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On a Diophantine Equation Related to Perfect Codes

By Ronald Alter

Abstract. A necessary condition for the existence of perfect double Hamming-error-

correcting codes on q symbols, for q a prime power, is that the Diophantine equation

(!) + (Ï) <* -1) + © <* - v - *
have a nontrivial solution in positive integers. In this paper this equation is considered

for all q, and by applying Newton's method for approximating the roots of a polynomial,

it is established that it has no nontrivial solutions for all n, odd k, and q of the form q = 2sK

1. Introduction. Let Vn be the n-dimensional vector space of all n-tuples whose

entries are taken from the ring of integers mod q (q a. prime power). By the distance

between two points of Vn, we mean the number of places in which the points disagree.

A perfect double Hamming-error-correcting code on q symbols is a subspace S of Vn,

subject to the following conditions:

The distance between any two points of S is at least 5.

Every point Vn is within distance 2 of some (hence a unique) point of S.

Clearly, #(F„) = q", and, since 5 is a subspace, #(S) = q"~k for some k = n. With

regards to coding theory, n represents the number of transmission symbols and k is

the number of check symbols.

It is known that a necessary condition for the existence of perfect double

Hamming-error-correcting codes on q symbols is that V„ form disjoint spheres of

radius two about the points of its subspace S. (For this sphere-packing development

and more details and information about perfect Hamming-error-correcting codes,

the reader is referred to Berlekamp [1].)

If SQ represents the number of points in each such sphere, then #(S)-Sa = #(K„).

But

S. = £ (",)(« - I)4.

thus

(1) t(%- l>4 = ?*-

Writing (1) as a quadratic equation in n yields

(2) (q -  1)V - (q2 - Aq + 3)n + 2(1  - q") =  0.

Clearly, (2) always has the trivial solutions in positive integers k = « =  1 and
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k = n = 2. By fixing q, (2) becomes a Diophantine equation in n and k. This equation

has been completely solved by various authors, including the present one, for all k

and n when q < 10. (For a discussion of this, the reader is referred to Alter [2].)

J. H. van Lint [3] used (1) simultaneously with another Diophantine equation which

is also a necessary condition for the existence of perfect Hamming-error-correcting

codes and proved

Theorem 1. For n > 2 and q > 3 (q a prime power), there are no perfect double

Hamming-error-correcting codes on q symbols.

Because of the above theorem, (1) is no longer an equation of great importance

to coding theorists. However, if one could show that, for the Hamming metric, when

q is not a prime power, the total number of code words is still a power of q, (1) would

then be an important equation in the study of perfect codes over a nonprime power

alphabet. Nevertheless, independent of coding theory, (1) is an interesting Diophan-

tine equation, for, among other things, very little is known about exponential

Diophantine equations.

In [2], using a variation of the Thue-Siégel-Roth Theorem, it is proven that (2) has

only finitely many integer solutions. In the present paper, using Newton's method

for solving equations by constructing an approximating sequence to the roots, the

following theorem is established.

Theorem 2. The Diophantine equation (2) has no nontrivial solutions in positive

integers for k odd and q of the form q = 2s2.

2. Newton's Method. Returning to (2) and letting n = x/(q — 1), it follows

that

(3) x2 + (3 - q)x + 2(1  - q") =  0.

(If r is a root of (3), then r/(q — 1) is a root of (2) and thus must be an integer.) To

apply Newton's method, let

(4) f(x) = X2 + (3 - q)x + 2(1 - qk).

Then

(5) f(X) = 2x + (3 - q)   and    j"(X) = 2.

Clearly, j(x) is a monotone increasing function of x for all x = (q — 3)/2, since

f(x) = 0 for all such x. Also, since j"(x) does not change sign, there are no points

of inflection in the interval [(q — 3)/2, œ ).

Make the initial guess

(6) *o = V2 qk'2 + <L^1
2

Then it follows that the sequence

(7) xn+i = xa — ttt^t ,        n = 0, 1, 2, • • • ,
J  \Xn)

converges to the positive root r of /(x).

The following computations, which are necessary for the application of this
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method, are easily verified.

/(*.) =   -g2~64g+1- fteo) =  2 V2 qk/2.

íteo) _     /.   t/2   ,   g — 3      g2 — 6g + 1
Xi — x0       /        — v-¿ q     T      ~     ~r    o    /->   */2    '

/ (*o) 2 8V2?
(8)

(g2 •- 6g 4   l)2 „_ ^ _ „   ,„ _i/3  ,  g2  - 6g 4

2

/fc) = "     1287   " ■        fto>-2V2<r+    4^lqk,2

t/2   i   g — 3   ,   g  — 6q + 1      _(g   ^6g + 1)*2 = V2 g*" + ^-^ +
8 \/2 g ' 16 V2 g ' (16g* + g2 - 6g + 1)

It is easy to see from the last two terms in the expansion of x2, that the convergence

to the positive root r of (3) is quite rapid. In fact, it follows that

(9) fteo) < 0 = f(r) < fte2) < ftei)    and thus    x0 < r < x2 < Xl.

3. Proof of the Theorem.   There are two parts to this proof, (i) k > 3 and

(ü) k = 3.
(i) Letting k = 2/ — 1 and q = 2s2, it follows that

Xo = 2 s   -\- s   — 2 + § = »i 4- .5    for some integer m

q2 - 6g + 1        _l
8 V2 g*/2 8 V2Xi = /m + .5 + e,    where, for k > 3,     0 < e = —0    y„   t/2    < -—7^ < .09.

Hence it follows, for k > 3 odd, that

(10) m + .5 < r < m + .59.

Thus, r is not an integer and this completes the first part of the proof,

(ii) Here k = 3 and (4) becomes

(11) f(x) = x2 + (3 - q)x + 2(1 - g3).

Once again Newton's method is used, however this time a closer initial guess is

made. Letting

(12) Xo^V2q^ + ^-l + ^,

the following can be established.

,,   s           31g2 + 46g — 49 .     3/2        g — 7
KX°)=-128g-/(*„)= 2 V2 g      +^77^717,-

(13) xi = V2 q3'2 + ^ + 77^ +        "C+ 426g " 49

,/   x _ /      31g2 + 46g - 49     \
m> * Vl6(2g)1/2(16g2 + g - 7)^

(2g)1"   '   16(2gT"(16g' + g - 7)

2

From (13) it follows that

(14) f(x0) < 0 = /(/) < ftei)   and thus   x0 < r < Xl.
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Since q = 2s2, it follows that

..3,2       „   ,   \ s \   .   a   ,   I 7 ,_   ,   a   ,   1 7

and Xi < M + a/8 4-1/2 — 6/165 holds for some integer M and where [y] = greatest

integer = y and a G A where A = {0, 1, 2, 3, 4, 5, 6, 7}. Now letting a run through

the members of A and using

it follows for s = 3 (for s < 3, the problem has already been solved) that r lies

properly between two consecutive integers and thus cannot be an integer. This

completes the proof of Theorem 2.

4. Remark. On examining Theorem 2 for k even and q of the form q = 2s2,

one can easily establish that n = 1 or 2 (mod 4); however, it is not clear how to

proceed from here.
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