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On Ignoring the Singularity in Numerical Quadrature

By R. K. Miller*

Abstract. This paper studies the convergence of numerical quadratures of singular

integrands. The singularities are ignored in the sense that whenever a singularity occurs

the integrand is redefined to be zero. Several convergence theorems are proved under

the assumption that the integrand can be dominated near each singularity by a monotone,

integrable function.

1. Introduction. Davis and Rabinowitz [1] recently studied the question of

"ignoring the singularity" in numerical quadrature. That is, if /(f) becomes singular

at a point £ where a ^ | 6, then one defines /(£) = 0 (or any other finite value)

and then approximates the integral

/ =  f  /(') dt

by a usual numerical quadrature rule. They show that, in general, one obtains only

"lim inf convergence". However, if £ = a (or some other "rational" point of [a, b]),

then compound quadrature rules do approximate / when / is monotone near £.

Certain of the positive results in [1] were generalized by Rabinowitz [2]. Gautschi

[3] has applied a result in [2] to two other quadratures of interpolatory type.

The purpose of this paper is to generalize some of the convergence theorems in

[1] and [2]. We shall replace the assumption of monotonicity of {(f) near t = £ by the

more general condition that /(/) can be dominated by a monotone, integrable func-

tion. We shall also establish some theorems on error bounds and convergence rates.

2. General Quadratures.   Let M be the set

M = {/ G C(0, T] C\ ¿'(0, T): f is nonnegative and nonincreasing on 0 < f g T].

Define Md to be the set of all functions / G C(0, 7] such that / can be majorized by a

function in M,

Md= {/ G C(0, 7"]: 3  FE M with [/(f)| á F(f) on 0 < í g T}.

(For example /(í) = f ° sin(r') is in Md if 0 < a < 1, and is not in Md if a ^ 1.)

For any function / G Md assign the arbitrary value /(i) = 0 when t = 0.

Given any numerical quadrature rule
n

Q(f) = E wuïivm,    i g c[o, ti
1-0
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522 R.   K.   MILLER

where O á T(0) < T(l) < • • • < T(n) ^ T.

Let Q(j, S) be the modified quadrature rule obtained from Q by redefining /(0) = 0,

Q(U S) - ¿ WU)f(TU)),       1(0) - 0.
)'-0

For example, if g(/) = |j/0/2 + /i + /2 + /s/2} is the compound trapezoid rule

3 X r, then ß(/, S) = |{/i + /, + /3/2}. Therefore, the modified rule Q(f, S) ignores
possible singularities in /(f) at t = 0. This modified rule is well defined for all func-

tions / G Md. For open rules £(/, S) = Q(f), while for closed rules Q(f, S) ¿¿ Q(f),
in general, for all functions / G C[0, 71.

With these preliminaries, we are now ready to generalize the lemma in [2, p. 194].

First, consider rules which are open at f = 0.

Lemma 1. Consider a sequence of rules

mn

(?.(/) =  E Wn(j)j(Tn(j)\
i-o

where 0 < T„(0) < Tn(l) < ■■■ < Tn(mn) g T and WJJ) > 0 for all j.

Define T„(—l) = 0. Suppose there exist positive constants C and A which are inde-

pendent of n = 1,2,3, • • • and of j = 0(l)w„ such that A :£ Tandsuch that ifTJJ) < A
then

(2.1) WJU) ̂  C{Tn(j) - Tn(j - 1)!.

0' = 0(l)mn means j = 0, 1, 2, •• • , m„.)

Suppose for each function g G Q0, T] one has

(2.2) lim Qn(g) =   f   g(t) dt,        n -> co .
«"0

Then, for any function / G Md,

(2.3) limß.(/, S)=  f   f(t)dt,       «-»«.

In particular, if0<B<A, if one defines

U(t) = /(f)    on B S t ^ T,

= 1(B)    onO ^ t ^ B,

and if

then the error

5(f) = sup {\m- jB(s)\: túsú T),

E,(1, ßn) =   í   /(O dt - QÁU S)
•lo

satisfies the estimate

(2.4) \E.(J, Qn)\ S  \E(fB, Qn)\ +    f    {/(f) - 1(B)) dt   + C [    S(t) dt.
Mo Jo
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Proof Write E = E.(f, Qn) in the form

E=  [   |/(0- MO} dt+ E(fB,Qn)
Jo

+ E Wn(j)[U(Tn(j)) - 1(T„U))\
i-o

=   [    \1(t) - KB)} dt + E(1B, Qn) + «,.
Jo

Then, for any n,

kl è E wjj) \kt.u)) - u(t.u))\
i-0

M«

^ E w»0) i(rnü)) = ö.(«, 5).
1-0

Since / G Md, there exists a majorizing function F E M. Then, for s in the range

0 < t ^ s < B, one has

l/CO - Ms)| ^ ÍW + *W ^ 2F(t).

Therefore, 5(f) ̂  2F(f) on 0 < t ^ B, 5(f) = 0 on B ^ í g 1, and hence 5 G ¿'(O. 1)-

Note also that 5(f) is continuous, nonnegative and nonincreasing on the interval

0 < f ^ 1. This together with (2.1) implies that

QÂS, S) =     E     Wn(j)S(Tn(J)) á C E (M/) - TJU - l)}8(Tn(j))
T.iiXS

/.r„(¿) ç.B

Ú CJ2 «(0 dt = C        5(f)
JTn(i~l) J«

dt.

This completes the proof of (2.4).

Line (2.3) follows immediately from (2.4) and the estimate 5(f) g 2F(f). Indeed,

by first choosing B small and then choosing n large, one can make the right-hand

side of (2.4) as small as desired.   Q.E.D.

Although Rabinowitz only studies rules which are open at the singularity, almost

the same result is true for quadratures which are closed there.

Lemma 2. Suppose a sequence of quadrature rules Qn satisfies the two conditions

0 = r„(0) < Ml) < •••  < Tn(mn) ^ T,        Wn(j) > 0.

Suppose there exist positive constants C and A such that ifTn(j) < A and if j = l(l)m„

then (2.1) is true uniformly in n. If (2.2) is also true, then (2.3) follows. In particular,

ifjB G Q9, T] and 5 G Md are the functions defined in Lemma 1 and ifO<B<A,

then

\E,(1, Qn)\ á \E(U, QK)\ +    [   {/(f) - KB)} dt
\Jo

(2.5)

+ C f    Ô(t)dt+  Wn(0) \1(B)\.
Jo
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Proof. The proof is the same as that of Lemma 1 except for the estimates of e„.

In this case
Mr

en =  E WJU)\1(TK(j)) - 1B(Tn(j))\,
i-o

and

kl ^ 0n(5, S) + Wn(0) |/(5)|

£C [   6(t) dt + Wn(0) | KB) |,
Jo

where we define 5(0) = 0. The proof will be complete if we show that W„(0) —► 0 as

n -» oo. Let J > 0 be given and define /¿(f) = 1 - t/d if 0 ^ / g d and /d(0 = 0

if r ^ c?. By (2.2) it follows that, as n -*

0 g  W„(0) á <?(/„ 5) -> rf/2.

Therefore, lim supn Wn(0) g d/2 for each d > 0.   Q.E.D.

Combining the two results we have proved:

Theorem 1. Consider a sequence of numerical quadrature rules Qn where

0 ^ rn(0) < rn(l) < • • • < Tn(mn) ^ r an</ Wn(j) > 0. Suppose (2.1) zs true as

in Lemma 1 (when TJO) > 0) or Lemma 2 (Tn(0) = 0). If (2.2) is also true, then for

any / G M,,

Ö»(/, S) -»  f   /(f) ¿f   as « -> œ .
•'0

Indeed, ifO<B<A and if fB G C[0, T] aHa" 5£M¡ are f/ze functions defined in
Lemma 1, fAe«

(2.6)

\E,(U Qn)\ á |E(M Ö„)l +    í   {/(O - /(*)} dt
Ko

+ c í    5(f) dt + {1 - sgn MO)} W.(0) |/(5)|.
Jo

Rabinowitz [2, Corollary, p. 196] also studied integrals of the form j'0 r(t)1(t) dt

where r(t) is a positive weight function. Since

E W%(j)KTJU)) = E Í WJU)MTM*TJUMTM),
this reduces to the previous case with new weights {rVn(J)/r(Tn(j))\ and a new in-

tegrand r(f)1(t) on 0 < t ^ T. If one assumes that r(i)/(f) G M,,, then this corollary

can be generalized in the obvious way.

3. Compound Rules.   Consider a quadrature rule R defined on the interval

0 <> t á 1:
j

(R) R(t) = E Wd(ti)
i-0

where J ^ 0 and

j

(3.1) 0 £ 'o < fi < •" < 's á 1.     W, > 0,     £ W, = 1.
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(If ¿o > 0, then define f_x = 0.) For any integer n ^ 1 and any interval 0 ^ t g T,

one can then define a compound rule

(n X R) Rn(1) =  T,Œ HWdUiH + Hk)\ ,
t-0   (. i-O )

where H = T/n. Let C > 0 be any constant satisfying

(3.2) W¡ á (t¡ - í,_x)C       (j = Kl)/)

and either

(3.3a) W0 á (h + 1 - f,)C    (if fo > 0 or tj < 1)

or

(3.3b) (Wo +  Wj) g (tj - tj-ÙC    (if t0 = 0 and fy = 1).

Theorem 2. 7/"(i?) satisfies (3.1), then for any f (E Md

lim /?„(/, S) =   f   /(f) ¿f.

iVoo/. The definition (3.2-3.3a, b) of C implies that (2.1) is true with A = T.
Since R integrates constants and n —» », then (2.2) is also trivial. Therefore, Theorem
2 is a corollary of Theorem 1.   Q.E.D.

The error estimate (2.6) is rather pessimistic for compound rules. Therefore, we

shall derive another estimate, which is more suitable for many purposes. Let K > 0

be the smallest constant which satisfies

(3.4) W{ g (i,- - t,.r)K

for j = 1(1)/ if f0 = 0 or for j = 0(1)/ if t0 > 0.

Theorem 3. Suppose (3.1) and (3.4) are satisfied. Let H = T/n. For any function

1 G Md, define

M0 = 1(H)   i/o g f ¿ H,

= /(í)     // H á t é T.

If F G M is any majorizing function for /, then

(3.5) \E.(1, R„)\ :g \E(1„, Rn)\ +  /    F(t) dt + K F(t) dt
Jo Jo

or

\E,(1, Rn)\ Ú \E(jH, Rn)\ + (1 + K) f   F(t) dt.
Jo

Proof. Since (R) integrates constants, then the error may be written in the form

E,(1, R„) = E(U, Rn) + Eo, where

¡.H J

(3.6) Eo =   /    1(t)dt - E HWiKtjH).
Jo i-o
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Since |/(f)| g F(t) on 0 < t ^ T, then

I rH c"
/    /(f) dt\ S   l     F(t) dt.

KO «'O

Let a = 0 if h > 0 and a = 1 if f0 = 0. Then /(O) = 0 and (3.4) imply

j j
E HWjKtiH)   <,  E HWjFUiH)
i-0 a

=5   * E #('. - ti-ÔFUiH)
a

J r*Htj fitjH

è  E  / F(t) dt =  K F(t) dt.
a      Jülj-t Jo

This proves (3.5) and the theorem.   Q.E.D.

If one knows that / G C(0, 71, then the term E(1„, Rn) may be estimated using

Peano's theorem. That is

E(1h, Rn) =  [  Pn(s)fH(s) dt,
Jo

where P„ is the appropriate Peano kernel. Since P„(s + H) = P„(s) on 0 ^ s g T — H,

then \P„(s)\ need be estimated only on the interval 0 < s < H. Therefore the following

result is an immediate corollary of Theorem 3.

Corollary 1. Assume the hypotheses of Theorem 3. Iff G C'(0, T] then

(3.7) \E.(I, Rn)\ á \\Pn\\  [   \1'(t)\dt+  [   F(t)dt+KÍJ   F(t)dt
Jh Jo Jo

where \\Pn\\ = sup{|P„(i)|: 0 < s < H\.

Corollary 1 is useful in estimating convergence rates in certain cases. We shall

say that a function / G C^O, T] is weakly singular at t = 0 if the function

ot(t, 1) =  |/(21| + j    \f(s)\ ds

is in Z/(0, T). This definition was introduced and will be more completely investigated

in some joint work of this author and A. Feldstein. Notice that a'(t, f) — — |/'(0| = 0

if t > 0. Thus a is nonnegative, monotone and C(0, 7], in particular a G M.

Corollary 2. Suppose the hypotheses of Theorem 3 are true. If1 is weakly singular

(at t = 0) then

(3.8) E,(1, Ä.) = oyf   a(t, 1) dt)    as H -> 0.

Proof. It follows immediately from the definition of weakly singular functions

that / G Md and a(i, /) G M is a majorizing function. Thus (3.7) implies

\E,(U Rn)\ á  IIP.II l/'(OI dt +  /    a(t, 1)dt+ K        a(t, 1) dt
Jh Jo Jo

^  \\Pn\\a(H,f) + (1 +  K)  [   a(t,1)dt.
Jo
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The kernel Pn(s) may easily be explicitly calculated using its definition (cf. Sard

[4, p. 14]). Then

k

Pn(s) =  -s + E HWt
i-o

if Htk < s < Hth+1 and k = 0(1)/. If t0 > 0 or if tj < 1, a similar formula obtains

in the end intervals. For Htk < s < Htk+1 and k = 0(1)/, it follows from (3.1) that

\Pn(s)\ è kl + E H\W,\ g H\\ + E WA = 2H.
i-o \ i-0 /

Since Pn(s + H) = Pn(s), then ||Pn|| g 2H. Using the estimate ||P„|| ^ 2#and the

monotonicity of a, one has

||P.||o(Ä, /) ú 2Ha(H, 1)Ú2¡   a(t, /) dt.
Jo

Therefore, for any n(H = T/n), one has

\E,(1, Rn)\ ̂  (3 + K) f   a(t, 1) dt.        Q.E.D.
•"o

For example, if 1(f) = t~v (0 < p < 1), then (3.8) predicts that E,(1, Rn) is at

least of order h1'". If 1(f) = t~v sin(f °) where 0 < p, q < 1 and p + q < 1, then

E.(1, Rn) is at least of order h1-"-2. If /(f) = f sin(f °) where 0 < p < 1, q > 0 and

/? + ? ^ 1, then our theory predicts convergence but gives no order estimate.

4. Singularities Between Zero and T. It is also possible to obtain convergence

theorems for an integrable function / which has a singularity at some point

1(0 < £ < T) and is otherwise continuous in the interval 0 á t á T. For such func-

tions, the two integrals

[  1(t)dt    and    [   1(t)dt
Jo J(

may be treated separately. The transformation t — T — t,

Í   /(f) dt =   [      1(T - t) dr
Jo Jr-£

shows that it is sufficient to treat only integrals of the second type. Similar reductions

can easily be made for integrable functions / which have a finite number of singulari-

ties &,{*•••,(. in the interval 0 S í g 7.

Fix £ in the range 0 < ? < T. Let M(|) be the set defined by

M(0 = {/ G CU, 1] H I1«, 1): /(f) = 0 on 0 ^ f g f and

/(f) is nonnegative and nonincreasing on £ < f ^ T\.

Define M,¡(£) to be the set of all functions / such that /(/) s 0 on 0 g f g £,

/ G C(£, 1] and / can be majorized by a function F G M(£).

Given any quadrature rule Q(f) defined for / G C[0, T\ let g(/, ¿) be the modified



528 R.   K.   MILLER

rule obtained from g by setting 1(f) = 0 on 0 ^ t ^ £:

cw. ©-on.     f(0 = 0    on0g<^
= /(f)   on £ < f ^ r.

Let

EM>ö)=r/(O ¿f - Q(U O

denote the error obtained by applying g(/, £).

The modified rule Q(1, £) has the effect of first redefining 1(f) = 0 in 0 ^ t < £
and then applying g to the redefined function. For example, if g = 3 X T is the

compounded trapezoid rule ß(/) = K/o/2 + U + U + U/2), then Q(f, £) for £ = i

has the form g(/, £) = \(U + /3/2). If Q(f) is defined for all functions / G QO, 7],
then clearly g(/, £) is well-defined for all / G Md(Ç).

Lemma 3. Suppose the rule (R) satisfies (3.1). Let R„ — n X Rbe the corresponding

compound rule. Suppose / G Md(Ç) and F G M(Ç) is a majorizing function for /. For

any B such that £ < £ + B < T define

MO = /(f) on £ + B g f ^ 7\

= /(£ + 5)    Mögi^ + ß,

5B(f) = sup{ l/CO - MO|: f < s ^ 7*}        (| < f á T).

7/zezz f/ze error ¿?£(/, i?„) satisfies the estimate

(4.1) |E£(/. /?„)| g |E£(M *»)l +   Í   Hi' + 0- KB + £)}

TVoo/. By definition, E = £{(/, i?„) may be written in the form

E = f   \1(t) - H(t)) dt + E((ia, R„) + Rn(jB - 1, £)

=   [   \1(t + Î) - KB + I)} dt + E((1B, Rn) + R„(JB - 1, £)•
Jo

Write Rn(g) in the form Rn(g) = E"ío Wn(j)g(Tn(j))- Let £(/z) denote the smallest

integer such that

(4.2) M£(")) > £•

Recalling that |/(f) - /B(i)| g 2F(f) on £ </ g 7, it follows that

dt +  Rn(SB, £)•

\Rn(h -/,£)! = E    Wn(j){h(Tn(j)) - 1(T„(j))}
¿-l(n)

71J

è    E    W»C0 M7„0')) = Rn(5B,Ü).        Q.E.D.
/-{GO

Lemma 4. t/ncfer f/ze hypotheses of Lemma 3,

(4.3) lim ££(M /?„) = 0    as n —> oo .



IGNORING  THE  SINGULARITY  IN  NUMERICAL  QUADRATURE 529

Proof. For any n, let k(n) and j(n) be the unique integers such that

(T/nXk(n) + f„n)) ^ £ < (T/n%k(n) + tHn)+l).

Since R integrates constants one can write

F£(/B, R„) = E(fB, R„) +   E (T/nWiUÜti + k(n)\(T/n))
Í-0

= E(U, Rn) + 7/(£ + 5)('Ê W,)/n.

But U G C[0, 7] and |EVÄI á 1 by (3.1). The lemma follows.   Q.E.D.
Lemma 5. Assume the hypotheses of Lemma 3. Then:

a. lim inf„_ \Rn(1, £) - ft 1(f) dt\ = 0.
b. IfR„(F, £) -+ ft F(t) dtasn-*°° or if for some B > 0, ̂ „(5^, £) -► ft 8B(t) dt,

then

lim Rn(1, £) =   f   /(f) rff.
n-*oo J £

Proof. Results in [1, Theorem 7] imply that for any g G M(£) one has

lim inf Rn(g, £) = ft g(f) ¿f. Since 8B G Af(£), this fact together with (4.1) and (4.3)

imply that

Eo = lira inf \EtU. *»)l ^ 0 + \(   {/(f + £) - KB + £)} A   + f   5B(f) A.
»-•œ KO I J(

But 5B(f) = 0 if / ^ £ + -B and SB(f) ̂  2F(f) on £ < t < £ + B. Therefore,

IpB pB/     {/(f + Ä) - /(* + Í)} dt   +2        F(t + £) dt.
Jo Jo

Letting B —> 0+, we see that EQ = 0. This proves part a.

Let £(«) be the integer defined in (4.2). That is 7„(£(zi)) is the smallest abscissa in

the rule R„ which is bigger than £. If g G M(£), then according to [1, Theorem 2],

lim sup Rn(g, £) =   /    g(t) dt

if and only if g(£(n))/n -rOaszz^». Recall that 5B(f) g 2F(f) on £ < t < £ + B.

Also if 0 < b < B, then for all / in the interval (£, £ + b)

8b(t) = sup{ |/(0 - Kb + ö|: í < s < í + b]

g sup{|/(0 - /(B + £)|: f < s < £ + ¿>} + \1(B + £) - /(¿> + £)|

g 5B(f) + |/(ß + £)- /(¿ + £)|.

Therefore, if F(£(rz))/n -^Oaszz^», then ôB(£(n))/n ~> 0 for all small B > 0. Also

if for some fixed 5 > 0 one knows that 5B(£(n))/n —> 0 as « —> œ, then for all b in the

range 0 < b < B, 56(£(n))/n -» 0.

In particular, the hypotheses of part b always imply that

t>T pl + B

lim sup Rn(8B,0 =   /    8B(t)dt=  /        5B(f) rff
»-<» J£ Je
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for all sufficiently small values of B > 0.

From (4.1) and (4.3), we see that

Ei = lim sup \E((j, Rn)\

I rB I
S0+ {/(f + £) - KB + 0} dt\ + lim sup Rn(6B, £).

I * 0 n-»œ

Hence, for B sufficiently small,

£.dí    {/(i + 0 - /(* + 0} dt\ +  f       8B(t) dt
Ko I J(

£\l   1(t + 0- KB + £)} dt\ + 2 [    F(t + 0 dt.
\Jo Jo

Letting B —» 0+, we see that Et = 0. Thus

lim sup \E((J, Rn)\ = Hm \Et(J, Ä.)| = 0.        Q.E.D.

On combining Lemma 5 above, [1, Theorems 2 and 4] and the theorem in [2, p.

192], one easily proves the following result.

Theorem 4. Suppose (R) satisfies (3.1). For some fixed £ (0 < £ < 7), let / G Afd(£).

7/zen:

a. lim infB_„ |F„(/, £) - ft /(f) <ft| = 0.
b. If £/7 zs a rational (or respectively algebraic) number and if the abscissas f,

used in the definition of rule (R) are all rational (resp. algebraic) numbers, then

lim Rn(1, £) =   f   1(t) dt.
n-.cc J Í

This theorem can also be stated in a more general form which includes Theorem

4 above and Theorem 2 of Section 3.

Theorem 5. Suppose (R) satisfies (3.1). Suppose / is an integrable function on

0 — t ^ 7 such that / is continuous except at a finite set of singular points £,- where

0 ^ £t < £2 < • • • < £t Û 7. Redefine 1(f) = 0 when t = £,-.///« eac/z jma// one-

sided neighborhood of a singularity £,• the function \1(f)\ can be dominatedby a monotone

integrable function, then:

a. lim inf„_ \Rn(1) - ft /(0 *| = 0.
b. 7/ f/ze numbers £,-/7 are a// rational (or algebraic) and if the abscissas f, «sea"

z>z f/ze rz//e (i?) are a// rational (or respectively algebraic) numbers, then

lim Rn(¡) =   [   1(t) dt.
Ti-.» JO

5. Numerical Examples. The data in [1] will be used to illustrate the theory given

above. For the midpoint rule M(f) = 1ß) one has H = h = T/n. Since —Pn(s) = s

if 0 < s < h/2; s - h if h/2 < s < h, then ||FB|| = h/2 and K = 2. Therefore,
(3.7) has the form

/»r i*h /»fi/2

\E.(j, Mn)\ :g (A/2) /     |/'(0| A +        F(t) dt + 2 F(t) dt.
Jk Jo Jo

Table 1 contains data for the case

(5.1) /   rl'a dt = 2.f rU2
Jo
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Table 1

n              MJjo)             Error            Th. Error            Ratio Th. Ratio

25             1.8931             .1069              .6763              1.414 1.414
2"             1.9244            .0756              .4815              1.413 1.414
27 1.9465             .0535               .4321               1.415 1.414
28 1.9622             .0378               .2427              1.416 1.414
29 1.9733             .0267              .1720              1.413 1.414
210 1.9811              .0184               .1218               1.410 1.414

211 1.9866 .0134 .0864

The fourth column is the theoretical error computed using (3.7). This error bound is

seen to be pessimistic by a factor of 7 to 8. Corollary 2 suggests that the error may

be of the approximate form

(5.2) E,(1, M„) = Cy/h        (h - T/n)

for some constant C > 0. The ratios E,(1, M„)/E,(1, AfB+1) are given in column five.

The theoretical ratio computed using (5.2) is V2 (column six). It can be seen that

(5.2) is approximately true with C = .61.

Table 2 contains similar data for (5.1) using the trapezoid rule (7), Simpson's rule

(S) and the Gaussian two-point rule (G2). The theoretical errors are good for the

Table 2

Approx.            Error           Th. Error           Ratio Th. Ratio

25 X 7           1.7418             .2582              .6031             1.414 1.414
26 X 7           1.8174             .1826              .4294            1.414 1.414
27 X 7           1.8709             .1291               .3055             1.414 1.414
28 X 7           1.9087            .0913               .2168            1.415 1.414
29 X 7           1.9355             .0645               .1537            1.414 1.414
210 X 7           1.9544             .0456               .1089

26 X S           1.8427            .1573             1.1792            1.413 1.414

26 X S           1.8887            .1113               .8735             1.414 1.414
2rXS            1.9213             .0787              .6198             1.415 1.414
2s X S           1.9444             .0556               .4393             1.411 1.414

2'XS            1.9606             .0394              .3113             1.412 1.414
2W X S          1.9721             .0297              .2203

2 X G2           1.7528             .2472            7.6572            1.414 1.414
4 X G2            1.8252             .1748            5.4012            1.225 1.225
6 X G2            1.8573             .1427            4.4213             1.155 1.155
8 X G2           1.8764             .1236            3.8341             1.118 1.118

10 X G2            1.8894             .1106            3.4328             1.096 1.095
12 X G2            1.8991             .1009            3.1360            1.080 1.080
14 X G2           1.9066             .0934            2.9050            1.069 1.069
16XÖ2 1.9126 .0874 1.7640
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trapezoid rule and progressively worse for Simpson and Gauss two-point.  In

all cases, (5.2) is approximately true, E,(j, T„) =1.5 y/h, E,(j, Sn) = .89 y/h and

E,(j, nXG2) = .35 y/h.
Data for the example

/   r1/2 sin (f"1/2) dt = 1.008134
Jo

are given in Table 3. For this case, our theory predicts convergence but yields no

Table 3

Approx Error Ratio

.1153 -1.195

.0965 2.726

.0354 1.053

.0336 -2.800

.0120 0.024

.0507

.0632

.0157

.0321

.0780

.0516

.0068

.0206

.0091

.0537

.0130

useful information on convergence ratios. The data for Simpson's rules are taken

from [1]. After an initial oscillation the rule 2n X S apparently settles down to slow

but monotone convergence. The ratios indicate no pattern of convergence. Data

for n X G48 are taken from [1] for n = 1,2, 3, 4. The rest of the data was kindly

supplied privately by Dr. P. Rabinowitz. In spite of the assurances of Theorem 2,

this quadrature oscillates without any real hint of convergence. Example 6 in [1, p. 383]

with A = — .5 could be used to illustrate Theorem 4, part b. Again, the method

converges (by Theorem 4 above) but convergence is much too slow to be practical.
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25 X S

26 X S

27X S

28 X S

2'XS
210 X S

1   X   G48

2 X G48

3 X G4f

4X G4S

5 X Gi(
6 X Gi(
IX Gi(
8 X G48

9 X G48

10 X G48

1.1234
.9116
.9727
.9745

1.0201
1.0586
.9449
.9924

1.0402
.9301

1.0597
1.0013
.9875
.9990

1.0618
1.0211


