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Difference Approximations for Boundary and Eigenvalue

Problems for Ordinary Differential Equations

By Heinz-Otto Kreiss

Abstract. The boundary value problem for ordinary differential equations is considered

and a general theory for difference approximation is developed. In particular, the influence of

extra boundary conditions is investigated and the eigenvalue problem is considered in detail.

1. Introduction. Consider an nth order linear system of ordinary differential

equations

n-l

(1.1) Ly = cty/dx" + £ A,(x) d'y/dx" = F

in the interval 0 ^ x ^ 1. Here, y = (vm (x), • • • , v<m>(x))' * and

F = (Fa\x), • • • , F(m\x))' G C

are vector functions and the Aj(x) £ C1 ** are m X m matrices. Furthermore, mn

linearly independent boundary conditions

i

n «      B'y = Z Bu(0) d'yiOy/dx' + Bu(l) d'KD/'dx' = g„

/= 0, 1, 2, 1,

are given. Thus B,y = gt describes the boundary conditions which contain derivatives

up to order /, the Bn are rectangular matrices with rows and n columns. Without

loss of generality, we may assume that the rows of (£„(0), BH(\)) are linearly in-

dependent. Thus, 2~1 ri = mn-
We shall also consider the eigenvalue problem

(1.3) L<p = \<p,      Bi<p = 0,       / = 0, 1, 2, • • • , n - 1,

and assume that not all complex numbers X are eigenvalues.

The aim of this paper is to develop a general theory for difference approximation

of the form (2.1), (2.14). Specifically, we shall investigate the influence of extra bound-

ary conditions on the speed of convergence. These extra boundary conditions are
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606 HEINZ-OTTO KREISS

necessary if r + s, the "width" of the difference approximation, is larger than n.

Another interesting result is that the behavior of the eigenvalue problem is completely

determined by the behavior of the corresponding inhomogeneous problem. For

example, if one can use Richardson extrapolation for the inhomogeneous problem,

then one can also use it to determine the eigenvalues and the invariant subspaces. No

assumption of selfadjointness or simplicity of the eigenvalues is needed.

Remark. The assumption that the coefficients are smooth is no real restriction. H.

Keller [2] has pointed out a procedure by which one can reduce the case of piece-

wise smooth coefficients to the case of smooth coefficients.

2. Formulation of Difference Approximations. We want to solve the problem

(1.1), (1.2) by difference approximation. Let h = TV-1, TV a natural number, and

define gridpoints x, by x„ = vh, v = 0, 1, 2, • • • , N. Using the notation v, = c(x„), we

approximate (1.1) by

(2.1) hnLKvv =  jl C,(x„ h)tfv, = hnF„,      v = r, r + 1, • • • , TV - s.
i = -r

Here, r, s are natural numbers with r + s S; n, and C,(x„, h) are m X m- matrices

which belong to C1 as functions of x and are polynomials in h. Furthermore, E

denotes the translation operator, i.e., E'c, = D,+i and Fv is an approximation of F,

such that

(2.2) lim sup \F, - Fy\ = 0.

Practically all of the difference approximations used are of the form (2.1). For later

reference, we discuss some of them:

(1) We approximate the system of differential equations

(2.3) dy/dx + A(x)y = F

by

(2.4) D+v, + I A(x, + \h)(E + I)v, =       + I)FV,     v = 0, 1, 2, • • ■ , N - 1.

Here, I = E°, D+ = h~\E - I) and r = 0, s = 1, i.e., r + s = n. This type of ap-

proximation has been thoroughly studied by Keller [2].

(2) We approximate the differential equation

(2.5) d2y/dx2 + a0(x)y = F

by the usual difference equations

(2.6) D+D-D, + aa(xv)vv = Fy, £>_ = h~1(I — E'1), v = 1, 2, • • • , TV — 1;

or

(2.7) - y2 D\ Dljo, + a0(xv)vr = F„      v = 2, • • ■ , N - 2.

In the first case, r = s = 1, i.e., r + s = 2 = n, while in the second case, r = s = 2

and r + s > n.

We want to define consistency of the difference equations (2.1). For this reason, we

rewrite the equations in the form
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(2.8) hnLhvv = X) Ci(xr, h)(hD+)\.r = h"Fy.
>-0

Here, the Cj(xv, h) are linear combinations of the C(x„ h). For example, (2.4), (2.6)

and (2.7) can be written as

((/ + \hA(xv + hh))(hD+) + hA(x, + \h))u, = ±h(E + I)F„

((hD+)2 + h2a0(x,)(hD+) + A2a00O/K-i = h2Fr,

and

(- MhD+? + (hD+f + (1 + h2aa(xv))(hD+f

+ 2h2a0(xv)(hD+) + h2a0(xv)I)v „_2 = fl2F„,

respectively.

Definition 2.1. The difference approximation (2.1) is consistent, if there is a

constant     > 0 such that, for all « > 0,

(2.9) sup(\Cn(x, h) - I\ + £ |//'~"C,(*, A) - /!,(*)!) ^ ff,A.
x   V j-0 I

There is no difficulty in showing that this definition is equivalent with the usual

one. We leave the proof of the following lemma to the reader:

Lemma 2.1. TVze difference approximation is consistent if and only if for every

w(x) £ C° there is a constant K(w) such that, for all h > 0,

(2.10) sup    \Lw(xv) - Lhw,\ g K(w)h.

It is obvious that the difference approximations (2.4), (2.6) and (2.7) are consistent

with the corresponding differential equations.

For later purposes, we write (2.8) in the form

n-l

Lhv, = S0(h) D\vy-r + X Ä~i(x„ h) D'+v,_r = P„
iz.ii.» ,,0

v = r, r + 1, • • • , N — s.

Here, Aj(x, h) = h'~"Cj(x, h) and S0(h) denotes a uniformly bounded difference

operator of the form

r + s—n

(2.12) S0(h) =   £ Sok(x„ h)Ek,

whose coefficients are linear combinations of C„, • • • , CT+t. For example, for (2.4),

(2.6) and (2.7), the operator S0(h) has the form

S0(h) = I + \hA(xv + §»),      S0(h) = /,

and

S0(h) = —T2-(hD+f + (hD+) + (1 + h2a0(xr))I

= — tVe2 + iE — (tV — h2 a0)I,

respectively.
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From (2.9), it follows that

t+s—n r4-s—n

(2.13) E So*(.x„ h) = I + O(A),   i.e.,  £ Sok(xv, 0) = /.

(2.1) represents (N — (r + s) + \)m linear equations for the (N + \)m unknowns

v„ f = 0,1,2, • • • , N. Therefore, we have to add (r + s)m boundary conditions. These

boundary conditions are also linear expressions between the D,- near the boundary

points x = 0 and x = 1. We shall write them in the form

i

(2.14) Blhv = E (£,-,(0, A) D{vo + 5,-,(l, A) DLvN) + hRl+1 = £,(*).
1-0

Here, Bn are rectangular matrices whose elements are polynomials in h, and R! + 1v

stands for a linear combination of divided differences for which an estimate

(2.15) \Ri + iv\ ^ A'a    max    \Dl++1vy\,      K2 independent of ft,
OSKäJV-1-l

holds. Thus, Ri+iV represents the higher-order terms.

Definition 2.2. The boundary conditions (2.14) are consistent if the following

conditions are fulfilled:

(1) If r + s = n, then I ^ ft — 1 in (2.14) and there is a constant K^, independent

of h, such that

„ \m ~ Si\ + Z |5,-.(0, A) - £„(0)1 + |5„(1, A) - 5,,(1)| ^ JST»A,

? = 0, 1, • • , n - 1.

(2) If r + s > n, then there are still nm boundary conditions of type (2.14) with

/ g n — 1 for which (2.16) holds. Furthermore, there are ((/• + s) — ri)m extra bound-

ary conditions of the same type with / ^ n.

We do not know of any difference approximation which cannot be written in the

above form. Let us now consider the examples.

(1) The boundary conditions for the system (2.3) are given by

(2.3a) Boo(OMO) + Boa<\)y(\) = 0

and we use

(2.4a) 50o(0K + Boo(l)!V = 0

as an approximation which is obviously consistent.

(2) For the differential equation (2.5), the boundary conditions shall be given by

(2.5a) y(0) = y(t) = 0.

As an approximation, we use

(2.6a) v0 = vN = 0

or

(2.7a) v0 = vN = 0,       DT+v0 = DLvN = 0,

where r is a natural number with r ^ 2. Even these approximations are consistent.
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Remark. Dlv0 = DlvN = 0 defines some kind of extrapolation which is indepen-

dent of the differential equation. However, one can also use the differential equation

to derive the extra boundary conditions. From (2.5) and (2.5a), it follows that

/'(0) = F(0),      /'(l) = F(l),

and, therefore, we can use instead of (2.7a)

(2.7b) v0 = vN = 0,      Dlvo = F(0),      D\v = F(l).

The accuracy of (2.7b) is, of course, improved if h = (N — 2)~1 and x„ is defined by

x, = (y — l)h, i.e., x0 = — h,xN = I + h.

We shall also consider the eigenvalue problem. In that case, we approximate

(1.3) by

(2.17) Lh^ = \hSh^v,      v = r, r + 1, •■• , N - s,

with boundary conditions

(2.18) Blh* = 0.

Here, Sh is a uniformly bounded operator of the form

s

(2.19) Sh = £ 8i&„ h)E'.
I-f

The coefficients Su are matrices which belong to C1 as functions of x and are poly-

nomials in h. For consistency, we assume that

(2.20) sup 2 Su(x„ h) - I ^ Kih,      Kt = const independent of h.

For our examples, we get

(2.21) D+*„ + \A(x, + §A)(2S + I)*, = \\h(E +

(2.22) D+D-f, + a(xv)xby =

(2.23) ( £>+£>_ - y2 D+D^y + a(x,w. =

3. General Convergence and Stability Theorems. In this section, we want to

prove a number of general stability and convergence theorems. Let S8A denote the

Banach space of all gridfunctions v = (v0, vu ••• ', vN)' with the norm defined by

|H|„ = max \v,\.

If V £ then it is not true that w = D+v also belongs to $8*, because w, = D+v, is

only defined for v = 0, 1, 2, • ■ • , N — 1. We shall, however, use the notation

||/>+u||* =   max \D+Dy\.

In general, if To, = Tj(x,)Ei vr is a difference operator, then

\\Tv\\K = max
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Thus,

\\Diplv\\h = ||M+V|U =     max \D<++kv,\.

We shall denote by 33 the Banach space of all functions j(x) £ C with the norm

defined by

U/H = sup i/e*)|.

With these notations, we write down the following two well-known lemmas:

Lemma 3.1. Let j, k with j < k be natural numbers. For every 8 > 0, there are

constants cik(h), independent of h and v, such that

\\Div\\h f£ d\\Dk+v\\h+clk(8)\\v\\h.

Lemma 3.2. Let k be a natural number. For every h and every gridfunction vh, there

exists a function w = w(x, k, h) £ Ck and constants dik, independent of h and v, such

that

w(xv, h) = vv,      v = 0, 1, 2, • • • , N,

\\D+v\\h ^ \\d'w/dx'\\ ^ dik(\\v\\h + \\D\v\\h),      j = 0, 1,2, ••• ,k.

Proof. The function w of Lemma 3.2 can, for example, be constructed in the

following way: Define vv for v > TV by D++1vN-k+„ = 0, ju = 0,1,2, • • • , and construct

w by Hermite interpolation with d'w(xv)/dx' — Dlv„ j = 0, 1, 2, • ■ • , k. This process

we shall denote by w = lntk v.

Lemma 3.2 implies that Lemma 3.1 holds if we can prove it for the continuous

case, i.e.,

\\dsu/dxi\\ ^ 8\\dku/dxk\ \ + C,*(«)||«||.

Let ||wj|2 = (/J \u\2 dx)l/2 denote the 7_,2-norm of u. Then the above inequality follows

from the corresponding Sobolev inequality

Wd'u/dx'W2 ^ 82\\dku/dxk\\22 + C2t(5)||«||22.

With these two lemmas, we can now prove the main result of this section.

Theorem 3.1. Assume that \ = 0 is not an eigenvalue of (1.3) and that there is a

constant Kx such that for all h and all solutions of (2.1), (2.14) an a priori estimate

(3.0 lion, =s rx(iHi» +      + Z \sA)

holds. (Here we define F„ = 0 for v m 0» 1, •«• , r — 1 and v = N — s + 1, • • • , N.)

If the Eqs. (2.1), (2.14) are consistent, then these equations have, for every F, g and all

sufficiently small h, a unique solution v £ $5k, and there is a constant K2 such that

(3.2) \\v\i ^ Ä-2(||F|U + Z \g\).

Furthermore, the interpolated function Int„ v converges to the solution u of the dif-

ferential equations, i.e.,

(3.3) lim ||Int„i; - u\\ = 0.
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Proof. Assume that (3.2) does not hold. Then, we can select subsequences ft,-,

FU),g\",j = 1,2, ••• , with

A,^0,      \\Fu)\\hi -> 0,      |#f"I —► 0,

such that the equations

(3.4) Lhiv, = FU),      Bthiv = i\n,

have, for every 7', a solution      with = 1.

Using Lemma 3.2 with k = n, we can construct a sequence of functions wu\x) -

Int„ which, by (3.1), have uniformly bounded derivatives up to the order n.

Therefore, we can, without restriction, assume that wu\x) and its first n — 1 deriv-

atives converge uniformly to a function u(x) and its derivatives. Here ||w(x)ll = 1. Add

the Eqs. (3.4) for v = r, r + 1, • • • , and use the notations ft = ft,, w, = u^1' = vv'\

Then

Z S0(A)Z»._rA + Z Z Mx„ K)D\w..rh = £ ft"*.
\J . j) a = r 3=0   o~ — t a = r

Li = r, • ■ • , N — s.

By (2.12),

Z So(A)Z»„_rA = 2Z iSoW - J)D"+wr-rh
a = r a =r

— D*_l>V-r — Dr'wo + Ri, + R2,,

where

*>m = Z Z £«*(£* - l)Z»._rA,
k     u -r

R2»= Z (Z So» - /)ß>„_rA.

By assumption, the S0fc = S0i;(x„ A) belong to C1 as functions of x and are polynomials

in A. Therefore, partial summation gives us

max |j?i„| ^ const A|[fl" w| |A = const h\[ D"v\\h ^ const A.

From (2.13), it follows that the same inequality also holds for R2ß. Thus, (3.5) implies

that u(x) is the solution of

ct-lu(x)/dxn^ - d-VoVAT1 + f  Z ^i(l)W'«(8M') rf{ = 0,

i.e., Lw = 0.

It is obvious that « also fulfills the boundary conditions (1.2). Therefore, X = 0 is

an eigenvalue of (1.3) which is a contradiction. We have proved that an estimate of

type (3.2) holds.

Writing the difference equations (2.11) in the form (3.5), consistency and the

inequalities (3.1) and (3.2) then imply (3.3).

We shall now derive algebraic conditions such that the estimate (3.1) is valid. Let
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yv = D"vv, v = 0, 1, 2, • • • , TV — n. Then, we can write the Eq. (2.11) in the form

(3.6) S0(0)y,-r = G„,      v = r, • • • , N — s,

and it follows from (2.11) and (2.13) that

(£ ll^ll, + \\F\\X\\g\\„g const

(Here we again define G„ = 0 for v = 0, •••,/■— 1 and f = TV — s + 1, • • • , TV.)

If we use the relations

D'+v, = D+~ayj,       DT"y^n,      a ^ n,

then, we can write the ((r + s) — n)m extra boundary conditions (2.14) with / ^ n,

after multiplication with A'"*, in the form

N-n

(3.7) E^ = *>.
1-0

Here, the Hn are rectangular matrices independent of h and, for g,, we have an

estimate

(3.7a) g const(£ \\D"M\k + k'~" £ \g\\

(3.6) and (3.7) represent (at least formally) (TV — n + i)m linear equations for the

(TV — n + l)m unknowns y0, • • • , yN-n- From Lemma 3.1, we obviously get

Theorem 3.2. Assume that the Eqs. (3.6) and (3.7) have, for every Gv and gt, a

unique solution and that there is a constant K3 such that, for all h, G„ and%u

(3.8) max   \y,\ ^ kJ max   \g,\ + max \g,\\,

then (3.1) holds.

A corollary is

Theorem 3.3. Assume that r + s = n, i.e., the difference scheme is as compact as

possible. Then (3.8) holds.

Proof. By (2.13), we have So(0) = I and (3.8) follows from (3.6).

Thus, for compact difference schemes, we have only to make sure that the boundary

conditions are consistent. Therefore, Theorem 3.1 implies that the solutions of our

first two examples (2.4), (2.4a) and (2.6), (2.6a) converge to the solution of the dif-

ferential equations if X = 0 is not an eigenvalue of (1.3).

In most applications, the difference equation (3.6) is a scalar equation with constant

coefficients, i.e., we can write it in the form

• — n

(3.9) X) cttE*y, = gv,      v = r, ■■■ , N - s,

where the a„ are constants. In this case, we can prove:

Lemma 3.1. Let the difference equation (3.6) be of the form (3.9) and denote by k, the

solutions of the characteristic equation

(3.10) £ ay = 0.
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The estimate (3.8) holds if and only if all |k,| ^ 1 and (3.8) is valid for the special

case that G = 0.

Proof. Let /cj = e", <x real, be a solution of the characteristic equation, then we can

write (3.9) in the form

(3.11) (E — e")wv = Gv,       w, = a,_„ TL (E — K,)y,.

If (3.8) is valid, then w, has to be bounded for all t7„. This is impossible. We need only

to choose Gy = e'"'G0. Thus, the conditions of the lemma are necessary.

Assume now that all |k,| 1. Then, there is no difficulty in showing that (3.9)

has a particular solution w, i.e.,

s — n

X a„E"wv = cvs_„ TL (E — Ki)wv = Gv,
H—— r i

with

max   \wy\ ^ const   max |G„[.

Subtracting w from y, the lemma is proved.

Let us now consider the difference equation (2.7) with the boundary conditions

(2.7a). Observing that

(ß+/J_ - £ DlDl)v = (d\ + AD3+ - ^ D+4)«;„_2,

it follows that the homogeneous equation (3.6) has the form

(3.12) (/ + hD+ - y2 D*)yy_2 = 0.

The boundary conditions (3.7) are given by

(3.13) hr~2Dl~2y0 = gi,      V~2 Dl~2yN-2 = g2.

The solutions of the characteristic equation 1 + (k — 1) — tV(k — l)2 = 0 are

Kt = 7 — V48 ~ 0.07 and k2 = 7 + V48 ~ 13.93. Therefore, the general solution of
(3.12) has the form

v    I v — N

y, =  (TiK! + <72K2 .

The c, are determined by the boundary conditions (3.13) and there is no difficulty in

showing that the desired estimate holds for any t. We have thus proved that the

solutions of (2.7), (2.7a) converge to the solution of the differential equation if X = 0

is not an eigenvalue.

One can generalize the above results considerably. We state without proof:

Theorem 3.4. Consider the characteristic equation

Det X S0(Xy, 0V = o,

for all fixed x„. If, for all its solutions k, , |k, | ^ 1, then the estimate (3.8) is valid if it

holds for the special case G = 0.

If the boundary conditions (3.7) can be separated into linear relations
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0 N—n

X ff.i-Vi = gi    Z   Hnyi = g,,
3=0 j =N—n—p

where q and /j are some natural numbers independent of h, then one can go still

further. Consider the half line problems with constant coefficients which we get

from (3.6) and (3.7) by moving one of the boundaries to infinity and freezing the

coefficients at the other boundary, i.e.,

r + « — n

(3.14) £ So*(0, 0)E*y,_, = 0,      v m r, r + 1, • • • , N, N + 1, • • •,
k-0

with boundary conditions

Q

(3.15) X tfü-v, = °.       sup  \y,\ £ const,
7=0 rSKco

and

(3.16) £ Sot(l,0)E*j>,_r = 0,      „ = TV- s> N-s- 1,       , 0, -1, ••• ,

with boundary conditions

N—n

(3.17) X)    fffi^. = 0, sup     \yv\ ^ const.
j "N—n—p N— a £ v> — oo

Then we have

Theorem 3.5. Assume that the conditions of Theorem 3.4 are valid and that the

problems (3.14), (3.15) and (3.16), (3.17) have only the trivial solution. Then the estimate

(3.8) holds.
Let us consider the difference equation (2.7) with boundary conditions (2.7a) once

more. The general solution of (3.12) with sup, |j>„| £ const is given by yv = a^l and,

therefore, hT~2DT~2yQ = o-i(ki — 1)T~2 = 0 implies that = 0, thus, that the cor-

responding Eqs. (3.14), (3.15) have only the trivial solution. Obviously, the same is

true for the Eqs. (3.16) and (3.17).

The stability results which we have derived here are independent of the particular

differential equation, i.e., they depend only on the approximation of the nth derivative

and the choice of the extra boundary conditions. If the solutions «, of the characteristic

equations do not have the property that |k, | j± 1, then this is no longer true and one

cannot develop any general theory. We shall illustrate this by an example:

Consider the differential equation

du/dx = 0,      «(0) = g0,

and approximate it by

vv+1 — p,_! = 0,      v0 = g0,       d+v0 + 2d-VN = gi.

Then

v, = Oi + <r2(—\)\

where ou o-2 are determined by

V0   =   Ol  +  02   = go.
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h(D+u0 + 2D.vN) = (-2 + 4(-lf )a2 = hgl,

i.e.,

(3.18)       (-2 + 4(-lVvK = (-2 + 4(-lf)go + A((-l)' - l)gl.

Therefore, the vv converge to u. If we now change the differential equation to

du/dx — au = 0,      «(0) = g0,

and approximate it by

D,+i — V,-i — 2ahv, = 0,      v0 = g0,       D+v0 + 2D.vN = gl,

then

Dy = (Tie + (T2{— l)e

and o-,, o-2 are determined by

<?1   +  02   = 0,

Ao-ia(e^/2 + 2ea"-A/2) + 0(A2)) + o-2(l + 2""A)(-1 + 2e""(-lf + 0(A2)) = hgl.

An easy calculation shows that we do not get convergence if TV is even and a = log 2.

4. Error Estimates. We have already proved that the solutions of the difference

equations converge to the solution of the differential equation. We shall now derive

refined error estimates. We start with

Lemma 4.1. Assume that X = 0 is not an eigenvalue of (1.3). Consider the equations

(4.1) Lhw, = 0

with boundary conditions

Blhw =0 for I £ n — 1,
(4.2)

= h" lgl   for I ^ n,

and assume that for the Eqs. (3.6), (3.7) the estimate (3.8) holds. Then, there is a constant

Kt, independent of h and gt, such that, for the solutions of (4.1), (4.2), an estimate

(4.3) I H|k ^ Ki2Z MA

is valid.

Proof. From (3.7a) and (3.8), it follows that an estimate of type (3.1) holds for w.

Therefore, the estimate (4.3) follows by the same argument as the estimate (3.2).

In most cases, one can improve the above estimate. We can, for example, prove

Lemma 4.2. Assume that the conditions of Lemma 4.1 are fulfilled and that the Eqs.

(3.6) have the form (3.9) and all solutions k, of the characteristic equation (3.10) are

distinct. Then we get, instead of (4.3), an estimate

(4.4) \\w\\h g hK5 £ |«k|.

If, furthermore, /max = max, I, £ n — 2 for the highest derivative appearing in the

boundary conditions (1.2), then

(4-5) IMU ^ h2Ko-2Z \Si\-
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Proof. Let y be the solution of

N — Tl

(4.6) S0(.0)y,.r = 0,      T,HHy, = §i-
1-0

By assumption and Lemma 3.1,

U;I<1 U,-|>1

with

|o-,| £ const X) k/l * 1-

Define z<" by

(4.7) z«' = Ä-f 2) «m* - D"*«; + E    - irvr*y
VUiKl I k ,■ I > 1 /

then Z>"z"' = j>v and v = w — z(1) is the solution of

L4c = hG,      \\G\\h £ const X) l#il>

(4.8) = A""!^      for f £    — 1,       ,. ,  .        t ^ . . ,
|,#,,| £ const 2^ lift I-

= hn~l + 1()i   for I ^ n,

Therefore, v = v1 + p11, where r?1, u11 are the solutions of

^4 ^ = hG,,      Blhv = hn~l§i   for / % a — 1,

= 0 for / ^ n,

and

^4 = 0,      Blhv,1 = 0 for / £ n — 1,

= hn~l + 1h   for / ^ n,

respectively. Then, the estimate (4.4) follows from (4.3) and (3.2).

Let /mai[ £ n — 2. Then, we define z<2) by

(4.111 A>+z„    — V,,      Zo    — -ü+z0    — ' • • — a>+ z0 =0,

where y, is the solution of

N-n

S0(0))>y-r = hG,,       2~1 Huh = hgi,      v = r, ■ ■ ■ , N — s.
i-0

(4.7) implies that there is a constant d with 0 i£ d < 1 such that

\G,\ =g const(<f + rf'_W) £ Iftl

and therefore also

\y,\ £ h constOf + rf-*) £ lftl-
Thus,

117)lz(2> \\k     h2 const £     I   for y = 0, 1, 2, 1.

vn) = w - z(1) - z<2> is the solution of
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/V1' = h2Gl2\       ||G<2,||, 5; const E \ft\.

Blhvw = h2gt for / ^ n — 2,       .   . ^ .. .
|o, I ^ const       Ift I-

Therefore, (4.4) follows in the same way as above.

There is no doubt that Lemma 4.4 can be generalized considerably. For example,

the assumption that the solutions k, of the characteristic equation are distinct is

unnecessary. This can be seen by a simple perturbation argument.

Furthermore, it can be shown that the estimates are sharp.

It is now easy to derive error estimates: Let u be the solution of (1.1), (1.2) and

substitute it into the difference equation. Then there is a natural number a, the order

of the difference approximation, such that

Lhu, = Fv + haGv,

(4.12) Blhu = g, + h"jl for/£«-l,

= gi + fi       for / ^ n.

We get

Theorem 4.1. Assume that the conditions of Lemma 4.1 or 4.2 are fulfilled and let v

denote the solution of the corresponding difference equations. Then

||« - v\\h = haK2(\\G\\h + Z \U\) + h°K7 Z h1" \h\.
\ 1-0 I iin

Here, a = 0, 1, 2 and K7 = K4, K5, K6, if the estimates (4.3), (4.4), (4.5), respectively,

hold.
Proof. The estimates follow in the usual way by writing down the difference

equation for u — v and then using a representation of type (4.9), (4.10).

It is easy to see that a = 2 for the approximations (2.4), (2.4a) and (2.6), (2.6a). In

these cases, the second sum in the error estimate does not appear. For (2.7), (2.7a), we

have a = 4 and the second sum is of order 0(hT). For (2.7), (2.7b), we again have

a = 4 and the second term is of order 0(h4) if we use a grid defined by xv = (v — l)h,

h = (N - If1. Otherwise, it is of order 0(h3).

One can always construct compact difference schemes, i.e., r + s = n, such that

the truncation error can be expanded into power series X h2v(p,(x) in h2. Therefore,

it is doubtful that one should use difference schemes with r + s > n to increase the

accuracy. Instead, one can use Fox's difference correction method [1] or Richardson

extrapolation. Justifications of these methods are given in [3], [4] and depend on the

estimate (3.2).

5. The Algebraic Eigenvalue Problem. The eigenvalue problem for the dif-

ferential equations can be considered as the limit of finite-dimensional problems.

Therefore, we shall discuss the latter briefly.

Let Xv denote the /^-dimensional vector space x = (xlt • ■ • , xp)'. Denote by A a

p X p matrix, and let Xj be an eigenvalue of A, i.e., a solution of

(5.1) Det \A - \I\ = 0.
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It is well known that the associated invariant subspace J is given by the projections

(5.2) J = PXV,      P = -~ [ (A - If1 dz.
Z.TTI J I 2-X , I _s,

Here, 5, > 0 is a constant which is so small that there is no other eigenvalue X with

IX — Xj I ^ 5,. A basis of J can (for theoretical reasons) be constructed by solving the

set of equations

(5.3) (A - \)ya = 0,      (A — \J)yi = y0, ■ • • , (A - \J)yi + 1 = y,, ■ ■ ■ .

Now let B be another p X p matrix and let us consider the generalized eigenvalue

problem

(5.4) Ax = \Bx.

Without restriction, we may assume that

Ax = 0,      Bx = 0   imply x = 0.

Then, the eigenvalues are given by

(5.5) Det \(A - XJ3)| = 0.

The invariant subspace J associated with an eigenvalue \ is given by

(5.6) J = PXV,      P =       / (A - zBY'B dz,
2irl Jix-x.i-s,

and a basis of J can be constructed by solving the equations

(5.7) (A - X.BXvo = 0,   (A - \B)yi = By0, • ■ ■ , (A — \B)y, + l = Byu

U B is nonsingular, then we can write (5.4) in the form B~xAx = \x, and (5.6), (5.7)

follow directly from (5.2), (5.3). If B is singular, then we perturb B and consider

Pit) = —X, / iA - zBY'B dz,      B = B + eß,.
2iri J i.-x.i-l

Here, l?i is chosen in such a way that B is not singular in an interval 0 < e < e0-

Observing that P(e) is, for sufficiently small e, an analytic function of e, the relations

(5.6) and (5.7) follow by a perturbation argument.

In applications, the generalized eigenvalue problem (5.4) is often written in the

form

(5.8) Ax = \Bx,   with side conditions Cx = 0.

Here A, B are / X p matrices, / £ p and C is a p — I X p matrix. (5.8) can, of

course, be written in the form (5.4),

(c> - <»)«•

Let T>i denote the subspace of vectors x £ Xp with Cx = 0 and denote by X(z) the

operator

H(z)x = (A - zB)x,      x £ 3)!,
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which maps S)i into Xt. If z is not an eigenvalue of (5.9) then 3c(z) 1 exists and we can

write the invariant subspace connected with an eigenvalue \i of (5.9) in the form

(5.10) J = PXV,      P = f H(zYxBdz.
2x1 J |,_x,

This follows directly from (5.6) and (5.9) because

0-<(o)Ho>^>-'-
Remark. If there is more than one eigenvalue inside the circle \z — Xn j £ 8U then./

denotes the combined invariant subspace.

6. The Eigenvalue Problem for the Differential Equations. Let 35 £ 93 denote

the subspace of all <p £ C™ which fulfill the homogeneous boundary conditions (1.2),

i.e., Bt<p = 0. Then we can write the eigenvalue problem (1.3) in operator form

(6.1) ?<p = X0,     0 £ 33.

We assume that not all complex numbers X are eigenvalues. Then the equation

(6.2) (? - z/)u = F,      y £ 3),

has a unique solution for every z which is not an eigenvalue and every F £ 53 and

||(? — z/)_1|| < co if z is not an eigenvalue. In fact, (? — z/)_1 is a meromorphic

function of z with poles at the eigenvalues. Let Xj be an eigenvalue and assume that

3 > 0 is a constant such that no other eigenvalue belongs to ||z — \\\ ^ 8. Then the

invariant subspace /(Xi) which is associated with X! is given by the projection

(6.3) /(X,) = PS8,     P =     . f (? - z/)-1 dz.
Zirl J i.-x.i-j

It is well known that 7(Xj) is finite-dimensional.

The operators Lh, Sh, defined by (2.1) and (2.19), respectively, map SB* into the

N — (r + s) + 1-dimensional vector space Vh consisting of the gridfunctions (wr, • • • ,

wK_,). Let ©x £ 93* denote the subspace of gridfunctions v = (v0, ■ ■ ■ , cN)' which

fulfill the boundary conditions (2.14) and denote by ?ft, ©a the restriction of Lh, Sk

to ©a. Now, we can write the discrete eigenvalue problem in the form

(6.4) ?aiA = Xa@a^,      + £ SD»,

which is a generalized eigenvalue problem of the form (5.8). For the computation of

the invariant subspaces, we consider the equation

(6.5) (?A - <typ = ShF,     v £ £>a,     SaF = M*Jk rivo. S$fo.£ G lf*r

We now make a number of assumptions:

Assumption 6.1. Let z be a complex number which is not an eigenvalue of ?. We

assume that there is constant h0 > 0 such that

sup   11(8» - z<Sa)_1|U = K < co.
0<asa«

The following lemma is valid.
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Lemma 6.1. Let ü denote a compact set in the complex z-plane which does not

contain any eigenvalue of 2. If Assumption 6.1 holds, then there is a constant ha > 0

such that

sup     ||(8» - 2®*)"1!!* = Ka < co.
jea,o<*si.

Proof. Let z0 £ Q. By Assumption 6.1,

(8* - z©»r1 = (8* - z0<5hy\l + (z - z„)©»(8» - zo©»))-1

is uniformly bounded in a whole neighborhood of za. The lemma follows from the

theorem of Heine-Borel.

Let z £ ß, F £ 93 be a fixed function and define F = ShF £ K» by F„ = S»F„,

v = r, r + I, ■ ■ ■ , N — s. By Assumption 6.1, the function c = (8» — z&hy1ShFexists

for all h ^ h0 and, by Lemma 3.2, we can construct the interpolated function w =

Int„ v. We now make

Assumption 6.2. For every z £ Q and every F £ 93,

lim \ \w - u\\ = lim ||Int„(8» - z©*)-1^ - (8 - z/)_1F|| = 0.
h->0 h->0

Lemma 6.2.

lim sup ||w - «|| = 0.

Froo/. From Assumption 6.1, it follows that the w's are analytic functions of z

and that the first derivatives dw/dz are uniformly bounded for all z £ Ü and all h < n0.

Therefore, the lemma follows from Assumption 6.2.

Lemma 6.3. Let hß -»' 0, F(M> £ 93 be sequences with lim^ \\FW - F|| = 0.

Denote by u the solution of (8 — z/)« = F and by wiß) the solution

ww = Int„(8» - z^y'S.F^,      h = K.

Then

lim sup ||« - w'^H = 0.
h->o zea

Proof. The lemma obviously follows from Assumption 6.1 and Lemma 6.1.

Assumption 6.3. Let hß —> 0, F<M> £ 93 with supM ||F<M)|| < co be sequences. Then,

we assume that the solutions of the discrete problem

ww = Int„(8» - z©»r1 ^F(M>,     zG Ü,h = h„

form a compact sequence.

Assumptions 6.1, 6.2 are the usual stability and consistency requirements. They

guarantee that the eigenvalues of the discrete problem converge to the eigenvalues

of the differential equations. However, the invariant subspaces need not converge.

For that, the last assumption is essential. Consider, for example, the eigenvalue

problem

dy/dx - \y = 0,      y(0) = y(l),

and approximate it by the leap-frog scheme

c,+i — vy-i — 2h\üy = 0,      v0 = Vff,      v2 — v0 = 0.
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It is easy to see that Assumptions 6.1 and 6.2 are fulfilled and X = 0 is an eigenvalue

for both problems. However, the corresponding invariant subspaces are y = const

and d„ = const + o-(—1)", respectively.

The above assumptions are natural in our framework because we get from Theorem

3.1 without difficulty:

Theorem 6.1. Assume that for every z there is an a priori estimate of type (3.1) for

the solutions of (6.5). Then, the Assumptions 6.1-6.3 are fulfilled.

Let Xj be an eigenvalue of the differential equation (6.1) and J(\i) the correspond-

ing invariant subspace. (5.10) shows that

A(X„„) = Ph2h,      Ph = I (8a - z^T's, dz
j li-X, i -8

denotes the combined invariant subspace of the eigenvalues \jh of the discrete eigen-

value problem which lie inside the circle |z — X^ ;S 5. We shall now imbed Jh(K,,)

in 93 by interpolation. We let

J(Kh) = Int„ Jh(Xvh)

and prove

Theorem 6.2. lim^0 J(\k) = -/(Xj), i.e., for sufficiently small h the dimension of

J(\h) is the same as that of J(\x), and there is a basis of J(\h) which converges to a

basis of J(\i).
Proof. Let <px, • - • , 4>„ be a basis of J(\x). Then, \pj(x, h) = Int„ Pa<£, belongs to

J(\h). By Assumption 6.2 and Lemma 6.2,

lim *,(*, «) = [ (8 - ziy1 dztt = 0,.

Therefore, we need only show that the \pj(x, h) define, for sufficiently small h, a basis of

J(\yh). Assume that there is a sequence hß —> 0 such that, for every h = AM, there is a

function \(/(x, h) £ J(\h) with

lllKx, h)\\ = \   and    f rf/*(x, h)\j/(x, h) dx = 0,      j = 1, 2, • • • , p.

Then

Mk, h) = — Int.    . f (8ft - z©a)_1 dzSh+{x, h).
z.1ti j [ J =s

By Assumption 6.1, the sequence (8a — z&hy1Sh\p(x, h), h = hß, is equicontinuous

with respect to z. Therefore, Assumption 6.3 implies that the sequence \l>(x, h),

h = hß, is compact and we can, without loss of generality, assume that lim iftx, h) =

<t>(x). Then, it follows from Assumption 6.2 and Lemma 6.2, that

*(*) = — t~~. [      (8 - ziy1 dz<p(X) e -/(xo.

Furthermore, \ \<t>\\ = 1 and <p is orthogonal to all This is impossible, and the theorem

is proved.

We have thus proved that the eigenvalues and corresponding invariant subspaces

of the discrete problem converge to the eigenvalues and invariant subspaces of the
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continuous problem. In most cases, one can derive sharper error estimates and can

show that Richardson extrapolation is possible. We want to show

Theorem 6.3. Consider any compact set 0 which does not contain any eigenvalue

and assume that there are natural numbers a and q such that (6.2) has, for every F £ Cav,

p S q and any z £ 0, a solution u(x, z) £ C". Assume, furthermore, that for the

corresponding solution of (6.5), there is an expansion

(6.6) ^=^,h,z)

= u(x, z) + h'uiix, z) + ■ ■ • + At"ll'^1)«p_1(x, z) + 0(hav),      x = xy.

Here, the «,(*, z) £ C" ("~" as functions of x and are continuous functions of z. Then,

there exists a basis {^,(x„, h)} of Jh(\h) such that

(6.7) *,(*, h) = *,(*) + ha<pn(x) + • • • + »*<*-%,_!(*) + 0(haQ),      x = x„

where <p,- £ C" denotes a basis o/V(X0 and <piv £ ca("~v).

Furthermore, if \ has multiplicity r, then there are precisely r eigenvalues \h,

counted according to their multiplicity, with \ \rh — \\ < °° and

(6.8) - £ X* - X, + A"X„ + ■■■ + **t*-"Xlt_, + 0(A").

Proof. Let F = 0, £ /(Xj). Then 0, £ C""a and, by (6.6),

\piix, A) = Prfj = —/ v(x, h, z) dz
27TI J|,-X,|-J

ha f
= 4>j(x) — — / Ux'x, z) dz + • ■ ■

and (6.7) follows directly.

Let z0 £ Q and    £ 7(X0. Then also (8 — z0/V"Vs £ 7(Xj) and, therefore,

r

(6.9) (g - z0i)-y = £ fll.^».

The t X t matrix ^ = (aI(i) has the sole eigenvalue X = (X! — z0)"\ In the same way,

if >Pi £ -MX,*), then

(6.10) (8» - zo®»)"1«*^ = £

and the t X r matrix Ä = (bjk) has the eigenvalues (X„A — z0)_1, v = 1, 2, • • • , r. We

want to derive a relation between ^4 and B. By (6.7),

Z        = (8* - zo©*)"1^*, + A"(8* - zo©*)_1S**» + • • ■ •

Now, apply (6.6) to all of the terms on the right-hand side. Then, (6.9) gives us

T

X bik\\ik = (8 — Zo7)_10, + h"wu(x) + h2aw2i(x) + ■ ■ ■
k-1

r

= X °ik<Pk + h°wu(x) + h2oiw2i(x) + • • • .
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We can now use (6.7) to express <pk in terms of the \j/k and get

T T

X bikipk = Z aik\j/k + Rj.

Rj = h"wu(x) + h2aw2i(x) + • • • G Jh(Kh) and therefore (6.7) implies that

R, = 2 + C(A"0).

Therefore,

£ = ^ + AC, + A2aC2 + • • • + **<€-"Cf-, + 0(A"),      C = (<#),

and (6.8) follows without difficulty.

We have thus shown that the error behavior of the eigenvalue problem is the same

as that of the inhomogeneous problem, the estimates for our examples are obvious.

If the dimensions of the invariant subspaces are always one, then there are no practical

problems either. Otherwise, we have to cope with two difficulties:

(1) If there is an eigenvalue of multiplicity r > 1, then it might be difficult to

decide which are the r eigenvalues \h which converge to X. In general, this difficulty

can only be overcome by some a priori information of the differential equation.

(2) Assume that (6.7) holds and that we have constructed a basis j \pi(x, A), ■ • • ,

^T(x> A)} for the invariant subspace Jh(\h) for a number of values A = A0, hu

with hi/ha — pj = natural number. In general, Richardson extrapolation will not

work directly. Though there is a basis in Jh(\h) as described by (6.7), the particular

bases we have constructed need not have that property. We can, however, proceed

in the following way.

(1) Compute bases for A = A0, Ai , • • • and consider these bases for x = x„ = vha.

(2) Now change the bases for A = hu A2, • • • to bases { $*(x, A„)j, x = x„, by

demanding

tr,

(6.11)      \\f,ix, A,) - *,(*, A0)||2 = £ llM?p. A,) - *,<?,, A„)|2 A0 = min.

We have

Theorem 6.4. Richardson extrapolation is possible for the bases

{ fafr, h0)}, {ipj(x, hi)}, ■ ■ ■ , x = x,.

Proof. By (6.7), there are bases \xpk(x, h,)\ for which

&(*, K) = <pk(x) + h"4>kl(x) + ■■■ + AaU-1)0,a_1(jc) + o(A"),      x - 3c,

and

No

(\pk(x, A,), ^,(x, A„))2 = £ &(x,, K)\p!(x„ K)h0 = 0   for A ^ /,
v-0

= 1   for it = I.

Therefore,

#,(x, A,) = X a>k$k(x, h,)

and (6.11) implies
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aik = (\pk(x, h), \pj(x, h0))2.

This proves the theorem.
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