 0; this yields relation (3.6),

tanh A} = -2k2(A)/ki(A).

From the definition (3.4), it is clear that ki(A) ^ 2 |k2(/1)|. Excluding for the time

being the case ^(A) = 2|k2(,4)|, then the second derivative of AN^ÇA) with respect

to 4< evaluated for \p in (3.6) is given by

(3.11) -8Kl(^l)[l - (4K2(/l)Ai(^))](cosh Ai)

and is less than zero. Thus, for the choice (3.6) of \¡/, AN2(Ä) achieves its maximum

value,

(3.12) AN2(A) = hKi(A)[l - {1 - (4K2U)AiU))}1/2]

which vanishes only if k2(A) = 0. Since one is considering the case ki(A) > 2 \k2(A)\,

then by the binomial theorem,

(3.13) (1 - Ak22(A)/kI(A))1/2 =  1 - í(Ak22(A)/K2i(A)) - !(4k22U)//c2U))2

and (3.12) yields the relation (3.7). If k¿A) = 2 \k2(A)\, then from (3.10), AN\A) is
given by KO0D -  {(1 ± tanh 4^)/(l - tanh2 4¿)1/2}]. Choosing tanh ty =

T(l — e2)/(l + e2), where e is a small number, then AN2(A) = |(1 — ¿)ki(A) which

is greater than zero.

Lemma 2.   Let A' = P'AP, where P is the orthogonal transformation,

(3.14) P = diag(7\, T2, ••• , Tr),

in which

(3.15) T> = \   C0S^    Sin^

_—sin <pk    cos <pk.

Then, if f>k is determined by

,-    , ,--. *, C2t-l,2i-l C2k2k
(3.16) tan 2<pk =-

¿C2k-1 .2k

(k =  1,2, •••  ,r).
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where cu are the elements of the matrix C = AA' — A'A,

(3.17) k22(A')^ ¿N\C).

Proof.   The 2X2 diagonal submatrices Ckk of the matrix C can be expressed as

(3.18)

Therefore,

(3.19)

where

(3.20)

Ckk —   7 . vAkmAkm       AmkAmk\,        k —  1, 2, • • • , r.

^2 Ckk =    ^   [AkmA'k„ —  A'kmAkm]

\AkmAkm        AkmAkm)
EkmBkm

■ DkmEkm

DkmEkm

" EkmBkm

Equating the off-diagonal elements of the left- and right-hand sides of (3.19),

r

(3.21) Yjc2k-i.2k =   — S DkmEkm =  —k2(A).
t-1 k,m

Consequently, if the orthogonal matrix P is chosen such that the off-diagonal ele-

ments c2i-i,2fc, for all k, attain their maximum positive values, then the inequality

(3.17) is achieved. To show that, consider the matrix C = A'A" — A"A'. Since

A' = P'AP, then C = P'CP, and the elements of the diagonal submatrices C'kk =

rkCkTk are given by

e2k-i,2k = C2*-i,2<; cos 2<pk -\- 2vc2i-i.2i-i      c2*,2i) sin 2<pk,

I _ 2 i •    2 •       «
c2/t-i.2*-i — c2k-i¡2k-i cos  <pk -j- c2ki2k sin (pk      c2k-ii2k sin z<pk,

(3.22)

c'2k.2k = c2k-i,2k-i sin2 <pk + c2k,2k cos  <pk + c2t_li2t sin 2<pk,    and

Hence, for c'2k_lf2k to be an extremum, (3.16) must hold. Also, for the choice (3.16)

of <pk, the second derivative of c'2k_li2k with respect to <pk is given by

(3.23) ■(h2/c2k-i,2k) cos 2tpk,

where h = [Ac22k_lt2k + (c2k_i,2k^i — c2k,2k)2]1/2. As a result if cos 2<pk is of the same

sign as c2k_i,2k, c'2k_i¡2k attains its maximum value. Restricting <pk to the interval

[0, it], the elements of Tk are given by

(3.24) sin2 (pt = I — (c2k-i,2k/h),        cos2 <pk = \ + (c2k-i,2k/h),

in which sin <pk > 0 and cos ¡pk is of the same sign as (c2t_li2t_i — c2k,2k). The maxi-

mum value of c'2k_i¡2k turns out to be \h, and

C2fc-1,2*-1    =   C2*.2*    =    2VC2t-1.2J:-l      \     C2ki2k).

Excluding the case when c24_1,2t_i = c2ki2k and c2t_1,2t = 0, which results in Tk
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being the identity matrix and hence c'2k_12h

inequality

0, then from (3.21) one obtains the

(3.25) k\(A') >  £ C2k-

Assuming that X*-i c2*-i,2* = (1/2«)A^2(C), then, from the fact that the Euclidean

norm is invariant under orthogonal transformations and from (3.25), one obtains

relation (3.17).
From Lemmas 1 and 2, it can be seen that in order to obtain the largest possible

value of AN2(A), the matrix A should be subjected to the orthogonal transformation

M'AM where M is a permutation matrix determined as follows: Let A" = M'AM

and C" = A"A'" - A"'A", then M is chosen such that each 2X2 diagonal sub-

matrix C'k'k has an element c'2'k_li2k of at least average absolute value of all the off-

diagonal elements of C" if any, and/or the difference (cji_1>ïà_, — c'2'k,2k) different

from zero. For example, in order to bring the off-diagonal element c„„ (u < v), of

maximum absolute value in the position (1, 2), M is given by Ilu, I2, where /,, = J —

(e, — £,-)(£< — e,)'. Essentially, P(lAIti has the /th and fih rows and columns of A

exchanged.

After the matrix A is "prepared" by the transformation M, A' = P'A"P will

produce a matrix C whose off-diagonal elements cJ4_liM are of such magnitudes that

Hl-i c»-i.m is at least equal to (i/2ri)N2(C).
Theorem. Let A = At be a diagonable matrix with an even order n = 2r and

N\A) ^ 1. Let Al+l = U^AiU,, where Ut = MtP,Qi. If these transformations

are defined as follows:

(i) M i is chosen as discussed above.

(ii) P, = diag (T¡'\ P<", ■■■ , Tll)) in which

cos <pk       sin <pk

—sin <p[l)    cos <pil\

with

tan 2<pk
c2k-l,2k- C2k,2k

■"-24-1,2*

(iii) Q, = diag (Si", Sen ,Srl))in which

Sil) = =  Si
cosh \pi    sinh \pl

_sinh \f/¡    cosh \f/,_

with

where

tanh 4if-, = -2k2(A'1)/k1(A'1)

A\ - (MlPl)t Al(MlPl).

Then, lim¡.

Proof.

.- A^2(C0 = 0.
With no loss of generality, assume that M, = /. By Lemma 2, k2(;40 ^

(l/2«)/V2(Ci). From (3.3), (D«m)2 + (P^)2 Ú 2N2(A«m), then (3.4) yields, Kl(At) Ú
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2N2(Al) S 2. Since the Euclidean norm is invariant under orthogonal transforma-

tions, then Ki(A[) 5= 2, and hence by Lemma 1,

AN2(At) ^ &AUMAÏ) ^ ¿ N2(Ct).

But since N2(A¡) is a decreasing monotone function bounded below by ][V \\i\2,

where X; are the eigenvalues of A, [10], then AN2(A¡) —* 0 as / -> <». Hence N2(C¡) —» 0,

and i4j is arbitrarily close to being normal.

Let A be a 128 X 128 matrix. Using one quadrant of the ILLIAC IV (64 PE's),
the matrix can be stored in memory such that for a given m the 2X2 submatrices

Akm (k = 1, 2, • • • ,64) are assigned to the mth PE. Once the matrix C is determined

by parallel multiplication and stored in the same way, i.e., the kth PE contains the

submatrix Ckh, the 64 angles <pk can then be determined simultaneously. Also for

each k the submatrices A'km = T'kAkmT„ are computed simultaneously for all m,

hence the updated matrix A' = P'AP is computed with all the PE's working. Similarly

the quantities D'km, E'km, and B'km of the submatrices A'km, and consequently the sub-

matrices S~1A'kmS are computed with full efficiency. This part of the algorithm has

been coded and successfully tested on the ILLIAC IV simulator [1].

Once the matrix A is reduced to a matrix Ä which is practically normal, then for

any diagonal submatrix

_c/flp    a0Q_

either äpa = aQV; or 5M = —äQV and ävv = ä,„, to within a reasonable computa-

tional error. The matrix Ä is reduced to the diagonal form by the unitary trans-

formations V*,ÄfV, (j = 1, 2, 3, • • ■), where F, = IJj-r1 (P*);, as in Section 2,
is the transformation matrix of the y'th sweep. For each off-diagonal element ñm or

aap above the diagonal, the elements of the diagonal submatrices of Rk are given by

(a) aM   = aqv ;

the elements RfJ, R™, R^, and P^' are determined as in Section 2.

(b)C = -¿É»    and    C = C;

US' = R«   = ^2 '       R"   = R°*   = 72 '    Where    ' = (_1)1/2 [5L

Denoting the resulting matrix by A = Y~XAY, the diagonal elements of A are

then the eigenvalues of A, and the columns of the matrix Y = (JJ, U¡)(Y[, V¡) are

the corresponding eigenvectors.
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Appendix. The orthogonal matrix R(p, q, avh¿) differs from the identity matrix

by a 2 X 2 diagonal submatrix whose elements are



590 AHMED   H.   SAMEH

(A.l) R„ = Raa = cosq^T,';        RPQ =  —R„ = sin a™

where p < q. In order to eliminate the off-diagonal element a™, the angle apa is

chosen such that

(A.2) tan 2ap„   =    w    ™   (t)
"pp Mqq

in which o^*' is restricted by |«¿** | ^ tt/4, [6]. Let

. IT     (*) I I     (*) <*) I /.2      i 2sl/2
t„ =  |2öp0 |,        ** =   \app   - aQQ \,        yk = (ii + *t)    ;

then

(A.3) cos  apq   = - II -I-1 ;        sin  ap,   = - I 1-I-

Since | a^*' | ^ ir/4, then cos a^' will always be taken positive and sin a^ will be of

the same sign as [2a™/« - a»J)].
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