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Discrete Galerkin and Related One-Step Methods

for Ordinary Differential Equations*

By Bernie L. Hulme

Abstract. New techniques for numerically solving systems of first-order ordinary dif-

ferential equations are obtained by finding local Galerkin approximations on each sub-

interval of a given mesh. Different classes of methods correspond to different quadrature

rules used to evaluate the innerproducts involved. At each step, a polynomial of degree/;

is constructed and the arcs are joined together continuously, but not smoothly, to form a

piecewise polynomial of degree n and class C°. If the n-point quadrature rule used for the

innerproducts is of order r -+• I, r sE ft, then the Galerkin method is of order » at the mesh

points. In between the mesh points, the y'th derivatives have accuracy of order oUim'n<-",n+1)),

for j - 0 and 0(A»->'+1) for 1 g j g n.

1. Introduction. This paper extends the concept of discrete Galerkin methods

from those based on Gauss-Legendre quadrature [12] to methods based on any

interpolatory quadrature formula. Basically, the idea is to approximate each element

in the solution of a system of first-order ordinary differential equations by a con-

tinuous piecewise polynomial on one subinterval at a time. Two other methods

using piecewise polynomial approximation are shown to be equivalent to the discrete

Galerkin methods. One is a one-step collocation method which Wright [13] has

studied and which is related to some more general methods of Cooper [5], and the

other is a quadrature method similar to that studied by Axelsson [1].

Having shown the equivalence of these methods, we easily obtain order of con-

vergence results for all the methods. At the mesh points the errors are of order 0(h")

in the step size h, where v + 1 is the order of the quadrature formula used in the

Galerkin approach. Special classes of methods are discussed along with their stability

properties, and numerical examples are given.

2. The Problem and the Approximating Subspaces. Let us consider solving

only a single ordinary differential equation

(1) «'(0 = fU, u(t)),     t0 £ t,

(2) u(t0) = u0

on a finite interval [/0, tN\ It is assumed that /(/, x) £ C in [/0, tN] X R, where R =

(—oo, co), so that the exact solution u(t) £ Cr+1[t0, tN], where r St 1, and that / has

a Lipschitz constant in this same region.
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For the sake of simplicity, we define a uniform mesh it: U = t0 + ih, 0 :£ i £ N,

in order that we may approximate u(i) on the partitioned interval [/„, /„] by a piece-

wise nth degree polynomial

n+ 1

o)       y(o = £ 6,"Wo. ti+u o £ / ^ n - i,
i-i

where <pi+j(t) are nth degree piecewise polynomial basis functions and n ä; 1. Let

us denote by S^oW the class of all such y £ C°[fo,

In the next three sections, we present three different methods for obtaining the

same approximate solution y(t) £ S„,0(ir). It will be noticed that, in these one-step

methods, h could be changed at each step, and therefore the methods and results

would hold for a variable mesh also. Moreover, if u and / were vector functions,

y could be taken to be a vector of piecewise nth degree polynomials, and the methods

and results would carry over to systems of first-order equations.

3. Discrete Galerkin Methods. If we require that y(t) £ S„,0(t) provides a

local Galerkin approximation to u(t) on each subinterval of it, then y(t) must satisfy

^ y(ti + ) = u0, i = 0,

= y(t,-),      i g 1,

and

(5)       J     [/ - fit, y)]<pt,k dt = 0,      1 £ k £ n,   0 £ f <. TAT - 1.

To obtain a one-step numerical method, however, we replace the integral in (5)

by an interpolatory quadrature formula

(6) f + v(t) dt = h £ w„d(<7,,„) + OC/T1),
* * i m = 1

(7) = f< 4- 1 =§ m SS n,

where 0 £ 6\ < d2 < ■ ■ ■ < 9n g 1 and wm ̂  0, 1 ^ m £ «. The result is

(8) A £ H»Mf>'(«f,.J - /(*.•.*, y(<r;, J)k,-.*(<f.-. J = 0,       1 £ * £ «.

We shall call any y(t) £ >S„,o(ir) which satisfies (4) and (8) for 0 £ / <. iV — 1 a one-

step discrete Galerkin solution to (l)-(2).

We may write (4) and (8) in matrix form as

(9) AGb(,) = cc(b(''),      0 % i £ N r- 1,

where

do) b(" = {bi'\b(2>\ ••■ ;b£\}T,

Ak.i = <?>.,('.)> k = 1,

(11)

= h Z wjet.h*fci.Jd.ii<rt.J,    2S* = « + i, i s y si » + l.
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c*V°) = yt = yOi), k = l,
(12) /        »+1 v

= A £ E *!'V,1(^,.)ki-,(f,1.),      2 £ k £ n + 1.

To be assured that A° is nonsingular, we assume that the determinant

(13) ^.»(«r.-.JIi«».«*» 5* 0.

Then A V*'' = 0 implies that XO = Oand, in view of (8) and (13), that hwmy'(<x,,J =

0, 1 £ m £ h. Since /.w„ 5^ 0 by assumption, we have that/(<r,, ra) = 0, 1 5» m Si n,

and consequently y s 0 on [(,, ti + 1], b(,) = 0, and A° is nonsingular. Thus, our

numerical method depends on the solution of

(14) b<;) = (AG)_1cG(b(,>).

The existence of a unique solution to (14) is guaranteed for sufficiently small

h as follows. Since

||(AVc°(b) - (AVc>*)||, ^ IKAVlU hLQc\\h - b*|U

where L is the Lipschitz constant for / on [t0, t»] X R and

n n+1

(15) Oo =   max   £ .t-i(<r, ,m)| £ k<,/(».,«.)I.
2?itgn+l  m=l 7»1

the right side of (14) is a contraction mapping on Rn+1 when

(16) h < HG = (LQG\\(kGyl\Uy\

and a successive substitution iteration will converge to the unique solution of (14).

Notice that (8) generalizes the discrete Galerkin scheme in [12] where the inner

products (<f>i,k, <p'i,j)i are done exactly. That scheme coincides with the present

method in the case of Gauss-Legendre quadrature because this rule gives exact

results for the innerproducts just mentioned.

It should be pointed out that there exist basis functions <piik and abscissae aLm

for which the determinant in (13) vanishes. For example, when n = 2 there h p€)1 = 1,

ipix2 = [(2/h)(t — f,) — If and <r,,2 symmetrically placed about (t{ + ti + 1)ß.

Therefore, one must choose carefully the basis functions and abscissae in the "or-

thogonality" equations (8) to ensure that A° is nonsingular. An obvious choice is

the basis = ((t — ti)/h)k"i, 1 ^ k £ n, which is unisolvent on [tt, ti + l], i.e., (13)

holds for all sets of n distinct points aiim £ [ti, ti+i].

4. Collocation Methods. If we require that y(t) £ S„,„(tt) collocate to (1) at

the points <r4, m of (7), then y(t) must satisfy (4) and

(17) hy'(c,,m) = kfiffi,m, y(<r,,m)),      I £'m £ »,   0 £ J Si -V - 1.

We shall call any X0 G ^.oW which satisfies (4) and (17) a one-step collocation

solution to (l)-(2)- The stability of such solutions has been studied by Wright [13],

and Cooper [5] has derived similar methods for equations of arbitrary order.

In matrix form, (4) and (17) are

(18) Acbu) = cc(bu)),      0 5S i £ N - I,
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where bU) is given by (10), and

(l9y Ack,i = <Pi,i(ti), k = 1,

- ,*-,),      2 £ a £'» + 1.   1 £ / £ « 4- 1,

cc(b(,)) = y,, k = 1,

(20) , v

= Z »"W»«.»-i)j.   2 £ a £ «+ 1.

Again, it is clear that Ac is nonsingular because Acb(° = 0 implies y(t{) = Xfo,„)

= 0, I ^ m ^ n, y = 0 on [?,, 7i + 1] and b'1' = 0. Also, we have

||(AcrV(b) - (AT'cc(b*)|U =^ IKAT'll- hLQcWb - b*||.

where

n + l

(21) öc =   max   £ k,.,(<r,,t-i)|,

so that (18) has a unique solution when

(22) h < Hc = (IflclKAVlU)"'-

When A satisfies both (16) and (22), it is obvious that the collocation solution

is identical with the discrete Galerkin solution because the collocation solution

also satisfies (8). Moreover, the collocation equations (4) and (17) are simpler than

the discrete Galerkin equations (4) and (8) since no quadratures are involved, and

no additional assumption such as (13) is required to guarantee the existence and

uniqueness of the collocation solution.

Wright [13] has already pointed out that these collocation methods are

"equivalent" to a subclass of implicit Runge-Kutta methods in the sense that they

produce the same discrete approximations. For some implicit Runge-Kutta methods

which are not equivalent to collocation techniques, see Ehle [8, Chapter 4] and

Chipman [4, Chapter 3].

5. Interpolatory Quadrature Methods. There is yet another class of methods

to which the previous two schemes are equivalent in the sense that they all produce

the same approximate solution given the same abscissae r,-,* in (7). Let us define

the array

(23) am.k = h~l f      /»(/) dt,       1 £ k, m g, n,

where the /*(/) are the Lagrange interpolation coefficients

(24) lk(t) =    fl     ■ ~ a"'   .      1 £ a £ «.

We shall call any X0 G S„w0{t) which satisfies (4) and

n

(25) X<r,,m) = ft + A I am,k1(<r,,k, y(<riik)),       1 £ m £ «.
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for 0 £ i 5» N — 1, a one-step interpolator); quadrature solution to (l)-(2). Since

(4) is the same as (25) for m = 1 when vtwl =     we should replace the equation

(25) for m = 1 with

(25') = /(<r,.i, ftV,..)),   whencr,,, = tt.

Certain methods of this type have been studied by Axelsson [1] and Hammer and

Hollingsworth [9].

Equations (4) and (25) can also be put into matrix form

(26) A0b(,) = cQ(b(,>),      0 £ i £ N - 1,

where

(27)

and

(28)

At, = ipi, ,■(<,■)> k - 1,

= ^,,,.(<r,.,_1),     2 -M,   1 £/ £«,+ !.

c><0) = ft, A = 1,

n / n + 1 \

= ft + a E «-i.iAv<.i. £ fe.-'Vi.<(*,,.)),    2 £ * g «4-1.

AQ is obviously nonsingular and (26) has a unique solution when

(29) h < HQ = OGolKAVlL)"1,

where

n n + 1

(30) QQ =   max   E E l<P*./(*<.»)!■
2^A£n+l    1=1 i=l

When <r, ,i =     the second equation in (26) is defined from (25') by

(27') Af.i = ^,',>,,,),      1 g j £ N + 1,

and

(28') c2°(b(") = /(er,,,, E 6,"V.,>,..))

and A0 is still nonsingular.

Since the Galerkin and collocation solutions, y(t), satisfy (17), we see that

m = ft 4- f fis) ds = y,+ [  £ M<r«,*)Ml&) *

(31)

= ft 4- E f(»<.». X<r;,*)) / 4(s)

and, in particular, that XÜ satisfies (25) and (25'). Thus, when A is small enough

to satisfy (16), (22) and (29), all three schemes provide the same approximate solution

X0 — X0- The collocation method still seems to be the simplest since it does not

require the computation of the am,k. However, the interpolatory quadrature view-

point makes it clear that the weights in the Galerkin method are



886 BERNIE L. HULME

(32) wm = A-1 [ + lm(t) dt,       1 £ m S n,

and, from (31), the solution for all three methods satisfies

n

(33) yi+1 = y,+ A £ wj(<r,,m, y(<r,,m)),      0 £ i £ N - 1.
m-l

6. Order of Convergence. In this section, we use the theory given in Henrici

[10, Chapter 2] of discrete one-step methods to derive asymptotic error bounds for

the discrete values y(t<) = y"< given by the three methods above. Continuous error

bounds are then obtained from the discrete ones.

It follows immediately from (33) that all three methods may be written in terms

of an increment function $ as

(34) yM = * + A<i>(r,, yt; A),      0 £ i £ N - 1,

where

(35) #G„ y,; h) = £ *./(»,.„ X<r<.J).

In order for the discrete one-step theory to apply, we must show that $ is Lipschitz

continuous with respect to y in 0 = [t0, tN] X R X [0, A„]. If, for any /, 0 <: i ^ TV — 1,

and any j* £ 7?, y*(t) is the approximate solution to u' = j(t, u), «(?,) = y*, t{ g

t ^ U+u given by the above methods, then (31) holds for y*\

n r* t

(36) y*(t) = y* + £ /(<r,,„ j-*(<7it*))      /t(j) ds,      t, g r £ f<+1.

Subtracting (36) from (31) and letting

n «(

(37) £    max     /   ft(s) <fe g Aß0,      0 g i g TV - 1,

we find that

(38) max   \y(t) - y*{t\\ g ,      *     . \yt - yf |,      0 £ i £ AT - 1,

where 0 g A g /;„ < (B„L)~\ The Lipschitz condition then follows from (35) and

(38) since, for 0 g A g A» and 0 £ i gJV - 1,

j w
(39) I*(/,., ft ; h) - *(*.-, ft*; A)| g-f—- |ft - y*\

where     = £;=I

The discrete error bounds are now derived in

Theorem 1. Assume that /(/, x) £ C in [t0, tN] X R so that u(t) £ Cr+1[/„, ?jv],

and denote by L the Lipschitz constant for / in this region. Given a mesh ir of size h,

some basis of piecewise polynomials of degree n for the space Sn,a(ir), distinct abscissae

Om G [0, 1], 1 g m g n, and the associated interpolatory quadrature formula (6) of

order v + 1, « g v g r, let the constants HG, Hc, HQ and B0 be defined as in (16),
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(22), (29) and (37), respectively, and let the mesh size h satisfy 0 < h g h0 <

min{>Yc, Hc, HQ, (BoLy1}. If y(t) is the discrete Galerkin, collocation and inter-

polatory quadrature solution to (l)-(2) defined in Sections 3, 4 and 5, respectively,

then there exists a constant M such that

(40) \u{ - y,\ <J Mh",      0 Ss «' £ N.

Proof.   The local truncation error t, is defined from (33) by

n

Ti = —      — vv„/(o-,,„, w(<r,,,„))
m-1

i+i n

=  /      fit, m(0) dt - h       wm1(Oi,m, «(<r,,„)).
»H m-l

Thus, in view of (6), |r,| g Kh"*x, where A'depends on the maximum value of u'"+1\t)

on [t0, tN], and (40) follows immediately from Henrici's Theorem 2.2 [10]. Q.E.D.

Continuous error bounds are derived in

Theorem 2. Let the hypotheses of Theorem 1 hold. Then there exist constants

Eu 0 g j *a «j s"cn r/za/

(41) max   \u(t) - y(t)\ g £„«min(''"+1),      » 2s i> SS r,

ono"

(42) max   |w(i)(r) - /"(fl] g Ejhn~i + i,      1 2s 7* 2s « ,   0 2s »' 2s TV — 1.

Proof. We write «(/) as follows, using the n-point Lagrange interpolatory quad-

rature formula:

(43) u(t) = «< -f £ K»«-.». «('..*)) f «*) & + Ä,(0.      U & t g t, + 1,
h-l ■'ti

where /?„(?) = 0(/z"+1). Subtracting (43) from (31) and using (37), we discover that

max   \u(t) - y(t)\ g-\u, - y,\ + 0(«"+1),      0 2s / 2s JV - 1,
i.sisi.+i 1 notSoLj

and (41) follows from (40). If we differentiate (43) and (31) j times, using Rlj)(t) =

0(h"~7 + l), and subtract, we have

max   \uu\t) - /"(Ol g LBfh1-' max \u(<r,.k) - y(<ruk)\ + 0(/T' + 1)

for 1 2i j 2s »»0 £ i 2s JV — 1, where

£    max   |tf'-"(0| g hl~'Bj.
k=\ ti%t%ti+i

Then (42) follows from (41). Q.E.D.

Theorems 1 and 2 also hold for a variable mesh tr since « can be changed at each

step, and the methods and the theorems can be carried over to systems of first-order

equations by applying the single equation techniques to each equation in the system.
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7. Some Specific Methods and Their Stability Properties. We shall use the

following definitions of ^-stability due to Dahlquist [6] and of strong ^-stability

due to Chipman [4].

Definition 1. A /c-step method is called A-stable, if all its solutions tend to

zero, as i —> °°, when the method is applied with fixed positive h to any differential

equation of the form u' = \u, where X is a complex constant with negative real

part.

For a one-step method applied to u' = \u, the approximate solution may be

written as yl + 1 = E(\h)y,, where E(\h) is a rational approximation to exp(Xn).

Therefore, a one-step method is ^-stable if and only if \E(\h)\ < 1 for Re(Xn) < 0.

It is possible, however, that \E(\h)\ —>• 1 as [ X/z| —> <». In order to define a special

kind of ^-stability, which guarantees that yt tends to zero rapidly when \\h\ » 1,

we use

Definition!. A one-step method is strongly A-stable if yi + 1 = £(Xn)j,, \E(\h)\ < 1

for Re(Xn) < 0, and |F(Xn)j     0 as Re(X/z)     - °o.

We remark that strongly /1-stable methods should be especially effective on stiff

systems of equations since rapidly decaying components of the exact solution can

be approximated by rapidly decaying components of the approximate solution for

any step size h.

Several classes of collocation and quadrature methods already have been in-

vestigated for stability, and these results therefore hold for the equivalent Galerkin

methods. Since the order of accuracy of a method is one less than the order of the

associated quadrature (Theorem 1), it is convenient to classify the methods according

to the abscissae used and thus deduce the order of the method.

The most accurate methods are those using the n Gauss-Legendre points. The

order of these methods is 0(h2n), and Ehle [7] has shown that they are all /1-stable

by proving that yi + l = P„, n( Xn)y,, where F„,n(Xn) is the nth diagonal Pade rational

approximation to exp(Xn) with the properties |P„,„(Xn)| < 1 for Re(Xn) < 0 and

\P„in(\h)\ —> 1 as Re(Xn) —> — <». Ehle was studying the implicit Runge-Kutta

methods of Butcher [2], but in the Gauss-Legendre case these are equivalent at the

mesh points to our Galerkin methods [12]. An alternate proof of ^-stability is given

by Wright [13].

The next most accurate methods are those based on the n Radau points, with

either the left or the right endpoint fixed, i.e., either a(A = t< or a, ,n = ti + i. Although

they are both of order G>(nz"_1), Wright [13] has shown that the left endpoint methods

are not ^-stable, while Axelsson [1] has shown that the right endpoint methods are

strongly /1-stable because y, + 1 = P„_n-i(\h)yi and this subdiagonal Pade approxima-

tion is such that |P„,s_i(XA)| < 1 for | XA| < 0and \Pn<„.l(\h)\ ->0as Re(Xn) -* - co.

The Lobatto methods, which have both endpoints fixed aiA = t{ and <r, „ = ti + u

are of order 0(h2n~2). They are /1-stable [1], [13] since yi + 1 = Pn_, ,n_i(Xn)j;,. It

should be remarked that our Lobatto and Radau (right endpoint) methods are not

equivalent to Butcher's corresponding implicit Runge-Kutta methods II and III

[3] since Ehle [8, Chapter 4] has shown the latter not to be /4-stable.

Methods based on equal weight Chebyshev formulae [11, Section 8.13] are of

order 0(h"+1) for n odd and 0(hn+2) for n even. Also, methods associated with

Newton-Cotes formulae [11, Section 3.5] are of order 0(h") for n even and 0(hn+1)
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for n odd. And, finally, arbitrarily chosen abscissae would be expected to yield only

0(h") accuracy. Wright [13] has proved that any two, three or four symmetrically

placed abscissae will produce /1-stable methods.

8. Sample Calculations. In the following tables, we present results for the

problem

(44)      „'(/) = u - (2t/u),      u(0) - 1,      u(t) = (2t + l)1 0 g t g 1,

computed from the collocation equations (4) and (17) using the basis functions

Vuj(t) = {[(t - /,)/«)'"', 1 g j g n + 1,0 g i g N - 1. Each table concerns one

of the classes of methods discussed in Section 7 and illustrates the order of con-

vergence results of Theorem 1 for each class by showing the discrete error norms

(45) \e(f, A)H' max |e(f,; h)\,

for h = 1 /N, 1 g N g 6, where e = u — y, as well as showing in parentheses the

computed orders of convergence

(46)
_ iog[[|e(*;MI7llc(f;ft.)iri ~.

log(A,/Aa)

based on successive mesh sizes h, and h2.

The nonlinear equations (18) were iterated at each step [U, ti + i] until yi + 1 =

£"IJ by satisfied a relative error tolerance of 10"The reader will notice irregu-

larities in the computed orders of convergence for the more accurate methods. This

occurs when the theoretical maximum relative errors are significantly smaller than

the relative error tolerance of 10"11. Also, the two-point Radau method failed to

satisfy the relative error tolerance test for h = 1.

Table 1.   Error Norms for n-Poinl Gauss-Legendre

n = 2 n = 3 n = 5 n = 6

1

1/2
1/3
1/4
1/5

1.47(10)-*
1.39(10)-3(3.40)

3.07(10)-*(3.72)
1.01(10)-"(3.84)
4.25(10)-s(3.90)

7.08(10)-"
2.22(10)"5(4.99)
2.40(10)"6(5.49)

4.67(10)-'(5.69)
1.28(10)-7(5.80)

2.95(10)-5

3.26(10)"' (6.50)
1.78(10)-8(7.17)

2.08(10)-9(7.47)

3.79(10)-10(7.63)

1.17(10)-«
4.87(10)-» (7.90)
1.41(10)-10(8.74)

9.06(10)-'2(9.54)

3.84(10)-13(14.17)

4.71(10)-"
7.85(10)-»(9.23)
2.66(10)"12(8.34)

2.98(10)-13(7.61)
1.08(10)-I!(-5.76)

1/6   2.08(10)"5(3.93)   4.40(10)-«(5.86)   9.38(10)-"(7.66)   4.55(10)-'3(-0.93) 1.61(10)-'2(-2.18)

Table 2. Error Norms for n-Point Radau (right endpoint)

n = 2 n = 3 n = 5 n = 6

1

1/2
1/3
1/4
1/5

nonconv.

1.01(10)-2

3.33(10)"3(2.74)
1.47(10)-3(2.85)

7.70(10)-"(2.90)

3.60(10)"3

2.14(10)-4(4.07)

3.45(10)-6(4.50)
8.95(10)"6(4.69)

3.08(10)"6(4.78)

1.75(10)-*

3.63(10)"6(5.59)
2.93(10)-'(6.20)
4.54(10)-8(6.48)
1.03(10)-»(6.64)

7.49(10)"6

5.68(10)-8(7.04)

2.38(10)"» (7.82)
2.23(10)-'°(8.23)
3.35(10)-»(8.50)

3.08(10)-'
9.08(10)-10(8.41)

2.09(10)-»(9.30)
2.09(10)"12(8.00)

1.02(10)"12(3.23)

1/6   4.52(10)-"(2.92)   1.27(10)-«(4.84)    3.03(10)-»(6.73)     6.03(10)"12(9.40) 1.47(10)-i2(-2.03)
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Table 3. Error Norms for n-Point Lobalto

n = 2 n = 3

1

1/2
1/3
1/4
1/5
1/6

2.68(10)-

5.24(10)-
2.32(10)"
1.31(10)"
8.37(10)-
5.82(10)"

'(2.36)
'(2.01)
'(1.99)
'(1.99)
'(1.99)

1.59(10)"
1.73(10)"
4.00(10)-
1.35(10)"
5,71(10)"
2.80(10)-

'(3.20)
'(3.62)
'(3.78)
■(3.86)
'(3.90)

1.11(10)-"
4.00(10)"«(4.79)
4.55(10)~«(5.36)
9.08(10)-'(5.61)
2.52(10)"'(5.74)
8.75(10)~«(5.81)

5.78(10)"5

7.30(10)-'(6.31)

4.21(10)-« (7.04)
5.04(10)-"(7.38)
9.31(10)-10(7.57)

2.30(10)-10(7.67)

2.62(10)-«
1.22(10)"«(7.75)

3.68(10)-'°(8.63)
2.63(10)-"(9.16)
2.84(10)-'2(9.98)

3.27(10)-'3(11.86)

Table 4. Error Norms for n-Point Equal Weight Chebyshev

n = 2 n = 3 n = 4 n = 5 n = 6

1

1/2
1/3
1/4
1/5

1.47(10)-»
1.39(10)-«(3.40)
3.07(10)-"(3.72)
1.01(10)-"(3.84)
4.25(10)-s(3.90)

4.46(10)-«
4.40(10)-"(3.34)
1.00(10)-4(3.65)

3.38(10)"5(3.79)
1.43(10)-«(3.86)

5.78(10)-
2.15(10)"
2.48(10)-

4.98(10)"
1.39(10)-

(4.75)
'(5.32)

(5.58)
'(5.72)

2.47(10)-

9.81(10)-
1.18(10)-
2.42(10)"
6.83(10)"

'(4.66)
'(5.23)
'(5.51)
'(5.66)

3.97(10)-«
6.10(10)-'(6.02)
3.80(10)"« (6.85)
4.71(10)-« (7.25)
8.87(10)-'»(7.48)

1/6   2.08(10)-«(3.93)   7.01(10)-«(3.90)   4.83(10)-«(5.80)     2.39(10)-«(5.76) 2.21(10)-10(7.63)

Table 5.   Error Norms for Newton-Cotes, 6k = (k — \)/{n — 1), 1 = k £ n

n - 2 n = 3 n = 4 n = 5

1

1/2
1/3
1/4
1/5

2.68(10)"'
5.24(10)-"(2.36)
2.32(10)-2(2.01)

1.31(10)"2(1.99)

8.37(10)"3(1.99)

1.59(10)"
1.73(10)"
4.00(10)-
1.35(10)"
5.71(10)"

'(3.20)
'(3.62)
'(3.78)
'(3.86)

3.58(10)-"
3.57(10)"4(3.33)
8.26(10)-«(3.61)
2.81(10)"5(3.75)

1.19(10)"5(3.83)

1/6    5.82(10)"3(1.99) 2.80(10)-«(3.90) 5.89(10)-«(3.!

6.48(10)"
2.69(10)-
3.26(10)-
6.69(10)-
1.89(10)"

■(4.59)
'(5.21)
'(5.50)
'(5.66)

1.90(10)"4

7.60(10)-«(4.65)

9.34(10)-'(5.17)
1.94(10)-'(5.45)
5.55(10)-8(5.62)

6.62(10)-«(5.76) 1.96(10)-8(5.72)

Table 6.   Error Norms for $h ='(2k — l)/2«, 1 g k g n

n = 2 n - 3 n = 4 n = 5 n = 6

1

1/2
1/3
1/4
1/5
1/6

3.05(10)-
6.99(10)"
3.00(10)"
1.67(10)-
1.06(10)"
7.35(10)-

5(2.13)

s(2.08)

»(2.04)
'(2.03)
'(2.02)

6.49(10)-«
6.69(10)-"(3.28)
1.54(10)"4(3.62)
5.22(10)-«(3.77)
2.21(10)-«(3.85)
1.09(10)-«(3.89)

1.79(10)-
1.67(10)"
3.80(10)-
1.28(10)"
5.43(10)-
2.67(10)-

'(3.42)
'(3.65)
'(3.78)
'(3.85)
'(3.89)

4.46(10)"
1.88(10)"
2.29(10)-
4.73(10)"
1.34(10)-
4.71(10)-

'(4.57)
'(5.19)
'(5.49)
'(5.65)
'(5.75)

1.49(10)-"
5.82(10)"6(4.68)

7.12(10)-'(5.18)
1.48(10)-'(5.46)
4.22(10)-»(5.62)
1.49(10)-8(5.72)
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