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Computation of Best Monotone Approximations*

By James T. Lewis

Abstract. A numerical procedure to compute the best uniform approximation to a given

continuous function by algebraic polynomials with nonnegative ;th derivative is presented

and analyzed. The method is based on discretization and linear programming. Several

numerical experiments are discussed.

1. Introduction. The general problem considered in this paper is the best uniform

approximation of a given continuous function / over a finite closed interval [a, b] by

polynomials of degree at most n whose rth derivative is constrained to be nonnegative

on [a, b]. Denote by (P„ the set of all algebraic polynomials a0 + axx + • • • + anxn of

degree at most n and set K, = {p £ (?„: p{'\x) S; 0 for a ^ x ^ b\ where r is an

integer, 1 ̂  r ;£ n. K, is a closed convex cone in the (n + l)-dimensional space <?„. We

wish to find the best uniform approximation to / from Kr; i.e., we seek p* £ Kr such

that 11/ — p*\\ — minpeK, ||/ — where the measure of the error is the uniform norm

||/ — p\\ = maxaSl£6 |/(x) — p(x)\. The existence of such a best approximation was

easily established; recently it was shown in [7] that the best approximation is unique.

The main goal of this paper is to present and analyze a method to compute the best

approximation. The original interest was in approximation by monotonic polynomials

(approximation from KX) and approximation by convex polynomials (approximation

from K2); however, the method can be extended easily to the general problem of

approximation from Kr. In Section 2, a symmetry result is established. In Section 3, a

numerical procedure based on discretization and linear programming is presented

and analyzed. Section 4 contains several numerical examples and a discussion of some

interesting features which they exhibit.

2. Symmetry. Recall that a function / is called even (odd) on [—b, b] if /(—x) =

f(x) (respectively, /(—x) = — f(x)) for all x in [—b, b]. In the classical problem of

uniform approximation on [—b, b] to an even (odd) function with no constraints,

i.e., minpe<pn ||/ p ||, the solution p*, which we will call the best unconstrained

approximation, is also even (odd). An analogous result holds for approximation

from Kr.

Theorem 1. Let / be continuous on [—b, b] and set
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738 james t. lewis

KT = {p £ (P„: pM(x) St 0 for -b ^ x ^ ft},

where I ^ r 1% n.

(i) 7/r is c7n eue« integer and iff is even on [—b, b], then the best approximation to f

from K, is also even.

(ii) If r is an odd integer and iff is odd on [—b, b], then the best approximation to f

from Kr is also odd.

Proof, (i) Assume r is an even integer and / is even. Let p* be the best approx-

imation to / from Kr and set q(x) = p*(—x) for all x in [—b, b]. Then

<?"'(*) = (-iy~lP*]M(-x) St 0   for -b ^ x ^ b,

i.e., q is in Kr. Now,

||/ - «|| =  max [/(*) - q(x)\

=  max \f{-x) - p*(-x)\ = ||/ - p*\\.

Hence, by uniqueness, q = p* and so

p*(-x) = p*(x)   for -b - x ^ b.

(ii) The proof of (ii) is accomplished by setting q(x) = — p*(—x) and proceeding

as in the proof of (i).

The following characterization theorem, due to Lorentz and Zeller [7], is funda-

mental. Recall that a point x in [a, b] at which [/ — p](x) = ±||/ — p\\ is called an

extremal point of p and a point x at which p'r)(x) = 0 is called a constraint point.

The union of the extremal points and the constraint points is the set of critical points.

Theorem 2 (Lorentz and Zeller). Let f be continuous on [a, b] and

KT = \p g (P„: pir\x) St 0 for a ^ x ^ b\.

Then p* £ KT is the best approximation to f from Kr if and only if there exist extremal

points xu ■ ■ ■ , x, of p*, constraint points x. + l, ■ ■ ■ , xt of p* (where t ^ n + 2), and

positive constants \,, ■ ■ ■ , X, such that

s t

(2.i) e^wxh e x,yr)(*.) = 0
i=l

/or a// p £ f?„, wAere

*(*,) = sgn[/(x,) - p*(x,)] = +1   // [/ - p*](Xi) = +||/ - P*\\,

= -1    f| [/ - P*](x,) = -||/ - P*\\.

Proof. [7, p. 5].

3. Computational Procedure; Discretization Error. We next present a

numerical procedure to compute the best approximation from KT\ this method is

described briefly in [5, p. 27]. The problems of particular interest are approximation

by monotonic polynomials and approximation by convex polynomials. The discussion

will be carried out for approximation by convex polynomials; the analysis for the

more general problem of approximation from Kr is similar. Let Xm = [x0, xu • • • , xm},
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where a = x0 < x, < ■ ■ ■ < xm = b, be a discrete subset of [a, b]. We consider the

constrained problem on Xm:

min max |/(x,) — p(xj)\,

subject to p"(x,) 0 for all xf £ Xm. Setting p(x) = a0 + a,x +

becomes

(3.1)

subject to

(3.2)

mm max
D , * * • > On  X) £X*m

£ «<(«)(/ - IX*,)""2 = 0,      7 = 0, 1,

This is equivalent to the linear programming problem

(3.3)

subject to

(3.4)

min X,

n

-A - £ ^ -/(*/).

n

-A + Z «<(*,)' ^ /(*,),

+ anxn, this

- Z ßiCÖO - D(*,)'~2 gO,      / - 0. 1,   • • , m.
1—2

X represents the deviation (maximum error) over the discrete set Xm. The problem

(3.3), (3.4) can be solved by linear programming techniques; several examples are

presented and discussed in the next section. Let us now consider the relationship of

the discretized problem (3.1), (3.2) to the original problem of approximation on the

interval [a, b]. Two lemmas will be needed.

Lemma 1. For any p £ <p„,

max |p'(x)| ^ — max \p(x)\.
O a asxst

Proof. This is Markov's inequality stated for [a, b]; see, for example, [1, p. 91].

Lemma 2. Let Xm, m = 1, 2, • • • , be a sequence of discrete subsets of [a, b] such that

Sm =   max   min \y — Xj\
K€[o,i>l i,EI,

as m —>  oo. If pm is a solution of the discretized problem (3.1), (3.2) then

\pm: m — 1, 2, • • •} is uniformly bounded on [a, b].

Proof.

max I/(*,•) - pm(xj)\ _ max |/(*,-) — 0| =

So

max |pm(x,)| < 2 for all m.
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Let /„, ■ ■ • , /„ be n + 1 disjoint subintervals of [a, b] with spacing at least e between

any two of them. Then, since 6m —> 0 as m —> c°, there exists M such that for all m = M

there are points xio, ■ ■ ■ , xin of Xm satisfying xis (E j — 0, • • • , n. Using the

Lagrange interpolating polynomial form, we can write

n                              n          X X

Pm(x)   =    Z Pm(x,t)       IT -_    " •
it —0 1=0■,iXh xik •*«(

Hence,

I I
X — Xn

\pm)\ ^ z \Pm(xik)\ n
1=0; jVfc JCv,  — Xi

S (n + D-2-
b - a "

independent of m and x. Hence, {pm} is uniformly bounded.

In general, pm will not satisfy the constraints on all of [a, b], i.e.,/?" may be negative.

However, the violation is easily bounded.

Theorem 3. Let Xm = {x0, x,, • ■ ■ , xm\, m = 1,2, • • ■, be a sequence of discrete

subsets of [a, b] with a = x0 < Xi < ■ ■ ■ < xm = b such that

8„ =   max   min \y — x,■ | —> 0   as m —* <*> .

If pm is a solution of the discretized problem (3.1), (3.2), then there exists a constant B

independent of m such that

p'J(y) = -Sl-B   for all y in [a, b].

Proof. Let y be an interior point of [a, b] at which pZ assumes its minimum value.

(If p'm' assumes its minimum at a or b, the conclusion follows trivially.) Let x, be a

closest point in Xm to y. Using Taylor's formula,

pL'(x,) = p'm'(y) + (xt - y)pl!'(y) + (*' ~ y) pIv (z),

where z is between x, and y. Since p'J'(y) = 0, we obtain

^ - 7 max |pLv(z)|.

Four applications of Lemma 1 show that there exists a constant M such that

max |/C(z)[ -      max |p„(z)|.

Since [pmj is uniformly bounded on [a, /j], the conclusion follows.

Let

w(f; 6) = sup{|/(x) - /<»[: *, j> G [a, 6], |* - y\ 5}

denote the modulus of continuity of / on [a, b]. The next theorem is the main result

on the discretization error.
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Theorem 4. Let Xm = jx0, xu ■ ■ ■ , xm\, m = 1, 2, • • • , be a sequence of discrete

subsets of [a, b] with a = x0 < x, < • • • < xm = b and such that

8m =   max   min \y — x, \ —■» 0   as m —» °° .

Le7 /?„ 6e a solution of the discretizedproblem (3.1), (3.2) andp* the best approximation

to the continuous function f from K2. Then, {pm\ converges uniformly to p* as m —> ».

Furthermore, there exist constants C and D independent of m such that

(3.5) ||/ - p*\\ - ||/ - Pm\\ = C-Sl

and

(3.6) ||/ - pm\\ - ||/ -p*\\ = »(/; «m) + D-«M.

Proof. By Lemma 2, {p„) is uniformly bounded and, hence, there exists a uni-

formly convergent subsequence {pmk } with limit, say, pa. We first show p0 G A^2. If

not, then there is a point y in [a, 6] such that p'0'(y) = —« < 0. Two applications of

Lemma 1 imply the existence of a constant R such that

ll/C - ri'\\ ^ R-\\pmk - Poll,

and, hence, there exists K such that | \p/,'t — p'0'\\ < e/2forall/< St Sop£'k(y) < —«/2

for all k Sr AT which contradicts Theorem 3.

We next show ||/ - Po\| = 11/ - p*\\. Sincepa G K2, clearly, 11/ - p*|| ^ ||/-p„||.
Assume ||/ — p*\\ = ||/ — p0\\ — t where t > 0. Let .v G [a, b] be a point where

\Ky)-Po(y)\ = 11/ - .poll-Then

11/ - Poll = |/tv) - Po(y}\

= l/OO - K*)| + [*(*) - p™(x)|

+ Ia-uC*) — p^OOI + Ip^OO — po(j)\,

where x G Xmt and |x — j>| = 6mi,

^ «(/; 8B4) + max |/(*) - Pml(x)|

+ - jr\ + \\pmi - Poll,

where z is between x and >>. Lemmas 1, 2 imply the existence of a constant 7* such that

maxoS2S!l |p^t(z)| ^ 7" for all k. So for /c large enough, we obtain

||/ - poll f£ max |/(x) - Pml'x)\ + c/2.
x€X„t

Hence,

11/ - p*\\ = 11/ - Poll - « Sa max |/(x) - pmt(x)| - e/2
*ex„fc

which contradicts the definition of pmt. So ||/ — p0\\ = \\f — p*\\. Since the best

approximation from K2 is unique, p0 = p*. Since every convergent subsequence has

limitp*, the sequence \pm\ has limitp*.

Now, let qm(x) = pm(x) + 5- 5^-x2/2 where B is the constant of Theorem 3. Then

<7m G A^2 and, hence,
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[|/ - ^ 11/ - 1m\\ ^ 11/ - + \\Pm - 9«n

s 11/ - Pm\\ + c-«L

where C = (Ä/2) max (a2, b2 j, which establishes (3.5).

Let v- (E [a, o] be a point where |/(j>) — Pm(j)\ = ||/ — Pm\\, and let x£I, satisfy

\y — x\ = Sm. Then

11/ - A.II - 1/00 - P«O0l

^ I/GO - /GO I + |/G0 - />„(*) I + |pmG) - Pm(y)\

S «(/; 3m) + max |/(x) - />„,G0I + \p'Jz)\-\x - y\
x£Xm

^ co(/; Sm) + max |/(*) - />*(*) | + D-Sm,

where D = supm \ \p£\\ < 03 by Lemmas 1, 2,

^ co(/; 5J + 11/ - p*\\ + D Sm

which establishes (3.6). This completes the proof.

It follows from Theorem 4 that if / satisfies a Lipschitz condition on [a, b], i.e.,

I/GO — /Ml ^ E- \x — y| for all x, y in [a, b], then (3.5) and (3.6) imply the existence
of a constant F independent of m such that

I 11/ - P*ll - 11/ - P-ll I = F/m.

4. Numerical Examples. A number of numerical examples were performed to

illustrate the procedure described in the previous section to compute the best convex

approximation; also, several examples illustrating the computation of the best mono-

tonic approximation (approximation from K,) were run. A solution of the problem

(3.1), (3.2) was obtained by applying the revised simplex method to the dual of the

linear programming problem (3.3), (3.4); the reader unfamiliar with linear program-

ming terminology and techniques may consult [2].

For a given convex function /, it often happens that the solution of the problem of

finding the best uniform approximation (with no constraints applied) will turn out to

be convex; this solution then will also be the best approximation from K2. If it were

known a priori that this were the case, then the Remes exchange algorithms for

unconstrained uniform approximation could be used. However, it is not at all obvious

when the best unconstrained approximation will turn out to be convex; this is an

interesting problem in itself. Of course, similar remarks apply to the more general

problem of approximation from Kr. To construct examples for which the uncon-

strained approximation would not turn out to satisfy the constraints, the problem

(3.1), (3.2) was solved for Xm with uniform spacing .1. If there were no points of Xm at

which p'm\x) = 0, then this was taken as an indication that the best unconstrained

approximation on [a, b] would turn out to be convex and the example was abandoned.

If there were points of Xm at which p'm'(x) = 0, then the example was continued for

spacing .01 and .005. In all examples, points at which p'„!(x) = 0 continued to appear;

in fact, near those for spacing .1.

In Examples 1-6, exhibited in Tables 1-6, the problem was to find the best convex
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Table 8. f(x)  = sin x"

m m
a."o

.1    -.00091 0
.01      .00002 0
005      .00054 0

"2 a3

.00457 1.13028
-.00011 1.12878
..00296 1.12876

a.■"4 5

.00678 -.28083
,00017 -.27917
.00463 -.27915

6 * m
.00312 .00798
.00008 .00814

..00220 .00814

critical points
-1.0(+), -.9(-), -.6(+), 0.0(c),  .6(-),  .9(+), 1.0(-)
-1.0(+), -.89(-),  -.56(+), 0.0(c),   .56(-),   .89(+), 1.0(-)
-1.0(+), -.89(-), -.555(+), 0.0(c),   .555(-),  .89(+), 1.0(-)

Table 9. f (x) ftSXD (

! -f(-x)

x4) if

if

.1
.01

.005

ao

.00914

.00017

.00061

"2

..05700
-.00108
-.00394

a3

.59812

.60382

a .J4

.09300

.00183

< x <

< x <

a5

.04973

.04458

6
.04515
.00092

critical points
-1.0(+), -.9(-), -.5(+), 0.0(c),  .5(-),  .9(+), l.O(-)
-1.0(+),  -.86(-),  -.5(+), 0.0(c),   .5(-),   .86(+), l.O(-)
-1.0(+), -.865(-), -.495(+), 0.0(c),   .495(-),   .865(+), l.O(-)

Table 10. f(x) 1

h =26
ra m

"0
1

,1 -.02236 .12468
.01 -.03786 .24555
005    -.03787 .24553

a. a.'2 3 "4

.40478 -.08510 -1.40152

.57496 -.41906 -1.88319
,57500 -.41881 -1.88300

" m
.01573
.01628

.60387    .00668    .04455 -.00335 .01629

a5 a6

.63902 1.31016 .03037

.85323 1.60623 .06016

.85299 1.60601 .06017

critical points
-1.0(c), -.?(+)., -.2(c), -.1( + ),  .4(-),  .?(+),  .9(-), 1.0( + )
-1.0(c),  -.87(+), -.27(c),  -.18(+),   .39(-),  .79(+),   .98(-), 1.0(+)
-1.0(c), -.875(+), -.28(c), -.175(+),   .395(-),   .795(+),   .98(-), 1.0(+)

Table 11.    f(x) = 1 - exp(-x5)

h =26„      an a, a„ a, a. ac a. \
mmO 1 2 3 4 5 6 Am

.1      .01495    .12863 -.29483 -.52903 1.41533 1.54861 -1.67853 .02698
.01      .01540    .14030 -.28744 -.56071 1.40938 1.56579 -1.68042 .02982

.005      .01541    .14043 -.28764 -.56108 1.41009 1.56600 -1.68094 .02985

critical points
-l.O(-), -.9(+),  -.7(-), -,3(+),   .2(-),   .3(c),  .7(-), 1.0(+)
-l.O(-), -.93(+),  -.62(-), -.34(+),   .21(-),  .26(c),  .73(-), 1.0(+)
-l.O(-),  -.935(+), -.62(-),  -.34(+),   .21(-),  .26(c),  .725(-), 1.0(+)

Table 12.    f(x) = ln(l.l+x3)

hnT26m       a0 al a2          a3           a4          a5          a6 *m

.1 .13731 .36643 -.78856 -.88069    2.83139 2.00568 -2.91687 .07444
.01 .14957 .47414 -.90758 -1.18251 3.20917 2.20123 -3.15905 .10183

.005 .14971 .47581 -.90914 -1.18729 3.21448 2.20435 -3.16255 .lo221

critical points
-l.O(-), -.9(+), -.7(-), -.4(+),   .2(-),   .3(c),   .9(-), 1.0(c)
-l.O(-), -.96(+),  -.76(-), -.36(+),   .19(-),   .3(c),   .9(-), 1.0(c)
-l.O(-), -.955(+), -.76(-), -.36(+),   .19(-),  .305(c),   .905(-), l.o(c)
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approximation to the specified function /(x) by polynomials of degree at most five

over [a, b] = [— 1, 1]. In Examples 7-12, exhibited in Tables 7-12, the problem was to

find the best monotonic approximation (from Ki) to /(x) by polynomials of degree at

most six over [—1, 1]. The sets Xm were taken to be equally spaced subsets of [ — 1, 1]

with m + 1 points. The labels in the tables will be explained with reference to Example

1. In Example 1, the problem was to find the best uniform approximation on [—1, 1]

to /(x) = x6 by a convex fifth-degree polynomial £f_, a.x*. The numerical results

(rounded off to 5 decimal places) of solving the discretized problem for spacing

h,n = 2Sm = .1, .01, .005 are exhibited in Table 1. Xm is the deviation of pm over Xm.

Under the heading "critical points", —1.0(+) indicates that — 1.0 is a plus extremal

point, —.8( —) indicates that —.8 is a minus extremal, and 0.0(+, c) indicates that

0.0 is a plus extremal and also a constraint point. In this example, by using symmetry

and the numerical results, one can guess that the best convex approximation on

[—1, 1] is x4 — X where X is the deviation. This can be verified by using the charac-

terization theorem, Theorem 2. The error curve is e(x) = x6 — (x4 — X). — 1.0,0.0, and

1.0 are plus extremals. Minus extremals occur at —(2/3)1/2 and +(2/3)1/2 where

e'(x) = 0. 0.0 is a constraint point. The linear relationship (2.1) of the characterization

theorem is (setting R = (2/3)1/2)

flV(-U - P(-R) + 2(1 - «4)p(0) - p(R) + R4p(l) + (R2 - R4)p"(0) = 0

which can be checked for p(x) = 1, x, • • • , x5. The deviation is X = 2/27. This

information, also rounded off, is included in Table 1 on the line with "exact" under hm.

It is interesting to note that in several of the examples the number of critical

points is less than n + 2; in the unconstrained problem the number of extremal

points is always n + 2. Also, a variety of possible orders for the critical points is

exhibited. For instance, Examples 4 and 5 have the order: plus extremal, constraint

point, plus extremal, whereas Examples 8 and 9 have the order: plus extremal, con-

straint point, minus extremal. Example 7 has two constraint points in succession. In

several examples, a constraint point coincided with an extremal point; in all such

cases the adjacent extremal points were of type opposite that of the constraint-

extremal point.

It can be seen from several of the examples that the analogue of the symmetry

theorem, Theorem 2, is not true for constrained approximation over a discrete set Xm.

The best constrained approximation over Xm is not unique in general; e.g., if we call

p(x) the solution of (3.1), (3.2) with hm = 28m = .1 in Example 1, then p(—x) would

also be a solution.

Notice that as hm decreases in a particular example, the deviation Xm is non-

decreasing. This is true because Xm C Xm> for m' > m and a solution of (3.1), (3.2)

over Xm' would be a candidate for a solution of (3.1), (3.2) over Xm.

Acknowledgement. Part of this work is contained in the author's doctoral thesis

at Brown University. The author is grateful to Professor Philip J. Davis for helpful

guidance and discussion.

Department of Mathematics

University of Rhode Island

Kingston, Rhode Island 02881



COMPUTATION OF BEST MONOTONE APPROXIMATIONS 747

1. E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York,
1966. MR 36 #5568.

2. G. F. Hadley, Linear Programming, Addison-Wesley Series in Industrial Manage-
ment, Addison-Wesley, Reading, Mass., 1962. MR 24 #B1669.

3. P. LaFata & J. B. Rosen, "An interactive display for approximation by linear pro-
gramming," Comm. ACM, v. 13, 1970, pp. 651-659. MR 42 #2712.

4. J. T. Lewis, Approximation With Convex Constraints, Doctoral Thesis, Brown Uni-
versity, Providence, R.I., 1969.

5. J. T. Lewis, Approximation With Convex Constraints, Technical Report #11, Univer-
sity of Rhode Island, Kingston, R.I., 1970. (Submitted for publication.)

6. G. G. Lorentz & K. L. Zeller, "Gleichmässige Approximation durch monotone
Polynome," Math. Z., v. 109, 1969, pp. 87-91. MR 39 #3189.

7. G. G. Lorentz & K. L. Zeller, "Monotone approximation by algebraic polynomials,"
Trans. Amer. Math. Soc, v. 149, 1970, pp. 1-18.

8. J. R. Rice, "Approximation with convex constraints," /. Soc. Indust. Appl. Math.,
v. 11, 1963, pp. 15-32. MR 28 #2387.


