Some Results for $k!\pm 1$ and $2 \cdot 3 \cdot 5 \cdots p \pm 1$

By Alan Borning

Abstract

The numbers $k!\pm 1$ for $k=2(1) 100$, and $2 \cdot 3 \cdot 5 \cdots p \pm 1$ for p prime, $2 \leqq$ $p \leqq 307$, were tested for primality. For $k=2(1) 30$, factorizations of $k!\pm 1$ are given.

In this note, we present the results of an investigation of $k!\pm 1$ and $2 \cdot 3 \cdot 5 \cdots p \pm 1$. An IBM 1130 computer was used for all computations.

A number N of one of these forms was first checked for primality by computing $b^{N-1}(\bmod N)$ for $b=2$ or $b=3$. If $b^{N-1} \neq 1(\bmod N)$, Fermat's Theorem implies that N is composite. On the other hand, if it was found that $b^{N-1} \equiv 1(\bmod N)$, then the primality of N was established using one of the following two theorems, both due to Lehmer [1]. No composite numbers N of these forms were found which passed the above test.

Theorem 1. If, for some integer $b, b^{N-1} \equiv 1(\bmod N)$, and $b^{(N-1) / a} \not \equiv 1(\bmod N)$ holds for all prime factors q of $N-1$, then N is prime.

For primes of the forms $k!+1$ and $2 \cdot 3 \cdot 5 \cdots p+1$, a value for b satisfying the hypothesis of this theorem is given to aid anyone wishing to check these results.

Theorem 2. Given an odd integer N, suppose there is some Q such that the Jacobi symbols (Q / N) and $((1-4 Q) / N)$ are both negative. Let α and β be the roots of $x^{2}-$ $x+Q=0$, and let $V_{n}=\alpha^{n}+\beta^{n}$. If $V_{(N+1) / 2} \equiv 0(\bmod N)$, and $V_{2(N+1) / \&} \equiv 2 Q^{(N+1) / q}$ holds for all odd prime factors q of $N+1$, then N is prime.

For primes of the forms $k!-1$ and $2 \cdot 3 \cdot 5 \cdots p-1$, an appropriate value for Q is given.

Values of k such that $k!+1$ is prime, $2 \leqq k \leqq 100$

k	b
2	2
3	3
11	26
27	37
37	67
41	43
73	149
77	89

Received June 8, 1971.
AMS 1969 subject classifications. Primary 1003; Secondary 1060.
Key words and phrases. Prime, factorial, product of primes, factorizations.
Copyright © 1972, American Mathematical Society

Values of k such that $k!-1$ is prime, $2 \leqq k \leqq 100$

k	Q
3	2
4	7
6	19
7	26
12	19
14	62
30	122
32	37
33	53
38	61
94	199

Values of p such that $2 \cdot 3 \cdot 5 \cdots p+1$ is prime, $2 \leqq p \leqq 307$

p	b
2	2
3	3
5	3
7	2
11	3
31	34

Values of p such that $2 \cdot 3 \cdot 5 \cdots p-1$ is prime, $2 \leqq p \leqq 307$

p	Q
3	2
5	3
11	8
13	3
41	28
89	3

Previous results for primality as given by Sierpinski [2] include all $k \leqq 26$ in the case $k!+1$, and $k \leqq 22$ and $k=25$ in the case $k!-1$. Kraitchik [3] gives factorizations of $k!+1$ for $k \leqq 22$ and $k!-1$ for $k \leqq 21$, as well as factorizations of $2 \cdot 3 \cdot 5 \cdots p+1$ for $p \leqq 53$ and of $2 \cdot 3 \cdot 5 \cdots p-1$ for $p \leqq$ 47. The tables of Sierpinski and Kraitchik are in agreement with those given by the author, with the following exceptions:
(1) In Sierpinski 3! +1 is omitted from the list of primes;
(2) Both Sierpinski and Kraitchik erroneously list $20!-1$ as a prime;
(3) Kraitchik fails to give the factor 5171 of $21!-1$.

For $N=k!\pm 1,2 \leqq k \leqq 30, N$ composite, a variety of methods were used to find the prime factors of N. Trial division to 10^{8} or so was tried first, and the prime factors discovered by this method were eliminated. The number remaining, say L, was then checked by computing $b^{L-1}(\bmod L)$, as previously described. If $b^{L-1} \neq 1$ $(\bmod L)$, then L was factored by expressing it as the difference of two squares [4], or by employing the continued fraction expansion of $\sqrt{ } L$ [5]. On the other hand, if $b^{L-1} \equiv 1(\bmod L)$, then the primality of L was established by completely factoring $L-1$ and applying Theorem 1. If it proved too difficult to completely factor $L-1$, $L+1$ was factored instead and Theorem 2 applied. (For large L, the primality of the largest factor of $L-1$ had to be established in a similar fashion, and so on for a chain of four or five factorizations.)

Factorizations of $k!+1, k=2(1) 30$

$$
\begin{aligned}
2!+1 & =3 \text { (prime) } \\
3!+1 & =7 \text { (prime) } \\
4!+1 & =5^{2} \\
5!+1 & =11^{2} \\
6!+1 & =7 \cdot 103 \\
7!+1 & =71^{2} \\
8!+1 & =61 \cdot 661 \\
9!+1 & =19 \cdot 71 \cdot 269 \\
10!+1 & =11 \cdot 329891 \\
11!+1 & =39916801 \text { (prime) } \\
12!+1 & =13^{2} \cdot 2834329 \\
13!+1 & =83 \cdot 75024347 \\
14!+1 & =23 \cdot 3790360487 \\
15!+1 & =59 \cdot 479 \cdot 46271341 \\
16!+1 & =17 \cdot 61 \cdot 137 \cdot 139 \cdot 1059511
\end{aligned}
$$

$$
\begin{aligned}
& 17!+1=661 \cdot 5 \quad 37913 \cdot 10 \quad 00357 \\
& 18!+1=19 \cdot 23 \cdot 29 \cdot 61 \cdot 67 \cdot 1236 \quad 10951 \\
& 19!+1=71 \cdot 1 \quad 71331 \quad 12733 \quad 63831 \\
& 20!+1=20639383 \cdot 11 \quad 7876683047 \\
& 21!+1=43 \cdot 439429 \cdot 2703875815783 \\
& 22!+1=23 \cdot 521 \cdot 93 \quad 79961 \quad 0095769647 \\
& 23!+1=47^{2} \cdot 79 \cdot 148 \quad 13975 \quad 4736864591 \\
& 24!+1=811 \cdot 765041 \quad 185860961084291 \\
& 25!+1=401 \cdot 38681321803817920159601 \\
& 26!+1=1697 \cdot 237649652 \quad 99151 \quad 77581 \quad 52033 \\
& 27!+1=10888869450418352160768000001 \text { (prime) } \\
& 28!+1=29 \cdot 1051 \quad 33911 \quad 93507374500051862069 \\
& 29!+1=14557 \cdot 218568437 \cdot 2778 \quad 9420575550 \quad 23489 \\
& 30!+1=31 \cdot 12421 \cdot 82561 \cdot 1080941 \cdot 7 \quad 7190683199 \quad 27551
\end{aligned}
$$

Factorizations of $k!-1, k=2(1) 30$

$$
\begin{aligned}
2!-1 & =1 \\
3!-1 & =5 \text { (prime) } \\
4!-1 & =23 \text { (prime) } \\
5!-1 & =7 \cdot 17 \\
6!-1 & =719 \text { (prime) } \\
7!-1 & =5039 \text { (prime) } \\
8!-1 & =23 \cdot 1753 \\
9!-1 & =11^{2} \cdot 2999 \\
10!-1 & =29 \cdot 125131 \\
11!-1 & =13 \cdot 17 \cdot 23 \cdot 7853 \\
12!-1 & =4790 \quad 01599 \text { (prime) } \\
13!-1 & =1733 \cdot 3593203 \\
14!-1 & =87178291199 \text { (prime) } \\
15!-1 & =17 \cdot 31^{2} \cdot 53 \cdot 15 \quad 10259 \\
16!-1 & =3041 \cdot 6880233439 \\
17!-1 & =19 \cdot 73 \cdot 256443711677 \\
18!-1 & =59 \cdot 226663 \cdot 478749547 \\
19!-1 & =653 \cdot 2383907 \cdot 78143369 \\
20!-1 & =124769 \cdot 19499250680671 \\
21!-1 & =23 \cdot 89 \cdot 5171 \cdot 4826713612027 \\
22!-1 & =109 \cdot 60656047 \cdot 170006681813 \\
23!-1 & =51871 \cdot 498390560021687969 \\
24!-1 & =625793187653 \cdot 991459181683 \\
25!-1 & =149 \cdot 907 \cdot 114776274341482621993 \\
26!-1 & =20431 \cdot 19739193437746837432529 \\
27!-1 & =29 \cdot 375478256910977660716137931 \\
28!-1 & =239 \cdot 156967 \cdot 7798078091 \cdot 1042190196053 \\
29!-1 & =31 \cdot 59 \cdot 311 \cdot 26156201 \cdot 594278556271609021 \\
30!-1 & =265252859812191058636308479999999 \text { (prime) }
\end{aligned}
$$

Acknowledgement. The author gratefully acknowledges the help of Dr. Joseph Roberts and Michael Penk in this study, which was done at Reed College, Portland, Oregon, in connection with an undergraduate thesis.

Computer Services
University of Idaho
Moscow, Idaho 83843

[^0]
[^0]: 1. D. H. Lehmer, "Computer technology applied to the theory of numbers," in Studies in Number Theory (W. J. LeVeque, Editor), Prentice-Hall, Englewood Cliffs, N. J., 1969, pp. 128-132. MR 40 \#84.
 2. W. Sierpinski, Elementary Theory of Numbers. Parts I, II, Monografie Mat., Tom 19, 38, PWN, Warsaw, 1950, 1959; English transl., Manografie Mat., Tom 42, PWN, Warsaw, 1964, p. 202. MR 13, 821; MR 22 \#2572; MR 31 \#116.
 3. Maurice Kraitchik, Introduction à la Théorie des Nombres, Gauthier-Villars, Paris, 1952, pp. 2, 8.
 4. John Brillhart \& J. L. Selfridge, "Some factorizations of $2^{n}+1$ and related results," Math. Comp., v. 21, 1967, pp. 87-96; Corrigendum, ibid., v. 21, 1967, p. 751. MR 37 \#131.
 5. Donald KnUth, "Seminumerical algorithms," in The Art of Computer Programming. Vol. 2, Addison-Wesley, Reading, Mass., 1969, pp. 351-354.
