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An Error Bound for Quadratures

By J. H. Hetherington

Abstract. A definition of a length scale is given for analytic functions. Quadrature error

bounds based on this length scale can be used to compare different orders and types of

quadrature rules.

A familiar theorem about convergence of Taylor series states that an analytic

function has a bound on its derivatives so that, if the nearest singularity is at a radius

greater than r from the point x in the complex plane, then there exists some M such

that, for all n,

(1) l/(n,(*)| < mm r*.

We need a lemma easily derived from the theorem which states: For all M

and M j£ 0, there exists an r greater than zero and less than the distance to the

nearest singularity such that Eq. (1) holds for all n. The lemma is proved as follows:

Define r0 as a radius less than the distance to the nearest singularity, and define M0 as

an M which satisfies (1) for r = r0 according to the theorem. Then it is straight-

forward to show that, given an M, M ^ \f(x)\ and M > 0, an r which satisfies the

lemma is given by r = min(r0, Mr0/M0).

We now define two functional of functions analytic in the neighborhood of a

given interval. The first functional, M, is the maximum absolute value of the function

on the interval under consideration. The second functional r is the largest value r

which satisfies (1) for the given function for every n and for every value x in the interval

when M is as defined above in this paragraph. The lemma assures that such an r

exists. This value r will be smaller than (or equal to) the smallest radius of convergence

of the function as measured from points along the interval. The functional r is valuable

because it can be used as a scale of length for the "variability" of the function. A

search for other useful definitions of scale might be valuable, but no other definition

will be considered here.

If a quadrature rule over this interval has a degree of precision (n — 1), then the

error for that rule can be written

(2) En = i-r+W'G).

where En is the error, H is the interval length, G„ a numerical coefficient and /("'(i;) is

the nth derivative of the integrand evaluated at some point in the interval [1]. Eliminat-

ing \j(n\0\ between (2) and (1), we obtain

(3) \En\/HM < v"Gnn\ (rv/H)~n.

Here v" has been introduced in the numerator and denominator. If v is taken as the
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number of panels (i.e., v = number of points for open quadratures and v + 1 =

number of points for closed quadratures), then the quantity in parentheses in Eq. (3)

is just a nondimensional average density of points which we will call the sketchability.

Since HM is a bound on the integral, the quantity on the left of (3) is seen to be the

error expressed as a fraction of that bound. We will call the quantity \E„\/HM the

fractional error. The form of Eq. (3) means that each quadrature rule will yield a

straight line on a log-log plot of fractional error versus sketchability. One can thus

compare the fractional error bounds for a variety of quadrature schemes as a function

of the sketchability.

It is easily shown that the same bound applies whether the quadrature is applied

to the whole interval or whether the interval is broken into uniform subintervals and

the same quadrature is applied to each subinterval.

We have made comparisons for a few kinds of quadrature and find, because of

the character of the numbers C7„, that among quadrature schemes of given types, say

the odd closed Newton-Cotes schemes, different orders give the best error bound for

a given sketchability in different sketchability regions. That is, for any given fractional

error, one order of the quadrature is found to give the error bound desired with the

SKETCHABILITY rv/H

Figure 1. log-log plot oj the "fractional error" bound \E„\/(HM) as a junction oj the "sketch-

ability" rv/H jor several quadrature schemes.
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lowest sketchability, and the order which is best depends on the desired accuracy.

Fig. 1 shows the relationships of various low-order quadrature schemes. The

straight line segments in Fig. 1 each correspond to Eq. (3), evaluated for some parti-

cular quadrature scheme. The intersection of the straight line with the line rv/H = 1

is given by the quantity vnGnti\, while the slope of the line is determined by — n. To

prevent confusion, only that segment of each line is shown which gives a stronger

bound than any of the other members of its family.

When comparing two quadrature schemes the scheme with the lowest sketchability

for a given error is best and therefore lines to the left in Fig. 1 are stronger bounds.

Numerical integration of any function analytic in the neighborhood of a given interval

will yield a point on Fig. 1. The point will always lie to the lower left of the straight

line which corresponds to the quadrature scheme used.

Examination of Fig. 1 shows that some order Gaussian quadrature scheme for

most error ranges gives the strongest bound.

These bounds allow one to discriminate between the use of a single higher-order

scheme or several lower-order schemes on a given interval. They show that, in general,

lower-order schemes are better for obtaining low accuracy with fewer points while

higher accuracy requires higher-order quadrature schemes [2]. This qualitative

behavior will be preserved in any stronger error bounds, at least for the closed odd

Newton-Cotes quadratures, because of the following considerations.

First, the integral Jlj (64 + x2)'1 dx, calculated by a single Simpson's rule, has

sketchability 8 and fractional error 3.2 X 10~5. This establishes a lower limit for

Simpson's rule bounds well above the nine-point closed Newton-Cotes bound of

2.1 X 1(T6 for this sketchability. On the other hand, the integral Jl, (.25 + x2)~l dx,

calculated by a single nine-point closed Newton-Cotes quadrature, has sketchability 2

and fractional error .0123 which is above the Simpson's rule bound of .0083 for this

sketchability. Thus, any stronger bounds for Simpson's rule and nine-point closed

Newton-Cotes quadrature must intersect.

Since we have not found similar examples among the Gaussian quadratures, we

cannot be assured that such intersections occur for the strongest bounds for that

family of quadratures. A search for stronger bounds should be interesting.

A nonrigorous estimate of r based on differences of the function has been found

useful: r can be estimated by applying Eq. (1) to several derivatives estimated from

differences. Each such application of Eq. (1) gives a radius r, and the estimate of r is

the smallest radius so calculated. It has been found possible to construct an automatic

adaptive quadrature scheme, based on this error bound, using this estimate of r.

The method is to estimate M as the largest value of |/| on points collected on the

interval. If M and the desired error are known, it is possible to decide from Fig. 1

which order quadrature scheme is best among the family which is used (closed odd

Newton-Cotes in the program which has been written). The interval can be sub-

divided if the estimate of r based on differences does not indicate convergence. Thus,

both the interval size and order of quadrature are adjusted.

It is straightforward to derive a similar error bound for interpolation schemes. The

error bounds for various order Lagrangian interpolations on uniformly spaced points

have been calculated. Similar behavior is found, i.e., lower orders give stronger

bounds, when low accuracy is required; higher orders are better for high accuracy.
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Note added in proof. The error line for two-point open Newton-Cotes quadratures

should lie a factor 3 above the line shown in Fig. 1 because of a misprint in Eq.

25.4.21 of reference 1.
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