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Norms on Direct Sums and Tensor Products

By P. Lancaster and H. K. Farahat

Abstract. We first consider the construction of a norm on a direct sum of normed linear

spaces and call a norm absolute if it depends only on the norms of the component spaces.

Several characterizations are given of absolute norms. Absolute norms are then used to

construct norms .on tensor products of normed linear spaces and on tensor products of

operators on normed linear spaces.

1. Introduction. In this paper, we consider the construction of norms on

composite linear spaces formed from direct sums and tensor products of normed

linear spaces and we consider properties of norms of operators on these spaces. The

notion of an absolute norm is introduced as a natural generalization of the relatively

familiar idea of an absolute vector norm on the space C„ of ordered n-tuples of complex

numbers. Such norms on C„ correspond to the "coordinatewise symmetric" gauge

functions as described by Ostrowski [3], and it is shown that our absolute norms

on composite spaces correspond in a one-to-one fashion with the absolute vector

norms on C„.

Wc are particularly interested in operator norms for which, in an appropriate

sense to be detailed later,

\\A®B\\ = \[A\\ \\B\\

where A, B are linear operators on linear spaces and (x) denotes the tensor product

of linear operators.

In Sections 2 and 3, we introduce absolute norms on direct sums of normed

linear spaces and obtain several characterizations of them. In Section 4, we discuss

norms on tensor products of linear spaces and exploit the "absolute" norm idea.

In essence, we are looking for a definition of a "natural" norm in a space L which

is the tensor product of normed linear spaces X and Y. One desirable property is

that the operator norms induced from those on X, Y and L should have the property

displayed above which defines a crossnorm (for a vector or operator norm). In Section

4, we make connections between absolute norms and crossnorms.

Norms of tensor products of operators are discussed in Section 5 and, in Section 6,

we illustrate our results with applications to complex matrices.

2. Absolute Norms. In this paper, all linear spaces are over the complex

numbers C. We frequently need to consider the supremum of sets of real numbers

formed from quotients. In such cases, it is tacitly assumed that the supremum is

restricted to a set for which the denominator is nonzero.

Let Xu X2, • • ■ , X„ be normed linear spaces and let X denote the direct sum

X = X,® *„©■•■©*, = £.■©      If X, y G X and x = (x„ x2, ■ • • , x„),
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y = CVi, v2, ••• , yn), we say that a norm on X is absolute if ||x,|| = ||v,||,

j - 1, 2, ••• ,n, implies ||x|| = \\y\\.
A norm on X is monotonic if ||x,|| -g        j = 1, 2, • • • , n, implies ||x|| g \\y\\.

Our first results generalize theorems of Bauer, Stoer, and Witzgall [1], which

may be interpreted as the special cases of our results in which the given normed

linear spaces are one-dimensional.

Theorem 1.  A norm on X is absolute iff it is monotonic.

Proof. Suppose first that the norm is monotonic. Then ||x,|| = ||j>,||,

j = 1, 2, • • , n, implies ||x|| g ||v|| and ||v|| rg \\x\\, whence ||x|| = ||^|| and the

norm is absolute.

Conversely, if the norm is absolute, we have

||(0, x2, ■ ■ ■ , x„)|| = lllt^Fi, x2, ■ ■ ■ , xn) + i(—xlt x2, ■ ■ ■ , *„)||

(i) ^ i IK*.- ••• ,*»)|| + h M-xi.x*, ••• ,*.)f|

= \\(xlt x2, • • • , x„)||.

Now, suppose that X = ||xi||/||x;|| 3a 1. Then,

\\(xi, x2, ■■■ , xn)\\ = \\(kx[, x2, ■■■ , xn)\\

= ||XW, x2, ■■■ , xn) + (1 - X)(0, x2, ■ • • , x„)||

g X ||W,x2, ••• , *„)|| + (1 - X)|| (0,*2, ■■■ ,xn)\\

g X \\(xl, x2, ■ ■ ■ , xn)\\ + (1 - X) \i(x'u x2, ■■■ , *„)||

using inequality (1). It follows that ][jcx11 g ||x;|| implies

\W*t, '*» ■■■ , *„)|| g \\(xi,x2, ■■■ ,xn)\\.

Since a similar argument applies to each position of x, it follows that the norm on X

is monotonic. □

Suppose that, for j = }, 2, • • • » n, Aj is a linear operator on Xh Then, a linear

operator A = Ax © • • • 0 An on X =      0 X,- is defined by

(A © A2 0 • • • 0 A„)(Xi, x2, ■ ■ ■ , xn) = (AiXt, A2x2, • • • , ^„at„)

for all x, £ AT,, / = 1, 2, • • • , n, We consider now the so-called "bound" norm for

operators; that is, the norm induced by the norm of the space on which the operator

acts. Thus, p|| = sup ||,4x||/||x||.

With the above notations, we say that a norm on X = 2> © Xi nas the maximum

property if, for any linear operator A = Xl> © A\j, we have \\A\\ = max, \\Aj\\.

We are going to show that the norm on X is absolute iff the induced operator norm

has the maximum property.

Lemma. Let X be a normed linear space and x, x' £ X with \\x\\ = \\x'\\. Then,

there exists a linear operator A on X such that Ax = x' and \ \A\\ = 1.

Proof. Let X* be the space of continuous linear functionals on X with the

usual norm. We shall call X* the dual of X. It is well-known (Dunford and Schwartz

[2] II.3.14) that, given a nonzero x £ X, there is an x* £ X* for which x*x = ||x||

and ||x*[| = 1. We define the linear operator A on Xby

Ay = i.x*(y)/\\x\\)x'
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for all v G X. Then, we obviously have Ax = x' and, since ||x|| = \\x'\\,

11JM       HMJ       11**00*'11       1**0)1    „ „, ,
,4   = sup -rrrr^ = SUP   , M n n = SUP   n n   =   *     = 1 ■v&x \\y\\      »   11*11 IMI      » IMI

In the case ||x|| = ||x'|| = 0, we simply choose A = I. □

Theorem 2.   /I worm on X is absolute iff it has the maximum property.

Proof.   Suppose first that the norm on X has the maximum property and let

x, y G X with ||x,|| =        j = 1, 2, • • • , n. We are to prove ||x|| = ||v||. By the

lemma, there exist linear operators Aj on Xs such that AjXj = v, and \\Af\\ = 1

for each j. Then, using the maximum property,

HOi, y2, ••• , J'JII = IMi*i, A2x2, ••• , Anxn)\\

= ||( A © ■ • • © A^xt, x2, ■■■ , xn)\\

g ll(*i, x2, ■■■ , *„)|| max || ^,|| = HO,, x2, ■ ■ ■ , *„)||.
i

Thus, ||v|| g ||x||. However, reversing the roles of x and v we can also prove

|[x|| S \\y\\ and, hence, ||x|| = ||j>||.

Conversely, suppose it given that the norm on Xh absolute and let A = X]> © ^/

be a direct sum of linear operators on the spaces Xt. If p. = max,- \\Aj\\, we are to

prove that \\A\\ = p. Now, for each j — 1, 2, • • • , n,

\\AiXi\\ g \\Aj\l \\xf\\ S P. ||x,|l = WßxA]

and, since an absolute norm is monotonic,

11.4*11 = ii(4ifi. ••■.     ^ uo«*i. ••• ■    = m null-
it follows immediately that ||/4|| g

To prove the reverse inequality, we have, for ^! £ I„ Xi ^ 0,

IMP,, o. ■•• , Q)|| = IM.*,, o, ••• , Q)||
11/111 = no,, o, ... , o)||      |K*,. o, ••■ , oil

If p(xi) = H^Xill/llxill, then ||/4,x,|| = ||/i(x,)x,]| and, since the norm is absolute,

I Ml I ̂  ||0(*i)*i, 0, •■• , 0)| l/IK*,, 0, ••• , 0)|| = ■*<*,).

Taking the supremum over all nonzero x, £ A7,, we have \ \A\\ g I Mill- In a similar

way, we obtain \\A\\ 5: \\Aj\\, j = 1* ,?» • • • , «, and we have ||/4|| 2: p. □

3. Connection with Norms on C„. If C denotes the linear space of the complex

numbers with the absolute value norm, we write C„= C © C © • • • © C (n times).

Then, a norm on C„ is absolute iff it is a function of the absolute values of the com-

ponents of the members of C„. Suppose once more that Xu • • ■ , Xn are normed

linear spaces and that we have an absolute norm on X = © Xt, Define a function

h on C„ by

(2) ••• ,{.) = \\(xuxit ... ,*„)||,

where (£„ ■ • ■ ,£,)£ C„, x, G Xu and ||x,|| = ||4, /= 1, 2, If h, G Xt
and ||w;|| = 1, then 1111 = |£,| and we may write

(3) ■•• ,*„) = 11«.«.,^, ••• ,6-*3t|.
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Theorem 3. (a) Every absolute norm || • || on X defines, by (2), an absolute norm

h on C„. (b) Conversely, every absolute norm h on C„ defines, by (2) again, an absolute

norm | ] • 11 on X.

Proof,   (a) Using formula (3), we have

(i)      A(fc, £2> • ■ ■ , £„) = 0 => II«,«,, • • • , {.«.)|I = 0 =>       = 0 =»    = 0

1, 2, • • • , n.

A(Xf„ • • '   • AW  =   ||(Xt,Kl,   • • •   , X£„H„)||

for j = 1, 2, • • • , n.

(ii)

= |x| litt,«., ■•• . £.«.)!! = |x| A(«»»fe, ••• ,&).

= IK(I, + ihK. ••• .(I- + I

^..jj =    i |(£l«l ,   ■ • •    . LU„)  +   (iflHl,   • • •   , VnU„)\\

g n.di«»» • ■ ■.    i + no."., • • •, -7»«n)ii

This shows that h is a norm on C„ and it is clearly absolute.

(b) Now, suppose it given that h is an absolute norm on C„ and define a function

||-|| on X by means of (2). Then, if ||«,|| = 1, for j = 1, 2, it follows that

licxi. ••• ,*.)ti = iittii'i. ••• .Mil
where |£,| = ||x,-||, j = \, 2, ■ ■ ■ , n. Then, we have

(j) ||(*.. ' • • > *»)ll = 0 => A(£„ ••,£„)= 0   and   |1 « | \x, \ \

=> t = 0 => x, = 0.

||xu,, • • ■ , oil = iKta, • • • ■ xx,)|| = a(|x|       , |x| e.)

= |X| A(fc, ■■■ , U = |X| ||(*,, ••• ,*.)||.

IK*.. ••• .*■») + (>i. ••• ,rM = IK*. .*. + >-n)ll

(iii) = "(II*. + y,||, ••■ ■ II*. + >.H)
g KM + Mjs.II-, ••• . IKJJ + IWD-

using the fact that an absolute norm is monotonic. Thus,

IK*,. ■•■ .*,>+ Ol ■•• ,jOII ̂  *«U*ill. ■•• . IMf) + (11**11. •■• > IWD)
g A(f|*,.||, ■■• , ikH) + Adbilh ••• , IWI)
= iK*,, ••• ,*n)ii + no',, •••

This completes the proof. □

There is a close analogy between the result of this theorem and Theorem 5.2

of Schatten [4], in which he identifies unitarily invariant crossnorms on a Hilbert

space with symmetric gauge functions. In our next result, we show that the cor-

respondence obtained in Theorem 3 extends to the norms on the dual spaces of X

and C„. First, we recall that, for any normed linear spaces X,,X2, ■ ■ ■ , X„, the algebraic

isomorphism between
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X* = (X, © X2 © • • ■ © Xny*   and    Xf © X§ © • • • © X*

allows us to identify these two spaces. Thus, if z* £ X*, we identify z*

with (x*u ■ ■ ■ , x*) and we have z*(xu • • • , x„) = X); ***>• We nrst need a lemma

which parallels Theorem 1 of Bauer, Stoer and Witzgall [1].

Lemma. If C„ has an absolute norm ft, then the induced norm h* on C* is also

absolute.

Proof. As above, we identify C* = (C © • ■ • © Q* with C* © • • • © C* and

note that each element of C* is a multiplication by a complex number with the

absolute value of this number as norm.

Let (£*, • • • , £*) £ C* © ■ • • © C* and let f«| be multiplication by the complex

number a, exp(/0,) where a, 0. Then, taking a supremum over the set 5 of vectors

• • ■ , £,) £ C„ with unit norm,

**(£*, • • • , {*) = sup Itffe) + • • • + m*)\

= sup \a£i exp(/Ö!) + • • ■ + exp(/0„)|.

Let r?,- = exp(idj) so that h(-ou ■ ■ ■ , ??„) = ■ • ■ , £„) (since the norm on C„ is

absolute) and take the supremum now over vectors (rh, • ■ ■ ,?;„)£ S (obviously the

whole of S):

«*(£*> • • • » £t) = sup lor^! + • • • + a„7?„| = «*(<5i, ■ ■ ■ , 5,),

where <5, is multiplication (of C) by a,. Thus,

•■• ,ft) = Ä*(ii«n, •••, imiD- □
Theorem 4. G/pen an absolute norm ||-|[ on X (= 53; © X,), /ef ?fte associated

norm on C„ (as in ?fte lemma) be h. Then, the norm on X* is absolute and is associated

with the norm ft* on C*. That is, if (x*x, ■•■ , x*) £ X*, ||(xt, ••• , x*)|| =

ft*(ri, • • • , t„), where r, £ C* and ||r,|| = ||x*,||.

Proof. Let ut £ X,- with ||m,|| = 1, j = 1,2, • • • , n. These vectors determine

a linear operator 0 : C„ —> X by means of 0(^, ■•■,£„) = (£i«i, • • • , £„«„) which

(by (3)) is norm-preserving. Hence, 0 has unit norm. Now, the composition

(x^, • • • , x*)0 is a linear operator from C„ to C, so we have

(4) A*((*1, ■■■ ,**)0) g ||(**, ••• ,x*)|| ||0|| = ||(**, ■■■ ,x*n)\\

and, taking the following supremum over elements (&, • • • , £„) £ C„ of unit ft-norm,

«*((**, • • • , *t)0) = sup |X **(£;";) = sup I£;•**(«>)

_
= ^(xUui) ,    ■ ■ , **,(«„) ),

where x*(w,) is the linear functional corresponding to multiplication of C by x*(w,).

Thus, from (4), we have

IK**, ■•• ,**.)(] ^ «*(**(«,)", ••• ,x*(un)~),

whenever ||w,-|| = 1, j = 1, 2, • • • , n, and, hence,

(4a) ||(**, ■•• ,**)|| ^ 5,

where s = supuain., «*(|x*X«i)f > • • • , |x*(wn)f) and we have used the fact that ft*

is absolute. It follows from the definition of ||x*|| that, given « > 0, there exists



406 p.  lancaster and h. k. farahat

(for each f) a c,- £ Xt such that ||d,|| = 1 and |x*(p,)| > ||x*-|| — t. Using the mono-

tonic property of h*, we therefore have

«*(||**|f, • • • . IWHfj = + e>". ■ • • •        + «)")
g A*(|*?(»,)f, ■ • • , [**(ojf) + *•(/. • • • . e").

Thus,

»•üi*tir. •••. ii*tio =s + A*(e". ••• .0
and since the continuity of h* implies that the last term can be made arbitrarily

small, we have s ^ «*(||x*J| , • • • , ||x*|| ), and we obtain from (4a)

(5) ||W. ••• .*i)H i h*(\\x*\\~, ••• , \\x*\f).

On the other hand, taking the following supremum over nonzero (x1; • • • , x„) G X

and noting that ||(x„ ■■■ , x„)|| = n(||x,||, ■ • • , ||x„||),

uz«        *mi IE **(*,)!   <     Z 11*** 11 Ikll
(6) • •' • *W = sup wot- .*jii =sup ife!1..' ,L)ii

=sup JP'' "^i's s **(iwir. •••, iwif").
«/£0 «(«1,  • • •   . «n)

Combining this with (5), the theorem is proved. □

Corollary 1.  (a) For any element (x*l} • • • , x*) G X*,

\m, • ■ •. *:)n = sup 'i^ii

where h is the norm on Cn associated with the norm on X.

(b)  For any (x„ • • ■ , xn) £ X,

wnere A* « /ne norm on C*. associated with the norm on X*.

Proof, (a) In the last steps of the proof of the theorem, we have equality at

each stage and so the first result follows from (6).

(b) There is a norm-preserving isomorphism <p of X onto a subset X of

the second dual X** (cf. Dunford and Schwartz [2] II.3.19) and, as above, we may

identify X** with Zj © Thus, to each z = (x,, • • • , xn) £ X corresponds

i = <Kz) G X** and, for all x* G AT*, f(x*) = jc*(z) or,

(ii, • • • , *„)(**, • • • , x*„) = (x*lt • • • , x*,)(x, , • • • , *„).

Applying (a) to evaluate ||z||, we have

11*11 = 11*11 = sup H*'1' -

However, if <£, is the norm-preserving isomorphism of X, onto X, C Xf *, then <t>

may be defined by

<m*1,   • • •   . Xn)  =   (01*1.   • • •   , (PnXn)  ~  (#1,  ' • 1   . *»)■
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Thus, if we identify z with 2, we may also identify x, with x, for j = 1, 2, • • • , n,

and we obtain

In the next corollary, we present another characterization of absolute norms

in terms of a generalized Holder inequality.

Corollary 2.  A norm on X is absolute iff

(7) E lk|| g ini ll**ll

for all z = (je,, • • • , xB) £ X, z* = (x*, •••,**)£ X*.

Proof For any norm on X, let z = (xlt • • • , x») £ X and suppose that, under

the natural embeddings, z —> f £ X** and x, —» x, £ Xf* for j = 1, 2, • • • , n. Then,

,W1 = Mfi. . mpiE^)|< sup E INI iwii = sup E n**H INI.
1111      11 "     T      ||z*||      = T        ||z*|| ™P \\z*\\

However, the generalized Holder inequality (7) implies Uz|j ̂  2 (11**11 ll*>ll/lk*ll)
for each nonzero z* £ X* and so

iuii = gup E 11**H IMI
11 11 ||z*||

and we see at once that the norm on X is absolute.

Conversely, if we are given an absolute norm on X, then part (b) of Corollary 1

and Theorem 3 give

I. u _ am   E«, Ik-II   _     E 11**11 INIz   = sup -j*--^— = sup -—;^m.--iv<o iiz*n
and the inequality (7) follows.

4. Norms on Tensor Products. We now confine our attention to finite-dimen-

sional normed linear spaces X and Y and consider the construction of norms on the

tensor product X (x) Y. If E = je,, <?2, • • • , e„\ and F = {fls /2, • • • , /„} are bases

for X, Y, respectively, then {e,■ ® 1 gj / § m, 1 g g n} is a basis for X (x) T.

Furthermore, every element z of I (x) F has a unique representation in the form

z = E> c> ® $i where j?!, • • • , ym £ 7 and, similarly, in the form z'= E* ** ® /*•

An element of X ® Y is decomposable if it is expressible in the form * ® y where

x £ X, y £ F. By means of the isomorphism X (x) x <-> Xx, we shall subsequently

identify C ® X with X.
If a norm on X ® y has the property ||* ® v|| = ||x|| ||j>|| for all decomposable

elements of X (x) Y, it is called a crossnorm. Such norms (and operator norms, in

particular) are of special interest. The prime example is the absolute value norm

on the complex numbers.

Now let x* £ X*, y* £ Y*, then x* (x) y* £ X* (x) F* but may also be interpreted

as a linear functional on X ® F which is characterized by

(8) (a* (x) y*X* ® y) = x*(*)y*0).

LetF* = {e*, ■ • ■ ,e*} andF* = {/*.,••■,/*} be dual bases for Fand F, respectively,
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so that e*(<?,) = Sti, 1 & i, j g m and /*(/,) = Stl , 1 g k, 1 g n. Then, (4 <g) /*:
1 g j g w, 1 g k g nj is a basis for X* ® F*. But this is also the dual of the basis

{e, ®/t) for*® Y for, by (8),

(e* ® n)(e, ® /1) = e*(*/)fKfi) = «.,«*i = ««,*>,<,.!>•

Thus, functionals of the form x* ® y* span (X ® 7)* which may therefore be

identified with X* ® Y* and, without ambiguity, x* ® y* may represent either

the tensor product of functionals x* G X* and y* £ T*, or a decomposable element

of X* (x) Y*.

if z* = X),- <?* ® y* e   ® Y*and z = Z, ei ® yi is a typical member of

X (x) Y, we may write

||i II - sup ||z|(      sup sup

If X, F, J/, K are linear spaces and A, B are linear operators .4: X —> £/ and 2?: Y —> K,

then the tensor product A ® 5 may be defined as a linear operator from X ® Y

into (/ (x) F by

(A ® 5) Z e, ® y, = Z (^) ®

Lemma. 7/" (7, F, X, Y are normed linear spaces, A : X —* U and B: Y —> V are

linear operators, and if the norms on X ® Y and U ® V are crossnorms,

then \\A ® B|| = \\A\\ \\B\\.
Proof. Let D be the set of nonzero decomposable elements of X ® Y and note

first that, if x ® y G A

im® fi)(*® j0|| = |m*)® (£y)|| = m*|| ||5y||,

since the norm on U ® V is also a crossnorm. Then, since the norm on X ® F is

also a crossnorm,

IM® H - "» ^i-.P1^

„,„   \\Ax\\ \\By\\ _

-» iwi iwi
In the case that U = F = C, we deduce that, if the norm onl® F is a cross-

norm, then ||x* ® y*|| — ||x*|| ||y*||. Schatten [4] demonstrates a class of cross-

norms on X ® Y for which the strict inequality generally obtains in the dual spaces.

We shall show how the concept of "absolute" norms can be used in this situation

to obtain equality for the functionals of the dual spaces and, also, for the case U = X,

V — Y.
We shall say that a norm on (a) X, or (b) X ® Y is E-absolute if

(a) %\ = k|, j = 1,2, ■ ■ ■ , m, implies ||Z,-        = HZ or
(b) ||y,.|| = ||a,||, y = 1, 2, ••• , m, and y,, a, G F imply ||Z e, ® y,||

= HZ ei ® a»ll» respectively.
Since the spaces X and X ® Y are isomorphic to direct sums

(9) Cfe, © • ■ • © Cera   and       ® F) © • • • © (em ® Y),
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respectively, we may deduce from Theorem 1 corresponding monotonicity properties

for is-absolute norms. We note also that, by Theorem 3, once the basis E is fixed,

i?-absolute norms (in either sense) correspond to absolute norms on Cn.

Lemma. Let X be a normed linear space, let the norm on X be E-absolute and let

E* = {e*, • • • , e*\ C X* be the coordinate functions determined by E. Then, the

(induced) norm on X* is E*-absolute.

Proof. Using the first of the decompositions (9), the lemma is a consequence

of Theorem 4.

Theorem 5. Let X, Y be normed linear spaces with a basis E = {e^ • • • , em\

for X and let a crossnorm be defined on X ® Y. If the norm on X ® Y is E-absolute,

then

(a) the norm on X is E-absolute,

(b) HZ e,<g>ttll = HZlWk-ll.w
(c) ||x* (x) = ||x*|| ||y*||. That is, the norm on X* ® Y* is also a crossnorm.

Proof,  (a) Choose v £ ysuch that      = 1. Then, if x £ X, we have

Ik® »II - 11*111 Ml = 11*11-
Let x = Z> iteA then ||x|| = ||x ® r|| = ||Z e> ® iM\ an(L smce the norm on

X ® Y is ii-absolute,

11*11 = n2>,® li/Ml = llZ fcl«4<8MI = llZ □
(b) We again choose v £ Y with ||n|| = 1 and, since the norm on X ® Y is

absolute, we have

ilZ^®y,ll = ll£«/<8>IWMI = llZ lklM®»ll = llZ iWlMII- □
(c) If x* = Z £/e* G X* then, by the lemma, the norm on X* is E*-absolute

and, by part (b),

\\x*®y*\\ = liZ*?®^*!! t llZ llfey*IWI|.
Thus, using part (a),

ll**®y*ll = lb*ll llZ l£il«1ll = lb*ll \\Zte*A\ = ||**|| lb*ll- □
These results suggest that the formula of part (b) may provide a useful class

of norms of X ® Y. We have

Theorem 6. Let X, Y be normed linear spaces, let E = \eu • • • , em) be a basis

for X and let the norm onXbe E-absolute. Then, the function || • ||i defined on X® Yby

llE*,®*ll. = llZ iwmii
is a norm on X ® Y which is E-absolute and is a crossnorm.

Proof. Using the isomorphisms (9), we may identify X with C„ and X ® Y with

Y„(= Y® ■■■ © Y) as follows:

m m

Z tet       • • • . im) and Z ei ® y<   Oi. • • • . y<»)-
1-1 >'-l

By Theorem 3, the 27-absolute norm on X determines an underlying absolute norm h

on C„ for which ||Zll J\ lk,-|| = A(||yi||, • • • , |bm||) and, in its turn, h determines

an absolute norm on X ® Y for which
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WL*t®y,\\ = *Cll>.Ht ••• . Ib»ll) = llE Ib.-lk/ll-
But this norm is just the function || • ||, and so we obtain the first part of the theorem.

To see that the resulting norm is a crossnorm, let y £ Y and x = E £ie> G ^- Then,

II*® j-11. = ll£*,-®MI. = HE IIMkfil = HE fej*«LI IMI = IWI Mi.
and the theorem is proved. □

We note that, by Theorem 5, the norm induced in X* ® Y* by ||-||, is also a

crossnorm.

Corollary. Let X, Y be normed linear spaces. Let F = {/,, • • • , /„} be a basis

for Y and let the norm on Ybe F-absolute. Then, the function || • ||, defined on X® Yby

||E*»® /»II = ||E 11**11 /*||
Hi Il2 II» II

defines a norm on X ® Y which is F-absolute and is a crossnorm.

The proof is the obvious parallel of that for Theorem 6.

5. Norms of Tensor Products of Operators. We now consider the definition of

operator norms. If X is a linear space and LCX) is the linear space of bounded linear

operators from X into itself, then we require the usual vector norm axioms for a

norm on LCX) together with the submultiplicative property: ||j42?|| g \\A\\ \\B\\ for

all A, B £ LCX). Then, L(X) is a normed algebra.

If X, Y are finite-dimensional linear spaces, we now are interested in the tensor

product L{X) ® L(Y). This is not only a linear space; it is an algebra in which

(10) (A, ® B,)(A2 ® B2) = A, A2 ® B,B2

holds for all Au A2 £ L(X) and 2?„ B2 £ LCY). As such, LCX) ® LCY) may be iden-
tified with the algebra L(X ® Y) in such a way that the element A ® B of L(X) ® L(Y)

is identified with the "tensor product" A ® B of the operators ,4, B.

If Z-(A^, Z,(T) are finite-dimensional normed algebras, we are to use the norms

on L(X), LCY) to define a norm on LCX ® Y) which is submultiplicative and will

be a crossnorm. That is, if M, N £ L(Z ® Y), then ||MAT|| = ||M|| \\N\\ and if

/I £ HX), B £ L(T), \\A ® 2?|| = IMH ||2?||.
The first suggestion is to apply Theorem 6 directly after picking out a basis for

L(X). The results of Theorem 6 then guarantee all the required properties of the

norm on L(X ® Y) with the exception of the submultiplicative property. That is,

L(X ® Y) need not be a normed algebra. In the following case, we have the sub-

multiplicative property.

Let X be the space CmXm of m X m complex matrices"and let 2?,-, £ CmXm be the

matrix with a one in the i, j position and zeros elsewhere. Then, E = \EU: 1 ^ i,

j g m\ is a basis for CmXm. Our result applies tomXw matrices whose elements

belong to a normed linear algebra, an algebra of bounded linear operators, for

example.

Theorem 7. Let Ybe a normed linear algebra and suppose a norm is given on CmXm

which is submultiplicative. If B £ CmXm ® Y let B = Eis..>sm 2?,, ® 2?,, and suppose

further that the norm on CmXm is E-absolute. Then, the function 11 -1[L defined

on CmXm ®Yby
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11*11. = ||E eJ\

w a submultiplicative norm and is a crossnorm.

Proof. As noted above, we have only to prove the submultiplicative property.

Let A, b £ CmXm (x) 7 with

A = E En ® Au,      b = E En ®

Then, since EikEu = &nEiit we obtain from (10) and the usual matrix multiplication

ab = (E £.* ® AaXT, En ® b„) = E (#i ® E 4***/).

and

= ||E ||E aikbkl\\

Now, the norm on C„Xm is monotonic (with respect to E) and the norm on Y is

submultiplicative, so

\\ab\u = ||E (E IM<»fl llftillUill
Iii.,- \ * /II

= ||E (E \\^\\ M(E IUMI
IIV * /\ i /II

= ||(E IM»il £-'*)(E 11^,11 £„)||.

But then the norm on CmX„, is submultiplicative so that

\\ab\u = ||E \\aik)\ fJI-llE IIS./II        = IMII. llBlli- □
i i i , * i i   i i ,', I ii

We remark that, with the norm of this theorem, \\A\\i is equated to the norm

(in CmXm) of the nonnegative matrix [||j4;,||] which, by the classical Perron-Frobenius

theorem, has a maximum nonnegative eigenvalue x. If Y is an algebra of bounded

linear operators so that Au G L(S) for some linear space S, then A £ L(Sn) and

the proof of a theorem of Ostrowski (Theorem 4 of [3]) can be used to show that

the eigenvalues of A (if any) cannot exceed x in absolute value.

We now turn our attention to the formulation of operator (bound) norms in the

usual way from the norms on the underlying spaces. Thus, if A: X —» X, \\A\\ =

supl£3r ||/lx||/||x||.

We note first that if A: X —* X and b: Y —l* Y are linear operators and if the norm

on X (x) 7 is a crossnorm, then by the first lemma of §4, \\A (x) b\\ ^ ||/4||,||2?||.

Once again, we are interested in those norms for which equality obtains.

Consider the norms and ||-||2 defined on X (x) 7 in Theorem 6 and

its Corollary. We shall use the same subscripts for the norm defined on L(X ® 7)

by these vector norms. We denote the identity mappings on X and 7 by Ix, IY re-

spectively.

Lemma,  (i) Let the norm on X be E-absolute and b G L(Y), then

ll/x® *||. =

(ii) Let the norm on 7 be F-absolute and A G L(X), then
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\\A®Iy\U = \\A\\.

Proof. We shall only prove (i). Part (ii) is proved by a similar argument. Writing

z = E ei ® y>i for a typical element of X ® 7,

,ir /Sfc"»N             llZ^-0^,11 llE 11^,11 g/ll
/x® B , = sup—^-—-— = sup    — ——

.   II 2^.® J^ll       «er IIZ Ibilk.-ll

and using the monotonic property of the norm on X, we obtain \\IX ® 2?||, g ||JJ||.

However, we have noted that, for a crossnorm on X® 7, ® 2?|| ^> ||/x|| ||Z?|| =

11Part (i) is obtained. □
Theorem 8. Let X, Y be finite-dimensional normed linear spaces with bases E

and F, respectively. If the norms on X, Y are E-absolute and F-absolute, respectively,

and ifthe vector normsand \\-\\2 ofTheorem 6 coincide, then\\A® B\\ = \\A\\ \\B\\

for the corresponding induced norms.

Proof. We observe that A ® B = (A ® IY\Ix ® B) and, since an induced

norm is necessarily submultiplicative,

\\A®B\\ = \\A®IY\\ \\h® B\\.

The lemma then gives \\A ® B\\ g \\A\\ ||2?|| and, since we have already proved

\\A ® B\\ =■ p|| ||i?||, the theorem is proved. □

We note that it is always the case that ||jc ® y\\i = \\x ® y\\2, since both norms

are crossnorms. In the theorem, we suppose this true for all elements of X ® Y

and not just the decomposable elements.

6. Application to Vectors and Matrices. Let X, Y be linear spaces with E =

\eu ■ ■ ■ , em\ a basis for Xand F = {/,, ■••,/„} a basis for Y. Then, linear operators

A: X —» X and 2?: 7 —> 7 have matrix representations AM £ CmXm, with respect to E,

and BM £ C„x„ with respect to F. We may choose as a basis for X ® 7 the vectors

ei ® fi.ei ® U, ■■■ , <?i ® fn,e2 ® flt ■ ■ ■ , e2 ® /„, • • • , e,„ ® /,, ••• , em ® /,„

in this order, and it is easily seen that the matrix representation of A ® B with respect

to this basis is the familiar Kronecker, or direct product of the matrices AM, BM,

written Au® BM.

The unit vectors ek in the space Cm of column vectors have a one in the kth place

and zeros elsewhere. In the case X = C^, 7 = C„, we may choose bases E and F

of unit vectors and then the above basis for Cm ® C'„ = C'mn is also of unit vectors.

The norm of is f-absolute if, for all pairs x, y £ with |x,| = \yt\ for j = 1,

2, • • • , m, we have ||x|| = ||y||. This now coincides with an absolute vector norm

in the usual matrix theoretic sense (Bauer, et al. [1]).

Let a £ Ci ® Q. Then, there are complex numbers \jk for which

a = E 12 ^ik(ei ® /*)
i. -1 (-I

and we may also write

a = E*,®/" = Zxw®fk,
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where

£ x«/» =

x„

xi2
x   =2^ A,te, =

X2*

LX,„_ [_X„*J

In the norms of Theorem 6 and its Corollary, we see that Hall! and ||a||2 are the

X-norm (norm in C£) and T-norm (norm in Q), respectively, of
~V"I

and

In particular, if d = x (x) y is a decomposable member of (x) C„, then \\d\lx =

I Mis = 11*11 Ibll' smce both norms on Cm ® C'n are crossnorms (Theorem 6).

As an application of Theorem 7, we take for the space Y the n X « complex

matrices with an appropriate norm and the operator A is then an mn X wi partitioned

matrix. The norm on mn X mn matrices is then constructed from the norms of the

n X n blocks as indicated and, provided the norm on CmXm depends only on the

absolute values of matrix elements, the resulting norm on Cm„Xma is a crossnorm.

A very special example is the case of a />norm (1 ^ p g 2) used in both spaces CmX„,

CnX„ which yields the same /j-norm in CmnXmn. That is, for a matrix A £ CmXm, for

example,

Z k,r) .

It is a trivial matter to check the crossnorm property directly in this case.

To illustrate Theorem 8, suppose that Cm, C'n have the same p-norm imposed

on them. Since these are merely vector norms, we may have 1 g p ^ <» in this case.

Then, ||- jd and ||-||2 coincide and yield the same /Miorm on C'mn = (x) C'n. The

operator norms in Theorem 8 are then those induced by the vector /j-norms and are

again crossnorms.

It is noteworthy that, for these norms and for 1 g p = 2, Theorem 7 is not in-

cluded in Theorem 6. To see this, we have only to show that a matrix norm induced

by an absolute vector norm is not necessarily absolute (with respect to the basis

[En] in CmXm). Consider the casep = 2 (the euclidean vector norm) and the matrices

A =
1 1

1 1

B =

It is well known that the matrix norm induced by this vector norm is the spectral

norm and, for any matrix A, is given by the square root of the largest eigenvalue

of A*A (star denotes a conjugate transpose). The norms of matrices A and B with

respect to an jis,,(-absolute norm are obviously equal. However, their spectral

norms are 2 and \/2, respectively.
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This case may be contrasted with the cases of p = 1 and p = <» for the vector

norm. It is well known that the induced matrix norms are {E{j} -absolute in these

two cases.
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