491.-A. Erdélyi, W. Magnus, F. Oberhettinger \& F. G. Tricomi, Tables of Integral Transforms, Volumes I and II, McGraw-Hill Book Co., New York, 1953.
In Volume I on p. 95, Eq. (11), the power of y in the value of the integral should be $2 m+1$ instead of $2 m$.

In Volume II on p. 289, Eq. (13), in the value of the integral for $L_{n}^{n-m}\left(-y^{2}\right)$ read $L_{m}^{n-m}\left(-y^{2}\right)$.
J. C. NASH

Mathematical Institute University of Oxford Oxford, England
492.-I. S. Gradshteyn \& J. M. Ryzhik, Tables of Integrals, Series and Products, 4th ed., Academic Press, New York, 1965.

On p. 837, formula 7.374.7 is incorrect. In the right-hand side, replace $L_{n}^{n-m}\left(-2 y^{2}\right)$ by $L_{m}^{n-m}\left(-2 y^{2}\right)$.

On p. 841, formula 7.388 .6 is incorrect. In the right-hand side replace $b^{2 m}$ by $b^{2 m+1}$.
J. C. NASH
493.-F. M. Henderson, Elliptic Functions with Complex Arguments, Univ. of Michigan Press, Ann Arbor, 1960.
On p. 4 of the introduction, the extension of $F(k, x)$ to real $x>1 / k$ is erroneous because of an omitted minus sign before the last integral preceding Eq. (8). This equation should consequently be replaced by

$$
F\binom{x_{0}}{1}=F\binom{1 /\left(k x_{0}\right)}{1 / k}
$$

An equivalent and more informative statement is

$$
F\left(k, x_{0}\right)=F\left(k, 1 /\left(k x_{0}\right)\right)-i K^{\prime}, \text { for } x=x_{0}>1 / k
$$

In Part II the values indicated as those of y in the tables of $x+i y=c n(u+i v)$ are, in fact, the values of $-y$. The same correction applies to the tables of $x+i y=$ $d n(u+i v)$ in Part III.

J. R. Philip

CSIRO Division of Environmental Mechanics
Canberra, A. C. T., Australia
Editorial note: For a review of this book see Math Comp., v. 15, 1961, pp. 95-96, RMT 18.

