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Some Properties of a Class of Band Matrices

By W. D. Hoskins and P. J. Ponzo

Abstract. Let A(2r + 1, n) denote the n X n band matrix, of bandwidth 2/ + 1, with the

binomial coefficients in the expansion of (x — 1 )ir as the elements in each row and column.

Using the fact that the rows of A(2r + I, ft) provide the coefficients for the 2rth central

difference, a number of properties of A(2r + 1, n) are obtained for all positive integers

r and n. These include obtaining explicit formulas for det A(2r + 1, n), A~\2r -+- 1, «),

\\A~H.2r + 1, /))!!„ and an upper triangular matrix U such that A(2r + 1, n)U is lower

triangular.

1. Introduction. We consider the set of band-diagonal matrices of bandwidth

2r + I, with the binomial coefficients in the expansion of (x — l)2r displayed sym-

metrically about the diagonal in each row and column. If A(2r + 1, n) denotes the

Hth order member of this set, then, for example

,4(5, n) =

6

-4

-4

6

-4

1

-4

6

1

Such matrices occur quite frequently in a variety of contexts, [l]-[3]. It is known

[4], for the tridiagonal matrix, that

det |/4(3, n)\ n

and

A~A\l, «)fU ^ (n + 1)78,

with equality when n is odd. We will obtain, below, these and other properties of

A(2r + 1, n), for general r.

2.   In what follows, we use A to denote A(2r + 1, /;) unless otherwise specified.

If x is an arbitrary n-vector with components x(i) (/ = l(l)/z), then we may extend

the range of i and define x(i) = 0 for / = 0, — 1, — 2, • ■ ■ ,—/•-)- 1 and for / = n + 1,

n + 2, ■ • • , n + r. With this extension, Ax is an n-vector whose components are

precisely &~'x(i), for /' = 1(1)«, since the rows of A provide the coefficients for the

2rth central difference. We use this notion to transform A to a lower triangular matrix.
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394 w. d. hoskins and p. j. ponzo

We consider, for any integer 7^1,

0,(0
i(i + 1) •••(» + r - 1) (j + 1 - i)(j + 2 - /) • • • (j + r - 1 0

(1)
i + r

r

j + r- 1

/• - 1

■ll

(r - D!

Then, <£,-(i) is a polynomial of degree 2r — 1 in the variable f, with 0,(0 = 0 for i =

0, -1, • • • , -r + 1 and i = j + 1, j + 2, • • • , j + r - 1.

We define an n-vector w, with components

(2)
«,(0 = 0/(0   for i < j + r,

= 0        for i = j + r.

Then, «,-(/) is the polynomial <^,(0 (of degree 2r — 1) for / < j + so that 52rk,(/)

= 0 for i = 1, 2, • • • , j — 1. Hence, Aut has nonzero components only for / = j,

j + 1, • ■ • , n. If U denotes the upper triangular matrix whose yth column is , as

given by (2), then A U = L is lower triangular. We summarize in

Theorem 1. If A(2r +!,«)= where

«„ - (-1)r 2r

r+i- j

and U = ! Un | where

«/i

0

/Aen AU = L with L lower triangular.

We will need the following lemmas.

Lemma 1. If AU = Land
(i) A is an arbitrary Hermitian matrix {i.e. A* = A where A* is the conjugate

transpose),

(ii) U is upper triangular,

(iii) L is lower triangular,

then L*U = D, where D is a real, diagonal matrix.

The proof follows immediately on observing that any Hermitian matrix can be

factorized into the form R*DR with D a diagonal matrix.

Lemma 2. IfL and U are the matrices of Theorem 1, then LTU — D,a real diagonal

matrix with

Dki = (-1)'
k + 2r k + r

r

(-Dr k + 2r - 1

2r

2r

Proof. Since D = LTU, from Theorem 1 and Lemma 1, then Dkk = From

(2), we have ukk = 4>k(k) and, from Theorem \,lkk = b2rukk = — <j>k(k + r). Substituting

for (j>, as given by (1), we obtain
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Dkk = (-1)

= (-1)'

k + r - 1

r

k + r - 1

k + 2r - 1

r

k + 2r - 1

-1

r - 1

where (r_\) = (— l)r '. This expression for Dkk can be written more simply as

Dkk = (-1)'
k + 2r

2r

Theorem 2.

det A(2r+l,„)=(-irtl{^7Zr}

Proo/. From /I U = L, we obtain

det /I = det L/det L/ = YL lkk / JJ ukk.
4-1        / t-1

Substituting ukk = <j>k(k) and /tt = — <j>k(k + r) gives the required result.

The above expression for det A simplifies considerably. It is perhaps more reveal-

ing to write it out for the first few values of r.

det AO, n) = n + 1,

det /1(5, n)

det A{1, n)

(n +!)(» + 2)\n + 3)

1     •   22    • 3

(n + l)(n + 2)2(« + 3)3(rc + 4)2(n + 5)

1     ■   22    •    33   •    42   • 5

In general, det A(2r + 1, n) is a polynomial in n, of degree r2, with zeros at n =

-1, -2, ••• , -2r + 1.

We turn now to the computation of \\A       We will need the following lemmas.

Lemma 3. If the conditions of Lemma 1 are satisfied, then A'1 .= t/ZT't/*, if the

inverse exists.

Proof. From Lemma l,AU = L = ({/*)"'D. Hence, ^ = <JJ*)~lDU~l and /T1 =

wr'ry*.
Lemma 4. If e denotes the n-vector, all of whose components are unity, and D, U are

the matrices of Lemma 2, then e is an eigenvector of D_1£/*. More specifically, D~1U*e

= \ewith X = (-l)V(n
Proof The fcth component of D lU*e is

(3)
1 \ k -f- r - 1 - j

r - 1

where the summation is the kt\v column sum of U.

From [5], we have the identity
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(4)
k + r - j - 2   j + r k + 2r - \

k — j — 1   J [   j   J 2r

Using (4), slightly modified, we may sum the series in (3) to obtain the kth component

in the form Substituting for Dkk, from Lemma 2, gives (-l)VC').

which, for k = 1(1)«, is just the kth component of \e, with X = (— l)r/(2rr). This

establishes the result.

Theorem 3. The row-sums of A'1 are given by

S, = (-!)'
rr')r;+r)

(2;)

for] = 1(1)«.

Proof. If e, denotes the unit n-vector with 1 in the y'th position and, as in Lemma

4, e - ex + e2 + • • • + en, then the /th row-sum of A'1 can be written as S, =

Substituting for A 1 from Lemma 3 (and using Lemma 4) gives 5,- = \(if)TUe

where X = (— 1)7(V)- Bnt (ßi)TUe is just the jth row-sum of U, which is ]£>_,. 0.0')-

Substituting for <£,(./") gives

Si ~ (2/)

t - j + r — 1

r - 1

for y = 1(1)«.

It is a simple matter to show, by induction on n, that

j + r « — j + r

r

which gives the required result.

Theorem 4.

\\A~\2r + 1, «)||„ =

_ II

Ili- (n + 2k- 1)
22r(2r)!

,i (« + 2k

/o/- « odd,

2£ /or /7 euen.

/"/"oo/". From Theorem 3 and the definition of the infinity-norm, \\A '||„ =

max,-|S,-|.

But Sj is a polynomial in j, of degree 2r, with zeros at y = 0, — 1, • • • , — r A- 1

and j = n A- 1, n + 2, • • ■ , « + /■. Application of Rolle's theorem guarantees that

dSj/dj vanishes just once between successive zeros. In particular, dSJdj vanishes

precisely once in 0 < j < n + 1. However, St is symmetric about j = (n + l)/2, since

•S^li-i = Sj. Hence, for 0 < j < n + 1, |S; | attains an absolute maximum at / =

(n + l)/2. If (n + l)/2 is an integer (i.e., n is odd), then ||/1_1|U = with j =

(n + l)/2. If n is even, then Ij/T'jU = \SS\ with / = n/2 (or 1 + n/2). Hence,

(« l)/2 + r

n/2 + t -r 1

2r

«/2 + r

for « odd,

/
for « even.
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Expanding the binomial coefficients and rearranging somewhat gives the state-

ment of the theorem.

We turn to the problem of determining A~\2r + 1, n).

From Lemma 3, we have A~l = UD~xl)T so that

t-l LI

U,kUjk

kk

Substituting for u (from Theorem 1) and Dkk (from Lemma 2) gives, for / ^ j,

Lemma 5.

[A'1),, = (-1)'
i + r \j + r

I r

A+r-1-i r

i/ere, we have obtained the elements below, and on the main diagonal. The remaining

elements of A'1 are obtained by symmetry.

It is instructive to obtain A'1 somewhat differently, as follows.

Let

Pix) =
x(x 1 )(x 22) • [x  - (r - l)2]

so that p{x) = 0 at x = 0, ± 1, ±2, • • • , ±(r

teger, we also have

Kr- - I*) ••■      - (r - I/]

1), and /?(±r) = ±1. If x is an in-

(5) Pix)
x + r - 1

2/- - 1

We now define, for any y | 1, the (unique) polynomial in / of degree (2r — 1),

/,(/), which satisfies

(6)
(a) /,(/) = 0   at / = 0, -1, -2, ■ ■

(b) /,(/) + p(i - j) = 0 at f = n + 1, n + 2,

Then the n-vector vt with components

-r + 1,

, n + r.

0,(0 = /;(0,

= /,(0 + /»(/

Ofor / = 0,-1, -2, • •

y),

<

is such that d,-(/) = 0 for / = 0, — I, — 2, • • • , — r + 1 and i = n -f- 1, n + 2, • • • ,
n A- r, due to (6). Hence, the components of AVj are precisely 52ri>,(0 for / = 1(1)«.

But Vj(i) agrees with the (2r — l)st degree polynomial /,(/), at the integer values

of iM i S J + f — 1 (using (7) and the fact that p(i — j) vanishes at i = 7+1,

j -f 2, • • ■ ,j + r — I), hence, h2rv,(J) = 0 at / = 1, 2, • • • , j — 1.

Similarly, p,(i) agrees with the (2r — l)st degree polynomial /,(/') + p(i — j)

at the integer values of / in i g j —,/ + 1, so that 52rVj(i) = 0 at / = j +

1, j + 2, • ■ • , n. Indeed, only the y'th component of AVj is nonzero. We have 52rc,(7) =

[527;C/)J + K'') = L since o2r/, = 0 and p(r) = 1. We conclude that Vj is precisely the

y'th column of A~\

We summarize in

Theorem 5. If p and j are defined as in (5) and (6), then
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A~\2r + 1. n) =

where

*« = WO,

= WO + pC - /)>

In the above theorem, we note that the columns of A'1 are pairs of polynomials,

in i, of degree 2r — 1, joined at the diagonal. Because of symmetry, the rows of A'1

have the same property (regarded as polynomials in j). Further, since A is centrosym-

metric, then A'1 is centrosymmetric.

If

Lr(i) = id + W + 2) • ■ ■ (i + r - I),

then the procedure described in Theorem 5 leads to

(n + 1 - i)(n + 2 -/)••• (n + r - i)
A~\2r + 1, «)},, = --

(-1)'

(r - 1)! (2r - 1)!

(j + k + r - 1)!     (« + k)\r - \\\ Ui)~\
k   /Li + kj (j + k - r)\     (n + k + r)\

for i = j

The first few inverses are given by (for / — j)

(n + 1 - Oi
^"(3, «)}M

^"'(5, «)!„•

/; -f- 1

(n + 1 -        + 2 - QX./ + 1)

1! 3! {n + l)(n + 2)(n + 3)

•[(/' + 1)0' - D(" + 3) - i(j + 2)(n + 1)],

i A-\.- in + 1 - /)(« + 2 - Q(n + 3 -        +       + 2)
1     l,^,<) 2! 5! (« + IX» + 2)(/» + 3X» + 4)(« + 5)

•[(/ + W + 2)(j - 2)(j - IX« + 4)(« + 5)

- 2/0 + 2)(j -       + 3)(« + l)(n + 5)

+ '(( + IW + 3)Ü + 4)(« + 1)(« + 2)].

Reference to Lemma 5 provides a series of interesting identities.

Although the problem of determining the eigenvalues and eigenvectors of

A(2r + 1, n) is far from solved (except for r = 1), we might mention a few relevant

facts.

For matrices of even order, we can write

r
Ailr + 1 , 2n) =

A(2r + 1, n) B,:

A(2r + 1 , n)
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If P„ is the matrix whose 1st column is en, and whose jth column (J = 2(1)«) is

ij-u then, the characteristic polynomial associated with A(2r + 1,2«) can be factored,

as described in [6]:

det \A(2r + 1, 2/?) - X/|

= det \A(2r + 1, n) + BnPn - X/| det | A(2r + I. n) - BnPn -

For matrices of odd order, we can write

A(2r +l,2/j+l)

A (2r + l , n) ■ v

v ■ d

■ Pnv ■ A(2r + 1, n)

The characteristic polynomial now has the factorized form [6]:

det \A(2r + 1, 2n + 1) - X/| = K(\) det | A(2r + 1, n) - CnPn -

where K(\) is the characteristic polynomial of

A{2r + 1, n)

+ CnPn

2vT ■ d

The above factorization is a result of the centrosymmetry of A(2r + 1, ri). This

symmetry is reflected in the eigenvectors. We show this as follows.

With P„ defined as above, and A used to denote A(2r + 1, «), then PnA = APn

(a result of the centrosymmetry of A). But, if x is an eigenvector of A with eigenvalue

X, so Ax = \x, then PnAx = APnx = \Pnx. Hence, P„x is also an eigenvector of A,

with the same eigenvalue X. Consequently, Pnx = ax for some scalar a (since all

eigenvectors of A which belong to the same eigenvalue are scalar multiples of each

other). Thus, x is also an eigenvector of Pn. But all eigenvectors of Py, have either even

or odd symmetry about the midpoint. That is,

(7)
either   x(n — i + 1) = *(/),

or        x(n — i + 1) = — *(/'),

i = 1(1)/!.

We state the above result in

Lemma 6. All eigenvectors of A(2r + 1, ri) satisfy (7).

That is, eigenvectors of A(2r + 1,2«) have the form

±P„v

Further, eigenvectors of A(2r + 1, 2« + 1) have the form:



400 W. D. HOSKINS AND P. J. PONZO

- P„V

The ease with which the properties of this special class of matrices has been an-

alysed suggests that further useful work remains to be done on the determination of

corresponding results for block matrices with special structures.
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