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On the Gaussian Integration of Chebyshev Polynomials

By A. R. Curtis and P. Rabinowitz

Abstract. It is shown that as m tends to infinity, the error in the integration of the Cheby-

shev polynomial of the first kind, T{im+2)j±2^x), by an /n-point Gauss integration rule

approaches (-!> • 2/(4/2 - 1), / = 0, 1, ■ • • , m - 1, and (-!>' • tt/2, / = m, for all J.

1. Knowledge of the errors in the numerical integration of Chebyshev poly-

nomials of the first kind, Tn(x), by given integration rules has proved to be useful in

various situations. On the one hand, they can be used in estimating the error in

integrating functions of low-order continuity [4] or with branch-point singularities

[5]. On the other hand, they are needed in computing the norm of the error functional

of the given rule in a certain family of Hilbert spaces of analytic functions [7]. For

certain rules, namely for Gauss, Lobatto and Radau rules, asymptotic, and in some

cases exact, values of these errors for certain values of the parameters involved were

given in [3]. In this paper, we give further asymptotic results for the case of Gauss

integration which are valid for all values of the parameters, thus completing the

picture in this particular but very important case. These asymptotic results, which

agree with the true computed results quite early, have been used to explain why the

use of a Gauss rule with an even number of points, say In, is superior to one with an

odd number of points, 2n + 1, in integrating a function which is not analytic at the

midpoint of the integration interval [6]. Numerical evidence suggests that similar

results hold for a second family of important rules, the Lobatto rules, but the tools at

our disposal in this case are not as powerful as in the well-investigated Gauss case

and, hence, we were unable to prove these results.

2. The Chebyshev polynomials of the first kind, Tn(x), are defined in I = [— 1, 1]

by Tn(x) = cos nd, where x = cos 0, 0 ;£ 0 — it. We shall denote the error in in-

tegrating T„(x), using a Gauss m-point rule, by

/l m
Tn(x)dx - £ N>,ltt*)

•1 i-l

where xt = xi-m, i = 1, • • • , m, are the zeros of the Legendre polynomial of degree

m and Wt = witm, i = I, • ■ • , m, are the corresponding weights which are all positive

with E"-i w< = 2. Since Tn(x) is odd for n odd and since the Gauss rules are sym-

metric about the origin, it follows that Em(T2k+1) = 0 for all k. Furthermore, an

m-point Gauss rule is exact for all polynomials of degree :S2m — 1. Hence, we shall

only consider Em(T2k), where k    m. In this case, we have
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Em(T2k) =-^—5 - E WiTniXi).
1 — 4Ä

For k = m + j, it has been shown in [3] that, as m —> °°,

Em(T2m+li) = tt/2 + 0(ffi-'), j = 0,

= -ir/2 + (Km-1),      j = 1,

= 0(m-1), y > 1,

and, in fact, exact expressions have been given there for Em(T2m+2j), j = 0, 1, 2, and

it has been indicated how to obtain exact expressions for larger values of j. In Section

3, we shall derive an asymptotic expression for Em(T2k) for the case k = 2m + 1 which

generalizes easily to k = (2m + l)j, j = 2, 3, • • • . In Section 4, we do the same for

the case k = 2m + 1 ± /, / = 1, • • • , m. This again generalizes to k = (2m + l)j ± /,

j = 2, 3, • • • , / = 1, • • • , m. Hence, we shall have obtained the asymptotic behavior

of EJT2k) for all k.

3.  In the Gauss m-point rule, the abscissas xf, i = 1, • ■ • , m, have the following

asymptotic behavior [1, p. 787]:

Let x{ = cos 0,-, then

6i =   = iJftV + cot(^r,T)/Bm° + 0(w-8)

= fa + cottf>,/8m2 4- 0(m~~*),

where fa = fa,m = ir(4z - l)/(4m + 2).
It follows that

Tim+2(x,) = cos((4m + 2)0.)

= cos((4/ - IV + 4ms t 2 cot 0, + 0(m"2))

= cos((4/ - IV + ~- cot fa + 0(m'1))

- cos((4i - IV + fri>.

where A< = (I/2m) cot <£, 4- 0(m-1). By Taylor's theorem,

cos((4i — IV + A,-) = — 1 — y cos((4/' — IV + f,-A<)

with 0 < t, < 1. Hence,

m mm ^2

w>Tim+2(Xi) = — X f, — E h>< cos((4/ — IV 4- r,A.)
2

= -2 — £ w< cos((4f - IV + tihi)— ,
t - i £

so that
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Z WiT^+AXi) + 2 = £ w<ti/2.
-l >-i

We now show that        wt% ~ 0{m~l) which will imply that

/X mTim+2(x) dx — X wir4„+2(x,)
-l i-i

1 - (4m + 2)'
+ 2 + 0(w"1) =2 4- Oim'1).

Since A2 = cot2 <p</4wi2 + OQrf1), it suffices to show that XX i wt cot2 tf>( = O(m).

This we do by showing that

Llm+1)/2J ,.x/2

X)    vt\ cot2 <j>i < K I cot2 0 <*<;

= (—cot<p — <p) |^/24m+2> = O(m),

since, by symmetry,

l(m+l)/2] m

2       ^ COt2 0i  ^   X! w> COt2 0i •

Now, by [8, p. 351], w< = OQtT1) uniformly in z, i = 1, • • •, [(m + l)/2], so that

w< < K(<f>i — <j>i-i), i = !»•••, [(m + l)/2], where 0O = 7r/(4/77 + 2). Since cot2 <p is

monotonically decreasing in (0, t/2], we have that

Wi cot2 <p, < tf(0, - <p,_,) cot2 <pi < K I      cot2 0        / = 1, •••,[(/« + l)/2],

which proves our result.

Similar reasoning leads us to conclude that, for any fixed positive integer j,

E(T,im+2)i) = (-1)'+I -2 + Oim-1).

4.  Let us now consider

7*4m+2±2i(Xi),      I = 1, • • • , m.

This is equal to

cos((4m + 2 ± 2/)0<) = cos((4m + 2)0,) cos 2/0,-

=F sin((4w + 2)0() sin 2/0,,

so that

m m

E w,r4m+2±2i(x,) =       Wi cos((4m + 2)0<) cos 2/0,
i-l t-1

=F X)     sin((4m + 2)0.) sin 2/0<.

Now
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Z H>< cos((4w + 2)6:) cos 2/0,

m I i 2\

= Z - cos((4i - 1)tt + tihdj) cos 2/0<

= - Z     cos 216, - 5j     cos((4/ - IV 4- cos 2/0<
i-1 i-l 2

M

- -£ W.^iC*,) + 0(m~l),
i-\

m

^ Z wih*i = 0(m_1).

since

y2
cos((4i — IV 4- fi/ii) y cos 2/0,Z wi

i-l

On the other hand,

sin((4/ - IV + hi) = cos((4/ - IV + «,*<)•*<

where 0 < w, < 1, so that

|Z *4 sin((4m 4- 2)9,) sin 2/0,-1 g

and we can show, as previously, that

|<m+n/2] p.   ,.i/2 /,„„ „\

Z    »«l*«|S-f oot*& = oM

Hence, we have that

Z WtT^^uix,) - - Z w.rwOr.) 4- of^^j ,      / = 1, • • • ,

But

f 2
Z = J ^ T2l(x) dx = { _ 4/2 ,

for / = 1, • • • , m — 1, since Gauss integration is exact for all polynomials of degree

<2m, while

Z w-^fc) = J ^ T2m(x) dx - EJJ2m) = ~\ + Oim'1).

Hence, we have finally

m

Em(Tim+2±2l) = — Z w,7/,4m+2±2i(xi) + 0(m_1)
i-l

2
Y~Z~A-f + J .      /=!,•••, m - 1,

Similarly, for n = (2m + l)y, we have

2 4
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£(r(4m+2),.±2i) = (-1)' Af2_ l + ol^f) ,      ? = 1, ••■ , m - 1,

= (-i)'| + o(^), /= m.

We can combine the results of Sections 3 and 4 in the following theorem:

Theorem. Asm-* =°, the error in them-point Gaussian integration of T<im+2)i±3l(x)

approaches (-1)' -2/(4/2 - 1), / - 0, 1,  • • , m - 1, and        -w/2, / = m.

Remark. Chawla [2] states that limn_«, £tT2B+3Jk+a) = 0 for k 2; 1, where k may

vary with n. This has been shown to be incorrect by our results. A possible source of

error in [2] is the use of Eq. (10) there

p      £2fc + 2     I     >2 _ ylk _ .

E0.(Tk) =~ -- \   5-^ * -a%
4 Jo, ?

which is valid for a fixed Tk(x), in the derivation of (11):

£ö,(r*)~7r/2      if* = 2>z,

~ -tt/2 if k - 2n + 2,

~ 0 if A > 2« + 2.
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