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Matrix Representations of Nonlinear Equation
Iterations—Application to Parallel Computation

By John R. Rice*

Abstract. A matrix representation of iterative methods is presented which includes

almost all those based on polynomial methods. A simple lemma and corollaries are estab-

lished which show that the order of convergence of the iteration is the spectral radius of

the matrix representation. A number of old and new methods, particularly those adapted to

parallel computation, are analyzed using this representation.

1. Introduction.   We consider solving the single equation

(1) f(x) = 0.

The purpose of this note is threefold. First, we exhibit a matrix representation of

iterative methods which includes almost all of those based on polynomial approxi-

mation or Taylor series expansion. This representation can be written down by

inspection in many cases, including the "standard" iteration methods. We next

present a simple lemma and corollaries which show that the order of convergence

of the iteration is the spectral radius of the matrix representation. Finally, we consider

iteration methods particularly suited for parallel computation and single out two

particularly efficient ones.

Recall that a computer with parallel processing can perform many computations

simultaneously. In particular, j(x) can be evaluated for a number of arguments in

the same time that it takes to evaluate it for one argument. Note that parallel compu-

tation sometimes can be used to speed even one evaluation of f(x), e.g.

f(x) = x2 + cos(3* + 1) * sin(3.* + 2) + sin(6* - 5) * cos(3x - 1)

can be evaluated at almost the same speed as g(x) = 4 cos(3x + 2). We assume tha*

an adequate number of processors is available for any parallel computation specified

in this paper.

2. Matrix Representations. We consider iterative methods to compute a

sequence of «-tuples {x'k, k = 1, 2, • • • ,«}"_, of values each of which is an estimate

of the root x* of (1). We denote the «-tuple by X' = (x[, • • • , x'„), the xi need not be

distinct. In order to exploit parallel computation, one considers iterations of the

form

(2) x'k+1 = <pt(X'),       k - 1,2, ••• ,»,

where <pk is some iteration function. These computations usually can be performed

simultaneously, and the speed of evaluation of Xi+1 from X* is independent of n.
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We consider polynomial interpolation methods defined as follows:

1. For each k, a subset of the «-tuple X' is selected. We indicate this selection by

the row vector Tk = (tkl, ■•• , tkn) which has tki = 1 if x' is selected and has tki = 0

otherwise.

2. A polynomial Pk(y) in y is obtained which interpolates the points (x), y¡ =

j(xij)) selected. (This is classical inverse interpolation.)

3. The value x{+1 is Pk(0).

These methods are then represented by the matrix T with rows Tk. Two simple cases

are illustrated below :

Secant Method. We have a sequence of pairs x{, x2, and x\*1 is determined by

linear interpolation through x\ and x2. We simply take x'2+1 to be x\. The matrix

representation is

Ts =

and one might symbolically visualize that

1    1

1    0.

(x\+\x2+1)= Ts®

but the required "operator" (x) is undefined. Recall that the error e[ = \x* — x\\ of

the secant method satisfies e[+1 = Ke[e2 and observe that e2+1 = e\. Note that the

spectral radius of Ts is 1.618 which is the order of convergence of the secant method.

Newton's Method. We may interpret Newton's method as the limiting case of

chord interpolation as the two points of interpolation coalesce. Thus we have a

sequence of pairs of identical points x{ = x2. The point x[+1 is determined by the

interpolation of value and derivative (which is the limiting case for linear interpolation

at coalescent points) and since x2+l = x\+1, the matrix representation has two identical

rows:

TN =

Recall that the errors e) = \x* — x)\ satisfy

«?;+1 =  K(e\)2 =   Ke\e\,
* + l i +1 xrí   *   » \

e2     = ex     =  K(e¡e2) ,

and observe that the spectral radius of TN is 2, which is the order of convergence of

Newton's method.

We note later some composite methods and such a method is represented by a

set of matrices, one for each step in the composition. Thus, if one alternately used

Newton's method and the secant method, the matrix representation is Ts, TN. Observe

that, with matrix products,

Ts * Tk =
2    2

1    1

which has spectral radius 3. It follows from Corollary 3 that this is the order of

convergence of this composite method.
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3. Order of Convergence. A discussion of parallel computation leads one to

distinguish between the time that a computation takes and the effort that it takes.

Thus we define two kinds of order for an iteration as follows: Set

e'k = — Log \x'k — x*\,       k = 1, 2, • • ■ , «; / = 1, 2, • •• ,

£" = (e\,e2, ■ ■ ■ ,el),

and the temporal order is

(3) p " ÎU?  \\F\\   '
where 11 11 is a convenient vector norm. The exact choice does not affect the later

analysis so we do not make one here. Let p be the total number of evaluations of

f(x) and similar quantities (e.g. f(x)) made in (2). The computational order is co = p1/v.

The definition (3) is standard for the order, but it leads to certain technical com-

plications since the limit need not exist in all cases. Thus, we alternatively define

the temporal order by

(3a) p = Lim [H^H]^.

If the limit in (3) exists, then (3a) gives the same value. This paper shows that the

limit in (3a) does exist and shows how to compute the order p.

Note that we say a method converges if \\E'\\ tends to infinity. This does not

imply that x\ — x% converges to zero for all k. We have chosen to select the "best"

component xk as the one which measures the convergence and its order.

We first establish a lemma which relates the order of convergence to zero of a

sequence of recursively defined quantities to a matrix T used in the recursion. This

lemma has application to other areas of numerical analysis besides the specific one

in this paper. For simplicity of notation, we introduce the index set

/* = [j | tfh = 1}.       k = 1, 2, ••• , n,

and consider the following recursion

(4) vl+1 = a  17 [1 + ô(v))]v),        k =  1, 2, • • ■  , n,
i£tk

which defines the sequence of vectors V.

Lemma. Suppose there are constants 5* and a number M so that

\8(v))\ Ú  Sf \v)\    for \v)\ g M.

Let pT be the spectral radius (largest eigenvalue) of T. Further suppose that either

\a\ < I or there is ak*,\ ^ k* ^ «, so that Ik has at least two nonzero components.

Then there is an e > 0 so that \ \ V \ \ < e implies that there is convergence and the order

p of the convergence satisfies

(5) p = pT.

Proof. It follows from the second supposition that there is an ^ > 0 so that

||K°|| < cj implies that some v'k converges to zero. We assume that e < M, e < e^

and define

e'k =  —Log \v't\,        E' = (e\, •••  , e'„).
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We have from (4) that

or

ei+1 = Log a +   E^i+   £ Logd + «("}))
í6/i ¡eii

^ T* 7^
-.* I I       I       1 1  T^' ! I       ' * I I   *

\\E'\\      Hfi'll   '   ||£'||   '   ||*.

where

W = (Log(l + Kv'M-i,        A = (Log a, • • • , Log a).

The first assumption of the lemma implies that

\\TW\\   . \\V*\\fei swmax3f

and hence ||7TF||/H*|| converges to zero since ||*|| converges to + <». Similarly,

we have that | \A | |/1 |*\ | converges to zero. We have now established that | |*+1 | |/1 |*'\ \

behaves like 117** \ \ / \ \ É \ | as / tends to infinity.
The vector J*'depends on i and we denote (\\A\\ + ||77r||)/||*|| by ti and we

know that et tends to zero. Even though ||*|| tends to infinity, we might have

||7*|| = 0 if Ex does not contain any component of the subspace associated with

the eigenvalue pT. For the moment, we assume that E' has such a component for all i

sufficiently large. Then we have

||tf|| ^ |irr-111 (i - Wpr) ^ lirll'-'-1 ||r*|| (i - e,/*,)'-'-1

è (pry-'-1 ||r*||(i - h/pt)'-'-1.

Fix j and we have

Lim H^ll1" - Lim tff1'*»" \\TE<\\l/i (1 - e,/pT?-u+1)/i]
V-+CO V—»CO

=  pr(l  — e,/pr).

Now j is arbitrary and since e¡ —» 0 as j —> °=, we have

Limllznr ^ pT.
i—»eo

We likewise note that

||*|| ú lir*-1!! (i + e.-i/pr)

and, since E* contains components in the subspace associated with pT, we have

||*|| á PT II*"1!I (i + WPr).

Thus

11*11  ^  Pr"'-1 11*11(1 + 6,/pr)''-''-1

and a similar argument shows that

Lim |ll^Ml/<

»-♦CO
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This concludes the proof except for the following point.

It is conceivable that there is an E° so that for all i sufficiently large * is in a

subspace complementary to the subspace associated with pT. Round-off effects will

introduce components associated with the eigenvalue pT in any actual computation.

However, the phrase "with probability one" has been included in the lemma's

conclusion to express this observation.

In order to apply this lemma to iterative methods, we need to derive a recursion

relation for the errors el. This can be done neatly and in generality using Newton's

interpolation formula and divided differences. To simplify the notation we set

g(y) - f\y),      gw(y) = fgW/df,      yt - /(**).

The points entering into the determinations of x'k+1 are determined by Ik and we

temporarily fix k and denote the elements of Ik by ju j2, • • • , /„. We have

i6) #00 = g(y¡,) + gly,\, y¡A(y — y¡J + • • • + gLv,-,, • • • , yiv]

• (y — y,J •■■ (y — v ,-„_,) + g[y,\, • • • , Vi„ y](y — y,J ■■• (y — ><,)■

The final term in (6) is the error of interpolation made in using the other terms which

constitute Pk(y). With x'k+1 = Pk(0), we have

(7) \xi+1 - x*\ = ifbi.. • • • , y,„, Obi, • • • y,,\-

Note that the superscripts i have been omitted on the j>'s. This equation is somewhat

more familiar if we note that

*. = /'(*,„)(** - x)J

and replace the divided difference by a mean value of the pth derivative at a point r¡k.

We obtain

\xi+i -x*\ = \gw(Vk)\ ni/uoi i**-*íi.
j-e/t

This may be rewritten in a form so as to apply the lemma as follows:

(8) \x'k+1 - x*\ = a II u + 5(|** - *J|))|** - x)\

where

a = |g<r)(0)| |f(**)|',

1 + 5(|** - x)\) =  {1 + g'v+1\r,k)f(vù(x* - Vk)/gw(0)}

• ( 1 + /"(£)(£ - x*)/f(x*)}.

We note that all the mean values t]k, rjk and £} lie in the interval spanned by the xi

and x*. We now have immediately from the lemma the

Corollary 1. Assume that f(x*) ¿¿ 0 and f'\x*) exists and is continuous for

j = 2, •••,«+ 1 and that the spectral radius of the matrix representation T of the

iteration is greater than 1. Then there is an e > 0 so that \x* — x°k\ < e, k = 1, 2, • • • ,

n, implies that the iteration defined by T converges with order p which is the spectral

radius pT of T.
It is perhaps not obvious that this corollary does not imply that all components

of X* converge to x* with order pT, but rather only that some do. Useful methods

are likely to have the same order of convergence for all components of X*.
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We note that a slight modification of this argument can be carried through when

inverse interpolation is replaced by direct interpolation. We have

Corollary 2. Assume that the polynomial interpolation method uses direct rather

than inverse interpolation. Then Corollary 1 is still valid.

These two corollaries include Theorem 1 of [1]. The present shorter and simpler

proof is due to the fact that the difficulties inherent in Hermite interpolation are

taken care of by the use of standard results on divided differences.

We also note

Corollary 3. The order p of convergence of a composite method TkTk^ • ■ ■ T2Ti

is the spectral radius pT of the product of the matrices, i.e. of

T = TkTk. T2TX

Thus, as noted earlier, the composition of Newton's and the secant method has

order of convergence equal to the spectral radius of TSTN, which is 3.**

4. Analysis of Old and New Iterative Methods. This section considers a num-

ber of iterative methods which are either of practical interest or of an illustrative

nature.

a. Standard n-Point Newton and Secant Methods. Both of these are included and

the matrix representations are given for the case of 4-point methods (using cubic

polynomials).

T =

Newton

1111

1111

1111

1     1     1    lj

P= 4,

= 41/4 = 21/2 =  1.414,

Secant

1111

10    0    0

0    10    0

,0010

p = largest zero of t4 - t3 - t2 - t — 1 =  1.976,

œ =  p.

Note that T for the secant method is simply the companion matrix for the polynomial

f - L?:i *'•
b. Recent Parallel Computation Methods. The first attempt to use parallel compu-

tation for solving nonlinear equations appears to be [3]. The approach there does

not make effective use of parallel computation in that the order of convergence is

not essentially increased, but the computational effort is. The situation is illustrated

for the second method described in [3]. We choose N = 5 and the scheme is as follows

(given an initial pair of points a 0, b 0 so that f(a0) > 0, j(b0) < 0).

1. Choose 5 points x¡ equally spaced in the interval ak, bk.

2. Pair Xi with ak or bk so that the signs of the values of f(x) are opposite.

3. Compute y{ by the secant method from this pair of points.

4. Select the pair (out of the 12 points now generated) of points a4+1, bk+1 so that

f(x) changes sign between the pair and f(x) is minimized on the pair.

** Theorem 2 of [1] implies that the order of convergence is 3.24

that this theorem is incorrect.
(1.62)(2) and thus we note
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It is intuitively plausible that the order of this method is the same as for the

secant method. The use of parallel computation has only reduced the constants

involved in the decay of error, not the order. This method is difficult to analyze due

to step 4, however, one can decompose it into a composite method with matrix

representation

T =
2 — d¡ — d2    d¡ + d2

2 — d3 — dt    d3 + di.

where 0S¿¡í 1. The matrix 7" is the product of T3T2TU corresponding to step 1,

step 2 plus step 3 and step 4. We note that Ti is 7 by 2, T2 is 12 by 7 and T3 is 2 by 12.

The matrix T3 is not constant, but for all possibilities one finds that T is of the above

form for appropriate values of the d{. A simple analysis shows that the spectral

radius of T is less than or equal to 2 and the computational order is thus at most
2i/io = j 072

A class of methods of higher order are described in [2]. This class has two param-

eters m and r and the matrix T is of order « = m + r — 1, defined as follows:

for i = 1,2, • • • , r,

tu =  1     for i + j <. n,        i,, = 0    for í -f j gï n,

and for / = r + 1, ■ • • ,m-\-r— 1,

ta = 1    for i — j = r,        ?,, = 0    otherwise.

This is illustrated for m = r = 3, where we have

11111

11110

1110    0,        p = 3.32.

10    0    0    0

0    10    0    0.

Thus, x{+1 is determined by quartic interpolation on **, j = 1,2, ■ • • , 5; x2+1 is

determined by cubic interpolation on x), j = 1,2,3,4; x'3+1 is determined by quadratic

interpolation on x), j = 1, 2, 3, and x{+1, xi+1 are taken to be x[, x2, respectively.

Note that this class always includes at least one of the points of X' inZ,+1. Note also

that the notation here differs from that of [3].

A composite method simpler and more interesting than those of [3] is given in [1J.

It is denoted there by ( 1, 2) o (2,1 ). It is the composition of the methods represented by

7\ =

1    1    1

1    0    0

1    0    0J

1    1    1

1    1    1

1     0    0

we have
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3      1      1

T = T2Tx = 3    1    1

-1     1     L

which has spectral radius of 4.56 and thus the average temporal order is p = 2.14

and the average computational order is w = 1.66.*

c. Two New Methods for Parallel Computation. A little reflection shows that for

a given value of « (or size of T), one wants to make the spectral radius of T as large

as possible. It is easily seen that the largest spectral radius is achieved by Newton's

method. This method requires that derivatives be available and thus one is naturally

led to ask for the largest spectral radius which does not require derivatives. Two

attractive methods from this point of view are illustrated for the case n = 4.

Simultaneous (n — 2) degree

Olli

10    11

110    1

.1110

p = n — 1,

co = (n - l)1/n,

Coupled (n — 1), (n — 2) degree

0    111

10    11

110    1

Ulli

p - r« - i + (4 + (« - i)2)l/2]/2,

1/n
«  = p

d. A Combination Secant and Hermite-Secant Method. We generate a sequence

of 4-tuples of only two distinct points. Given two distinct points, two new ones are

determined by (i) the ordinary secant method and (ii) interpolation of value and

derivative at each of the two points. The rows of T that represent these two computa-

tions are (1, 1, 1, 1) and (1,0, 1,0) and a square matrix may be obtained by adding

any two convex combinations of these rows. These two rows simply add eigenvalues

of zero to the matrix T. The result is

T =

1111

1111

10 10

10    10

P= 3,
3l/4 = 1.32.

e. Another Composite Iteration. (This example is taken from the Ph.D. qualifying

exam at Stanford University [4].) Explicitly, we have in the usual notation

xn+i      xn f(Xn)/f(Xn), Xn+2   =   Xn+l   —   /(*„+,)//'(*„).

In order to analyze this method with the current technique, we consider the composi-

tion of three methods represented by

(Xn, Xn)      * (*n+l, *n)> T\   —

1       1

1    0

t The values 4.83 and 1.69 of [1] are incorrect and are to be replaced by 4.56 and 1.66, respectively.
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(*n+li -Xn)       *  (Xn + 2> Xn+i),       T2   —

V*n + 2> Xn + i)       *  (xn + 2, xn + 2),        13   =

1 1

1 o.

1 0

1 0

We have T = T3T2T¡ = (2 }) which has spectral radius 31/2.

This method corresponds to replacing the second equation by

5t       -x       -i(x     ̂ /T/^>-/fc>1        ,       _fel±l)
xn+2 - *„+1    nxn+1)/ [_ x^ _ Xn j - Xn+1    f(U

where £„ is a mean value. This results in a "high-order perturbation" of the original

method as we have

Xn+2 Xn+i
/(*n + l)

[l - /"(£.)(€. - *-)]•

Although it is not established here, such a "higher-order perturbation" does not

affect the order of the method.

We close with a comparison of the three most promising methods for parallel

computation, namely Newton, simultaneous (n — 2) degree and coupled (n — 1),

(n — 2) degree. We note that none of these schemes are really competitive with the

secant method as far as computational order is concerned. The temporal and com-

putational orders are given in Table 1 for these three methods.

Table 1.   Comparison of Orders for Three Methods Adaptable to Parallel Processing

Coupled (n - 1), (n - 2)
Degree Method

Temporal

order

Computational

order

Simultaneous « — 2

Degree Method

Temporal

order

Computational

order

Newton's Method

Degree (n — 1)

Temporal

order

Computational

order

3
4
5
6
7
9

11

2.414
3.303
4.236
5.193
6.162
8.123

10.099

1.342
1.348
1.335
1.316
1.297
1.262
1.234

2
3
4

5
6
8

10

1.260
1.316
1.320
1.308
1.292
1.260
1.233

3
4
5
6
7

9
11

1.442
1.414
1.380
1.348
1.320
1.277
1.244
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