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Tridiagonalization of Completely Nonnegative Matrices*

By J. W. Rainey and G. J. Habetler

Abstract. Let M = [ttUiSi /_i be completely nonnegative (CNN), i.e., every minor of Mis

nonnegative. Two methods for reducing the eigenvalue problem for M to that of a CNN,

tridiagonal matrix, T = [?,-,] (r,-,- = 0 when |i — j\ > 1), are presented in this paper. In the

particular case that M is nonsingular it is shown for one of the methods that there exists a

CNN nonsingular 5 such that SM = TS.

1. Introduction. It is well known that if M = \mitJlttml is Hermitian, there

exists an orthogonal Q such that QMQ* = Tis tridiagonal, i.e., = 0 when \i — y|

> 1. Moreover, for X (>0) sufficiently large and some nonsingular, diagonal D,

D(T + X/)7>_1 is completely nonnegative (CNN), i.e., every minor of D(T + X/)Z>_1

is nonnegative. (See [2], [3] for a discussion and applications of CNN matrices.)

We want to show that an analogous result can be obtained when M is CNN. Namely,

we will show that given any arbitrary CNN matrix, M, one can easily construct a

CNN tridiagonal matrix, T, which has the same eigenvalues as M. Two methods for

obtaining T are described in Section 2, both methods being based upon a result

derived in Section 3. *

2. Outline of the Methods,  (a) First Method. If for some k (2 = k = n — 1),

(2.1)        mu = 0   (ffi,-, = 0),      / = 1, • • • , k - 1, j = i + 2, ■ ■ ■ , n,

we will say that M is "lower (upper) Hessenberg through its first k rows (columns)."

For convenience, we will say that any matrix is Hessenberg through its first row or

column. A matrix is Hessenberg in the case k = n — 1.

In Section 3, we prove the

Basic Lemma. Let M be lower Hessenberg through its first k rows. Then, there

exists a CNN matrix, M', which has the same eigenvalues as M and which is lower

Hessenberg through its first k + 1 rows. If M is nonsingular, then there exists a CNN

nonsingular S' such that S'M = M'S'.

By a sequential application,of the Basic Lemma, it follows that we can find a

CNN lower Hessenberg matrix, H, which has the same eigenvalues as M. We note

that if M is nonsingular then H = S"M(S")~\ where S" is CNN (from, e.g., the

Cauchy-Binet theorem [2, I]).

Let P be the matrix obtained by reversing the order of the rows of the n X n

identity, I; trivially, P~l = P.
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Define H = PHP. H is similar to H and therefore has the same eigenvalues

as M. His obtained by reversing the order of the rows and columns of Hand therefore

is upper Hessenberg; since the value of a minor is not changed by reversing the order

of the rows and columns of its array form, H must be CNN.

As we indicate in Section 3, a sequential application of our method of proof of

the Basic Lemma to H maintains the upper Hessenberg form of H and therefore

yields a CNN tridiagonal matrix, f. In general, we could take T = t. In the particular

case that M, and therefore H, is nonsingular, we note as before that there exists a

nonsingular CNN S such that f = SH(S)~\ defining

T = PfP = PSH(S)~lP

where S = PSPS", it is easily verified that T is tridiagonal, CNN, and that S (the

product of the CNN matrices, PSP and S") is CNN.

(b) Second Method. If, for some k (2 ^ k = n — 1),

{2.2)        mu = mu = 0,      i = 1, • • • , k - 1, j = i + 2, ■ • • , n,

we will say that M is "tridiagonal through its first k rows and columns." For con-

venience, we will say that any square matrix is tridiagonal through its first row and

column. A matrix is tridiagonal in the case k = n — 1. We want to prove the

Sequential Lemma. Let M be tridiagonal through its first k (<« — 1) rows and

columns. Then there exists a CNN matrix M which has the same eigenvalues as M and

which is tridiagonal through its first k + 1 rows and columns.

Proof. Applying the method of proof of the Basic Lemma to M yields M' which

is tridiagonal through its first k rows and columns and lower Hessenberg through its

first k + 1 rows.

Since every minor of the transpose (M')' of M' will be the transpose of some

minor of M', we note that (M')' is CNN. Moreover, (M')' has the same eigenvalues

as Af, is tridiagonal through its first k rows and columns and is upper Hessenberg

through its first k + 1 columns. Applying the method of proof of the Basic Lemma to

(M'Y would now yield M.
The proof of the preceding lemma indicates a method of "sequentially tridiagonal-

izing" (a term introduced in [1]) M with, as we will show, the desirable property

that each intermediate result of the procedure is CNN.

Let Af'*' = [wj,.*']",,.! be the (A; — l)th result of applying the sequential tri-

diagonalization procedure to M (in general, M(1) = M, Min~1) = T). In analogy

with (2.2), we can assume that

(2.3) mi* = «g? = 0,      / = 1, • • • , k - 1, j = i + 2, • • ■ , n.

As shown in [4, p. 399 ff.], a measure of the stability of the procedure (but by no means

the most important measure) is the growth of the quantities

(2.4) Pk =   Z_,  mki mik ,

= PSPHP(S) P

= PSPS"M(S")~1P(S)~iP

= SMS'1
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where the pk (see, e.g., [1]) also satisfy

(2.5) pk = tk+liktktk+1, k 1, , n 1.

We want to show that the pk cannot become arbitrarily large.

First of all, we note that MU) (k > 1) is obtained by similarity transformations

performed on either Mu'1) or on a "reduced" form of Afu_1); in either case,

trace(MU)) = trace(Ma-,)) and, therefore, trace(Af) = trace(Ma') for all k.

Now, since Afu> is CNN,

i«;    i*j  ^      (Jt)    (it)        r* • v*.  ;    i i
mkk m)j  = mkj mik  ^ 0,      j = k + I,

and, therefore,

^ P* ^ 0,

or, since trace(M) = trace(M(i') = Z"-i w;*'>

(2.6) 0 ^ Pk g: (trace(M))2.

By maintaining the CNN property in our procedure, we are assured that the pk

remain uniformly bounded with respect to k.

We note that if M(1) is nonsingular, then Af'"-1' = Tis similar to Afm; letting

"~" indicate similarity, we have, in the notation of the Sequential Lemma, M -~

M' ~ (Af')1 ~ M (since any square matrix is similar to its transpose) and by induc-

tion, Mn) ~ r. Thus, r = S'Af'1'^1 for some S but the S "constructed" as in

the proof of the Basic and Sequential Lemmas is not, in general, CNN. For example, if

M =

3 1 1

2 2 2

1   3 4.

then, following the procedure indicated on the proof of the Sequential Lemma, one

obtains

T =

3 2

1 5.5

1

0

.75

.5 .

0

.5 .5

1 1

0

The question of whether or not there exists, in the general case, some CNN S such

that T = SMS'1 remains open.

3. Proof of the Basic Lemma. Let M be CNN and lower Hessenberg through

its first k rows but not through its first k -f 1 rows. Then, there exists p ^ k + 1

such that
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(3.1) M =

X ■ 0

v 0 •

I*.

.X

X.x_

where the X,s indicate possibly nonzero elements, u = mliV and

(3.2) d = 0.

Note. We indicate in (3.1) that p + 1 < n and k > 1; whether or not this is true

will make no difference in our argument.

We assert that we can verify our primary statement in the lemma by showing

that there exists a CNN matrix, say m, which has precisely the same form as m in

(3.1) and the same eigenvalues, but "6" = 0, and then calling on finite induction.

We proceed with the proof of the latter.

Consider first the case when u = mhv = 0. From the latter assumption, (3.2)

and the fact that u-mi,p+1 — v-mip ^ 0 when / = k, it follows that thepth column

of M must be null. By a similarity transformation involving elementary permutation

matrices, one can therefore obtain

"mi
M' =

where M[ is obtained by deleting the pth. row and column of M while m[ is obtained

by deleting the ptb. column of the pth row of M. Now, M[ would not, in general,

be CNN but

m = 0 I

0 0_

is easily shown to be CNN; moreover, since M' and M are similar, m must have

the same eigenvalues as M. Finally, from our description of M[, M evidently has

the desired form.

Now, suppose that u ^ 0. We can, therefore, use u to eliminate v by an "ele-

mentary column operation"; in particular, let

S~l = I - (v/u)EvE'v+1,

where I is the n X « identity and £< is the /th column of I. We want to show that

we may choose

(3.3) m = SMS'1,

where

S = 1+ (p/u)EvEv+i-

Since p = k + 1, it is evident that m has the desired form; it remains now to show
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that M is CNN. Since S is evidently CNN, we can and will verify the latter by showing

that M' = MS'1 is CNN. Note that if M,- is the zth column of M, then

(3.4) M' = [Mj • • • Mp Mp+1 - (v/u)MP Mp+2 ■ ■ ■ MJ.

In showing that M' is CNN, we assert that we need only consider those minors,

of which, say, n is an example, which satisfy the following conditions:

(a) y. depends upon elements of the (p + l)th column of M' but not upon elements

of the pth. column.

(b) If jx depends upon elements of the first k — 1 rows of M', then ß depends

upon elements of the first p — 1 columns.

If ß did not satisfy (a), then by inspection of (3.1) and (3.4), ß would be nu-

merically equal to a minor of M; if ß did not satisfy (b), then by inspection, ß depends

upon a null row of M. In either of the latter cases, ß would be nonnegative.

For brevity in the following, we introduce the Gantmacher notation: A(° ßb '.'.'.)

is that submatrix of the matrix A composed of elements from rows a, ß, • ■ • and

columns a, b, • • • while Ä(" I '.'.'.) is obtained by deleting row a, ß, • ■■ and column

a, b, ••• from A. Also, A[-■ ■] = det {A(-■ ■)} and ,![•••] = det M"(---)l-
Let ß be a minor of M' satisfying conditions (a) and (b), e.g.,

(3.5) ß = M'
a ß

a b c p + 1 d ■■

where a < ß < ■ ■ ■ and a < b < •■■ <c<,p+l<c?< •■• and c ^ p.

Note. Those minors of M' which depend only upon the columns, Mi, i = p + 1,

will be simple special cases of the following.

Now, from (3.4), (3.5) and a well-known determinantal property,

ß = M

(3.6)

Let

(3.7)

a ß

u 1uM\

■ c p + 1 d ■ ■ ■_

aß.

a • • ■ c p 4- Id

(v/u)M

vM

a ß.

a ■ ■ ■ c p d

a ß.

M
7 k S.

e P P + 1 d ■

a • • • c p d • •

•

where, say, y < k — 8.

Note. If a > k, then the first row of A would be composed of elements from

the fcth row of M; as will be seen, we lose no generality by supposing k > a.

For reference, we suppose that ati = mkp. Then, from (3.6) and (3.7),

(3.8) ß = v'^a^Ä '   — o,,,+l^r.     j j-

Thus, we must show that the quantity in brackets is nonnegative.

From (3.1) and (3.7),
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(3.9) A

X 0

0 • •

u' v' 0

where «' = ati, v' = a,,i+l. Since, with the possible exception of a "repeated" row,

A is a submatrix of M, A is evidently CNN. We require two lemmas, the second of

which will readily imply that p., as defined by (3.8), must be nonnegative when v > 0

and A is CNN and has the form noted in (3.9).

The following lemma was proved in [3, p. 309]; for completeness, we offer a

proof which does not require certain special results derived in [3].

Lemma 1. Let A be CNN. Then, for 1 = p g n,

(3.10) (-1)'+1 g (-1)<+Iaii^[*.] = 0.

Proof. In the case p = 1, the left-hand side of (3.10) is just det(A); in the case

p = n, the left-hand side reduces to alnÄQ. Since A is CNN, (3.1) is evidently

valid for these cases.

Assume now that 1 < p < n. Let s and i be chosen such that l = s<p<i = n

and suppose that, for all such pairs (s, /) and all k such that 2    k = n,

1 k = 0.

iJ

Then, for all i > p,

and (3.10) would reduce to the known inequality, Oir^f[i] — 0.

Assume that for some choice of s, i, and k, restricted as above, that

(3.11) ^ 0.

Let TV be the matrix obtained when the elements mn, ml2, •• • , of A are re-

placed by zeros. (3.10) is then equivalent to the assertion that

(3.12) (-l)r+1 det(AT) = 0.

(3.12) is evidently true when n = 2; we make the usual inductive hypothesis that

(3.12) is valid for all N of dimension less than n. Now, from Sylvester's identity

(see, e.g., [2, p. 33]),

det(7V)yV"
1 k
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or since all rows, except the first, of A and N are identical and noting (3.11),

Now iV[i] (and Ar[*]) can be obtained by replacing the first p — 1 (and p — 2) elements

of the first row of Ä[*] (and Äfc] with zeros; by the inductive hypothesis

(3.14) (-lr1^.] = 0,      (-l)('-1)+,/?[*] = 0.

' (3.12), and therefore (3.10), now follow readily from (3.13) and (3.14) and the fact

that A is CNN which completes our proof.

The following lemma now generalizes the result of Lemma 1 for the case that

A has a form such as in (3.9).

Lemma 2. Suppose that A is CNN and that

(3.15) au: = 0, / = 1, • • ■ , t - 1, j = s,

for some s and t satisfying 1 — s, t g n. Then, for p ^ s,

n,

(3.16) (-D,+'
t

L/J
^ 0.

Proof. Assume initially that s > t — 1. Define

(3.17) U, = A
t - 1 / + t - 2

t - 1 j + t - lj

and let R =

Again utilizing Sylvester's identity,

(3.18) R
*> • • • "1    a«-i Ji • • •'- r e + t - 1 • • • p + t - 1*1
f ... gj All ... t - le-f t - 1 ••• * + * - lj 1

presuming that the latter minor is gth order and

a = A i •

Li---,-iJ
Evidently, R is CNN. From Lemma 1, then follows

(3.19) ^ 0,

whenever 1 = <? = n — (t — 1).

Now, from (3.15) and (3.17),

Jl -• • t - 1 t
ru = /4

J ■ ■ ■ t - 1   / + / - I.

whenever j et s — (J — 1); from (3.18),
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Utilizing these last two relations and (3.19) yields, after some simplification,

(3.20) A-'(-ir' E (-l), + iatiÄ\ '1 = 0,

whenever p = s > t — 1. If A > Ö, then (3.20) reduces to (3.16). Suppose, however,

that A = 0; the inequality

(3.21)
t

L/J
< AÄ '-1 'I J>t-l,

t-l j]

is a special case of a result due to [2, II, p. 100]. Evidently, A = 0 would imply the

equality in (3.16) for the case j^.p = s>t — 1.

Finally, suppose that s = / — 1. Then, A[\ '.'.'.'] = 0, since A(\ ',) has a column

of zeros. Then, as in (3.21),

Therefore, (3.16) either reduces to an equality (when p > s) or to the known in-

equality, atvÄ[T] = 0 (when /> = s). This completes our proof of the lemma.

From (3.9) and (3.16), then follows

0 = (-1)! + 1 E {-\)+'a„A

= ati A

;]+<-""**'•.<,;.]}

< + u
and therefore, from (3.8), ß = 0, which completes our proof of the primary assertion

of the Basic Lemma.

Noting that we choose M similar to M as long as M does not have a column of

zeros, the second assertion of the Basic Lemma is now obvious.

Finally, as in all elementary similarity transformations of the form (3.3), M will

be upper Hessenberg as long as M is upper Hessenberg.
-
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