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Exit Criteria for Simpson's Compound Rule*

By J. H. Rowland and Y. L. Varol

Abstract. In many automated numerical algorithms, the calculations are stopped when the

difference between two successive approximations is less than a preassigned tolerance. The

dependability of this procedure for Simpson's compound rule has been investigated. Classes

of functions have been determined for which the above criterion is (a) always valid, and (b)

asymptotically valid. A new exit rule is proposed which appears to be less conservative

than the standard technique.

1. Introduction.   Let / be integrable on [a, a + h], and

na + h

If = I[a, a + h]f(x) = /      f(x) dx.

Simpson's compound rule, with 2m + 1 points, approximates // by

S(m)f = S(m)[a, a + h\f(x)

(1) ,    I" „ m-l -]

= Ka) + 4 £ /(*„_,) + 2 £ f{x2i) + f(a + h) ,
Om |_ ,„! ,_i J

where x,■ = a + jh/2m. A traditional method of applying Simpson's rule is to evaluate

S(17, S12'/, SU)f, ■■■ and accept S<2m) as a sufficiently accurate result when

(2) 15""'/ - 5(2ffl)/l < «.

where e is the preassigned tolerance. Adaptive routines use essentially the same method

applied to a number of subintervals. Such a procedure may be justified in terms of a

stopping inequality.

Definition. The inequality

\Sim)f - S<2m)/| ̂  \Si2m)f - If\

will be referred to as the stopping inequality. The validity of the stopping inequality is

sufficient to insure that the value Si2m)f, accepted as the final result by the above exit

criterion, will be within the tolerance e.

Clenshaw and Curtis [2] have given an example where (2) is satisfied while the

error is much greater than e. On the other hand, Lyness [5], among others, has observed

that an exit procedure based on (2) is likely to be too conservative when /l4) is Lipschitz

continuous.
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The purpose of this paper is to determine classes of functions for which

(a) the stopping inequality is valid for all m,

(b) the stopping inequality is valid for all m greater than some threshold m0.

On the basis of the analysis presented here, we will also discuss a modification of

the standard exit procedure.

2. Functions with Fourth Derivatives of Constant Sign. In this section, we

will show that the stopping inequality is valid for all m if does not change sign

on the interval of integration. We will also show that the inequality is sharp. Before

doing this, let us establish several lemmas.

Lemma 1. Let / £ CU)[a, a + h]. Then

5   f - 11 = ~n7 L    8\      h      P   {X) dX'

where

4\gi(x) = \x\2 - Ix), OS^i,

and

gt(x) = £4(1 — x) = g4(l + x)   for all x.

Proof. This result follows from the Euler-Maclaurin sum formula. In particular,

it can be obtained by setting q = 4 in formula (A.5) of [5] and using the symmetry

properties of Bernoulli polynomials [1, p. 804].

Lemma 2. Let f £ CU)[a, a + h] and a be a real number. Then

s^f _ If _ a(s^f _ If) = j£ £+* Glm{x~ a) ; a)r\x) dx,

where

Gt(x;a) = gi(x) — a2~igi(2x)   for all x.

Proof. This follows directly from Lemma 1.

Lemma 3. The functions g4 and Gt have the following properties:

g4(x) ^ Ofor all x,

G4(x; a) =i 0 for all x when a ^ 2,

Gt(x; a) takes on both signs when a > 2.

Proof. The first statement follows directly from the definition of g4. Note that

4!G4(x; a) = %xs[3x(a - 1) + 2 - a],      0 ^ x ^ \.

It follows that Gt is nonnegative on [0, |] when a S 2. Now, g4(x) is increasing and

gt(2x) is decreasing on [\, |]; so C74 is nonnegative there. Then, G4 is nonnegative

everywhere since it is symmetric about \ and periodic. Finally, note that 4! C74(J; a) =

4V and the term 3x(a — 1) + 2 — a is negative if a > 2 and x is near zero. Thus, G4

takes on both signs when a > 2.

We are now ready to prove several theorems concerning the stopping inequality.

Theorem 1. Letf £ C(i)[a, a + h]andassume /<4) does not change sign in[a, a + h].

Then, the stopping inequality is valid for all m.

Proof. First, assume fl4) 2: 0. Replace m by 2m in Lemma 1 and apply Lemma 3
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to obtain 0 ^ s(2m) _ //_ Then, using Lemmas 2 and 3 with a = 2, we have

0 ^ S{2m)f - If g S(m)f - s(2™7>

which implies the stopping inequality. The case where /<4> g 0 is similar.

We will now show that the stopping inequality is sharp for the class of functions

covered by Theorem 1.

Theorem 2. Let 0 < K < 1 and mbea positive integer. Then there exists a function f

such that f(4) has constant sign in [a, a + h] and

\S'2m)f — If\ > K \Sim)f - 5<2ra)/l-

Proof. Let a = (1 + K)/K in Lemma 2 to obtain the equation

K(S(m)f - 5(2m7) - (s 7 m      Kh* r (m^x ~ a>   1_+jKW w
m = ^rla G\—h      k /

Since the kernel C74 is negative on part of the interval [a, a + h], we can choose /<4) S: 0

so that the right-hand side of the above equation is negative. Hence,

K(Sim)j - Sl2m)f) < S(2m)f - If.

Applying Lemma 3 to Lemma 2 with a = 1, we see that the left side of this inequality

is nonnegative, and the result follows.

3. Asymptotic Validity of the Stopping Inequality. When /(4) is not of constant

sign, we cannot give a rigorous bound such as that given in Theorem 1. However, we

can show that under certain conditions the stopping inequality is asymptotically

valid; that is, there exists an integer m0 such that the stopping inequality is satisfied

for all m ~:= m0.

Theorem 3. Let f £ C(2a+1,[a, a + h] with q ^ 2. Assume If{2,) = 0 for r =

2,3, • • • , q — 1, but //<2a) 9* 0. Then, as m —> <*>, the stopping inequality is eventually

satisfied.
Proof. Using formula (A.5) of [5], we see that, as m —» °°,

5<m7 - // = c2a Kh r" fa\x) dx + Oim-2"-1),
m Ja

where c2a is a nonzero constant. From this, we can write

S^f -If= c2a r" r\x) dx + (Km-2*-1),
Im     J a

(3)

S'-'j - s'-'l - 1 - i) /    r'M dx + 0{m—-).

Hence,

5(2m7 _ 7/
(4) Hm   (m), -(i^T)s(m7 - 5(2m7    225 - 1 '

which implies that the stopping inequality is eventually satisfied.

In the limit, the si2m)f approximation is roughly 22° times as accurate as the S(m)f

approximation. Usually, q = 2 and the exit criterion based on (2) is roughly fifteen

times too accurate.
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Let us now point out that even for functions in Cl°°)[a, a + ft], m may have to be

very large before the stopping inequality will be satisfied.

Theorem 4. Let k be a positive integer. There exists a function f £ C^'fa, a + h]

such that the stopping inequality fails for the first k applications of Simpson's rule.

Proof. Without loss of generality, we can assume the interval [a, a + h] to be

[-1, 1]. Let

f(x) = e"1 sin(2*irjc),

where a * 0. Then, / £ C("'[-1, 1] and

// = 2V(1 - e2a)/e\a2 + 22V) ^ 0.

Clearly, /(>,) = 0 at all points x, required by Sim)f, m = 1, 2, 4, • • • , 2*. Thus,

S<m'/ = 0 for m = 1, 2, 4, • • • , 2k, and the stopping inequality fails for the first k

approximations.

The stopping inequality is not always asymptotically valid. To see this, let

/ £ C<2)[0, 1] be defined by

f(x) = iFix, i) - Fix, i),

where

Fix, 0=0, 0 ^ x g t,

= (x - tf, t < X < 1.

In terms of generalized functions,

f*\x) = 9S(x - I) - 68(x - £);

so Lemma 1 implies that

-V-* Mi) - 2..(f); ■
Using this equation, one can show that the ratio (5<2m)/ - If)/(Sim)f - S(2m)/)is

periodic and takes on the value 499/285, whenever m is an odd power of 2. Thus, the

stopping inequality fails infinitely often asm-^ »,

4. Modified Exit Procedure. If / satisfies the hypothesis of Theorem 3, then

(3) implies that

(5) lim gl2m)j _   gi4,m)_j  =   2 .

If 22° — 1 is approximated by 22a in (4), then (4) and (5) imply that the quantity

(S<2m)/ - 5(4m,/)2/(5(m>/ - S<2™7) is asymptotically close to SUm)f - If. This leads

us to propose the following two-step exit rule:

Accept the approximation SUm)f, if

(a) (S<m,f - S{2m)f)/(S(2m)f - S(4m>/) is close to a power of 2, and

(b) (S<2m>/ - SUm)f)2/\Sim)f - Sl3m)f\ S t.

Condition (a) serves as a test to determine whether the Ofm-2"-1) terms are small

enough so that the asymptotic formulas will be good approximations, while (b)
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requires that an asymptotic estimate of the error not exceed e. Lyness [5] has proposed

that the standard exit criterion (2) be replaced by \S{m)f - S(2""/| ^ 15«. When

q = 2, one can see from (5) that condition (b) is similar, since it roughly requires that

|S(4m7 - S(2m,f| not exceed 16e.

One evident disadvantage of such an exit procedure is that it cannot be applied

before the third approximation. Nevertheless, sample calculations given in [7] indicate

that the above procedure seems to be less conservative than the standard rule. It was

also observed that the quantity in (a) tended to stray away from a power of two near

the point at which round-off error began to dominate the truncation error. This

quantity might be useful in determining the point of diminishing returns, as suggested

by Lyness [6].
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