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A Note on Modified Optimal Linear
Multistep Methods*

By H. Branner

Abstract. Modified optimal linear /t-step methods (whose coefficients depend on the

stepsize and on a parameter L) are used for the numerical integration of systems of nonlinear

ordinary differential equations. It is shown that, by choosing L suitably (depending es-

sentially on the growth parameters of the /fc-step method and on the logarithmic norm of

the Jacobian of the given system), weak stability does no longer occur, and one of two types

of stability (called asymptotical relative and asymptotical absolute stability) may be obtained.

1. Introduction. In [1], the author discussed a class of linear /c-step methods

(R, S) of the form

(1.1) R(E, hL)Yn = hS(E, hL)Fn,

where EY„ = Yn+U x„ = nh,h> 0, Fn = F(x„, Yn),

k

(1.2) R(w, hL) = £ &XhL)-w* = p(w) + \hLp*(w),
r-0

k

(1.3) S(w, hL) = }Z ßt(hL)-w' = <r(w) + \hL-a*(w).
r-0

Here, L is a (nonnegative) parameter to be specified later. The polynomials

k k

P(W) =   £ a»W"> ff(W)  =   X ß*W* (<*•" ß> real)
v=Q v=0

are such that the corresponding linear /c-step method (p, o-) is stable (in the sense of

Dahlquist) and has (optimal) order p = k + 2 (see [6, p. 232]). The fc-step method

defined by the polynomials

(p*, <r*)      (where p*(w) = p'(w)-(w - 1), ' = d/dw)

has order p* ^ k + 1 ([1], [6]).
The linear /c-step method (R, S), given by (1.1), is used to generate (for given

initial values { Y0, • ■ ■ , r*-i}) approximations { Yk, • • • , YN] to the exact solution

Y(x) of the initial-value problem

(1.4) Y'(x) = F(x, Y(x)),       Y(0) = Y0,      0 g x g a,

at the points x = x„ = nh, n = k, ■ ■ ■ , N, Nh = a. Here, Y G Rm, m ^ 1.
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It has been known for some time (see, for example, [3]) that optimal linear A>step

methods (p, <r) as decribed above are subject to weak (or marginal) stability. The

author has shown in [1] that, for the case m — 1, the modified /c-step method (R, S)

does no longer show weak stability if L is chosen suitably. In [2], these results were

extended to the case m > 1. The purpose of this note is to simplify the results of [2]

and to discuss their practical application, especially when the given system (1.4) is

nonlinear. In this case, one is forced to use, in general, a "variable" L, i.e., L will be

kept constant over a certain number of integration steps in order to avoid the eval-

uation of the Jacobian of the system at each step.

2. Elimination of Weak Stability. Let G(x) be the Jacobian of F(x, Y) in (1.4)

along the exact solution Y(x). Assume that Y(x) £ C*+4[0, a] (where k denotes the

degree of the characteristic polynomials of the method (R, S), k S; 2). It was shown

in [2] that under these conditions the discretization error En = Yn — Y(xn) satisfies the

asymptotic relation (see also [7, pp. 25-26])

En = EÜ + E(xn)hk+2 + 0(hk+\      0 £ xn ^ a,

h —> 0, nh = xn fixed, L fixed. Here (see [2, Theorem 3.1]), E(x) is the solution of a

system of linear differential equations involving G(x) and the error constants of the

methods (p, <r) and (p*, &*) (but not the growth parameters of the method (R, S)).

We have assumed that the initial errors satisfy = 0(hk+2), i = 0, 1, • • • , k — 1.

The error term E"n is the solution of the homogeneous difference equation for En with

given initial values     i = 0, 1, • • • , k — 1, and we have

(2.1) ||£f|| £ E '<<*.> L)-\\AA\ + 0(hk+3),      0 £ xn ^ a.
i-l

The vectors Aj are determined from the initial errors and one has \\Aj\\ = 0(hk+2).

The functions r,(x, L) are given by [2]

(2.2) r,{X, L) = exp^ (cos tpt - \)x + j ßN[^iG(t)] dt} ,       j = 1, • • • , k.

Here, the quantities X, are the growth parameters of the method (p, a) and are defined

by [3]

(2.3) X, = <r(z,)/Zl.p'(z,),      j = 1, ••• ,k,

(with p(z,) = 0, Zj = exp(<p,), 0 = <px < <p2 < ■ ■ • < <Pk < 2ir). The symbol pN denotes

the logarithmic norm corresponding to a matrix norm N (induced by a given vector

norm || • ||). Properties of the logarithmic norm may be found in [3, pp. 10-12].

Definition 1. The linear fc-step method (R, S) is called (asymptotically) absolutely

stable with respect to the system (1.4), if for j = 2, • • • , k and for all xn £ [xk, a],

(2.4) r,(**, 7.) = 1 •

Definition 2. The linear fc-step method (R, S) is called (asymptotically) relatively

stable with respect to the system (1.4), if for J = 2, • • • , k and for all x„ £ [xk, a],

(2.5) /•,(*„, L) < ri(xn, L) = -"iCxJ.
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Before stating the easily derived criteria for the choice of the parameter L to achieve

one of these types of stability, we recall some relevant properties of the growth

parameters of the (optimal) method (p, <r) (see also [3, p. 40]).

(i) The growth parameters A, are real, \x = 1.

(ii) x, = Xk+2-i, j = 2, ■•■ , k/2, \k/2 + i £ -h (with equality if and only if

k = 2).
(iii) sign (x,) = (-irt/9, j = 2, • • • , k/2 + 1.

Define the set Jk by

Jk = {2, 4, • • • , k/2 + 1} if&/2isodd,

= {3, 5, ••• ,k/2 + 1)   if k/2 is even.

For the following discussion, we shall assume that the spectral abscissa of G(x) is

negative, i.e.,

<a(x) = max Re «<(G(jc)) < 0,      0 £ x £ a,
to

where u{(G(x)) denotes the rth eigenvalue of G(x).

The following results are now obvious.

Theorem I, The linear k-step method (R, S) is (asymptotically) absolutely stable

with respect to the system (1.4), if the parameter L satisfies for all xn £ [xk, a] the

inequality

-X/ / pA-G(t)]dt
(2.6) L ^ —max-f-

Xn    , £Jk 1   —  COS <Pj

Observe that the set Jk consists, for k £ 4, of only one element: Jk = \2\ if

fc = 2,/» - (3) if k - 4.
Theorem 2. 77ze //near k-step method (R, S) is (asymptotically) relatively stable

with respect to the system (1.4), if L satisfies, for all xn £ [xk, a], the inequality

f   (mw[X,G(0] - pNlG(t)]) dt
(2.7) L > —      max      —-—-

•f» ;ei2. •••.t/2+ii 1      cos ipj

It follows from the assumption u(x) < 0, 0 ^ x ^ a, that ßN[—G(x)] > 0, 0 £

x £ a, for any matrix norm N, since

G(x)] ^ max Re w,-(—G(x)) = -min Reco,-(G(x))

^ —max Rewi(GW) = — u(x) > 0.
(i)

(On the other hand, w(x) < 0 does not imply in general that jUiv[G(x:)] < 0. But it can

be shown that there exists a matrix norm TV such that the corresponding logarithmic

norm of G(x) is arbitrarily close to the spectral abscissa w(x).)

If, in (2.7), x, < 0 and if TV is such that ßN[G(x)] < 0,0 g x g a, then mw[x,G(0] -

ßN[G(t)] > 0.

But, in this case, we have also to consider those values of j for which 0 < x, < 1,

since
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MX,G(0] - ßAG(ty\ - (X, - 1W[G(()1 > 0

(see also the remark in [4, p. 155]).

3. Practical Application. If F(x, Y) in (1.4) is a nonlinear function of Y, then

the Jacobian G(x) will not be known. It can be computed approximately, simul-

taneously with Yn, at the points {(x„, Yn): n = 0,1, • • • , N]. We set

Gn = dF(x, Y)/dY\lXm.r.,.

The integral in (2.6) (or (2.7)) will therefore have to be replaced by a discrete expression

of the form

(3.1)

An obvious choice is w„,0 = h>^»_i = 1/2, m>»,< = 1 (0 < i < n). Since (2.6) (or (2.7)),

with the integral replaced by (3.1), can, in general, no longer be satisfied a priori over

the entire interval [xk, a], one will be forced to use a variable L. To avoid the evaluation

of Gn for each n = k — \, ■ • ■ , N — \, the following procedure may be chosen.

Consider the intervals {[xni, x„i+,]: i = 0, • • • , /}, with n0 = k — 1, ni+1 = 7Y. The

approximate Jacobian Gn will be computed only at the points \(xni, Yni): i = 0, • ■ • ,/}.

For n, < n £ /Ji+i, we set, using (2.6),

(3.2)

where

r _ ,(« > 1 mjuc -X,-7l0(A)L = Ln   ^ — max —
x„  ,€jt   1 — cos (p,

(i = 0, 0,

rJ°(A) = Tu~v(h) + A £ »v„,,-^[-G„J,

and

r(0,(A) = 7„„(A),      r(i)(A) = TlZXh),      i - 1, •

For practical purposes, it is convenient to write (3.2) in the form

(3.3) Zi° = --max -h   0n ,
— cos ip,

where 5„  takes the role of a parameter.

4. Numerical Illustration. We shall apply the above results to a system of

moderately stiff nonlinear differential equations suggested by Gear [5, p. 218], namely

(4.1) Y'(x)

where the matrix

F{x, Y(x)) = -B- Y(x) + U- W(x),

U = i

-1

1

1

1 1

1 1

1 -1
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is unitary, U 1 = U, B = U-diag(bu 62, b3, 64)- ̂  (with 6; ^ 0),

W(x) = (z2(x), ■■■ , zl(x))\      Z(x) = (2l(x), • • • , z4(*))r = r/- F(x).

The exact solution of (4.1), corresponding to the initial vector

K(0) = (-1, -1, -1, -if,

is given by z,(x) = 6,/(l + c, expf/j^x)), c; = —(1 + 60» ' = 1» ''' > 4, and by

using Y(x) = UZ(x).

The eigenvalues of the Jacobian G(x) of (4.1) along the exact solution are

A,(x) = 2z,(x) - b{, with lim^„ A;(x) = -|6,|, z = 1, • • • , 4. System (4.1) was

solved numerically by the modified Milne-Simpson method,

yn+1-(l + hL) — hL- Ym — Yn-x

(4.2)
= Y2 [(4 + 5ÄL)F»^ + (16 + 8AL)F„ + (4 - AL)F„_i].

We chose

01 = Ö '   02 = ~01'   03 = 5'   *4 = 0'001'

and (4.2) was applied with a step size h = 0.1. Tables 1 and 2 below contain a selection

of numerical results. The logarithmic norm used in (2.6) and (3.1) was the one cor-

responding to the maximum norm.

Table 1.  bx = 40, h = 0.1

||£„||« = max(i) |eiiB|

n        x„ I II III

2 0.2

3 0.3

99 9.9

100 10.0

500 50.0

0.03782660
(L = 54.0 = const)

0.03171098

0.00020415

0.00019380

7.23-10~8

0.03504106

(L = 47.031)
0.02994904

(X = 49.395)

0.00021375

(L = 53.981)
0.00020292

(L = 53.983)

7.12-10"8

(X = 54.095)

0.03504106

(L = 47.031)
0.02994904

(L = 49.395)

0.00023867

(L = 53.419)
0.00022479

(L = 53.419)

7.11-10s

(L = 53.390)

Exact solution at x = 50:

Y(x) = (-0.05986120, 0.04074892, -0.05986120, -0.04074892)7".

Column I:    L = const = f • yN[— Go] + 40 (using (2.6) with constant Jacobian).

Column II:   fiN[-Gn] = »[-G^, n ^ 2 (using (3.3), trapezoidal rule, 8„° = 40).

Column III: ni+1 — rii = 10 (using (3.3), trapezoidal rule, 5"' = 40).
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Table 2.  bx = 50, h 0.1

n x„ I
\En\\„ = max(i)

II III

2 0.2 0.05167039
(L = 100.33 = const)

3 0.3 0.04597920

0.05795966
(L = 167.33 = const)

0.04870244

0.05743187

(L = 158.699)
0.04841416

(/_ = 161.619)

99 9.9

100 10.0

0.04382924

0.04366285

0.00129796

0.00124998

0.00131064
(/_ = 167.284)

0.00126221

(L = 167.286)

500 50.0 0.03869461 9.08-10" 9.06-10"8

(Z, = 167.426)

Column I:    L = const = %yN[— G0] + 83.0 (using (2.6) with constant Jacobian).

Column II:   L = const = Ipn[— G0] + 150.0 (using (2.6) with constant Jacobian).

Column III: ßN[—Gn] = lin[—Gt], n ^ 2 (using (3.3), trapezoidal rule, o„° =

150.0).

All the computations were performed on the CDC 6400 (single precision) at

Dalhousie University Computer Centre.

As a first remark we note that the trace of the approximate negative Jacobian

— G„ of the system under consideration is equal to the sum of its eigenvalues. Hence,

the logarithmic norm nN[—Gn] needs to be updated only if tr( — G„) increases by a

significant amount over a number of integration steps. This remark becomes relevant

when solving, for example, a nonlinear system of the form

/t(*) - -1(1 + *)10-(1 - yl(.x)f-y2(x),      *(0) = 3,

m. - vh) ■    '•<»> - '•
whose exact solution is yx(x) = 1 + 2/(1 + x), y2(x) = 1/(1 + x)10. It is obvious

that in this case the off-diagonal elements (and thus the logarithmic norm correspond-

ing to the Lj-norm or the L„-norm) vary rapidly as x increases, whereas its trace

decreases slowly from 12 to 0 as x —> .

Table 2 also shows that the parameter L has to be chosen much larger than

indicated by the right-hand side of (2.6), confirming the fact that the results of Section 2

have been derived for the asymptotic case h —» 0. In the following table, we list (for

the modified Milne-Simpson method (4.2)) the smallest value L for which both roots,

w{(hL) and w2(hL), of the characteristic equation R(w, hL) + hq-S(w, hL) = 0 lie

no longer outside the unit circle. The agreement between the results of this table and

the results in Columns I and II of Table 2 is obvious.
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qh w1(hL) w2(hL)

1.0

2.0

3.0

4.0

5.0

5.5
6.0

4.0
4.2

10.0
10.2
20.0
20.2
40.0

40.2
100.0
100.2
220.0

107

0.36842
0.36852
0.14286
0.14326
0.07692
0.07783
0.07692
0.07719
0.10448
0.10455
0.12292
0.14286

-1.00000
-0.98734
-1.00000
-0.99340
-1.00000
-0.99716
-1.00000
-0.99905
-1.00000
-0.99982
-1.00000
-1.000001
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