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Diophantine Approximation of Ternary

Linear Forms. II*

By T. W. Cusick

Abstract. Let 6 denote the positive root of the equation xs + x2 — 2x — 1 = 0; that is,

8 = 2 cos(27r/7). The main result of the paper is the evaluation of the constant

lim supm-co min M2\x + By + 02z|, where the min is taken over all integers x, y, z satisfying

1 g max (\y\, |z|) g M. Its value is (29 + 3),/7 = .78485. The same method can be applied

to other constants of the same type.

1. Introduction. Let 0 denote the positive root of the equation x3 + x2 —

2x — 1 = 0; that is, 0 = 2 cos(2ir/7). The main result of this paper is the evaluation

of the constant lim supM^m min M2 \x + Oy + 02z|, where the min is taken over all

integers x, y, z satisfying 1 ^ max (\y\, \z\) 5= M. Before going further, I shall indicate

how this constant fits into the general theory of Diophantine approximations.

Dirichlet's well-known theorem on Diophantine approximation states that for

any real number a and any positive integer M, there exist integers x and y satisfying

\ay - x\ < AT1,      l-£ y£'M;

There are two n-dimensional generalizations of this result. First, for any real numbers

cti (1 ^ i 2s n) and any positive integer M, there exist integers x, (t i / § * -)- 1)

satisfying

(1) max \aiXn+i — Xi\ < M~l/n,      1 ^ xn+i :£ M.
ISiÄn

Second, for any real numbers a; (1 ^ f ^ n) and any positive integer M, there exist

integers x, (1 g i S n + 1) satisfying

(2) |x„+i +        + a2x2 + • • • + anxn\ < M'n,       1      max \xt\      M.
lSiSn

Both of these theorems are immediate consequences of Minkowski's linear forms

theorem.
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It is natural to ask whether, for given alt ■ ■ ■ , an, either of these theorems can

be improved. Only large values of M are of real interest, so we say that (1) is improved

by the constant c (c < 1) for a given n-tuple a,, • • • , an if for all sufficiently large

M (1) holds with M~1/n replaced by cM~1/n. Similarly, we say that (2) is improved

by the constant c for a given n-tuple au • ■ ■ , an if for all sufficiently large M (2) holds

with M" replaced by cM".

Now for any au • ■ ■ , an define

CiifXi, ■ • • , an) = lim sup min MWn max |a,jc„+1 — xt\,

where the min is taken over all integers x, (1 g i £ n + 1) satisfying 1 xn+1 g M,

and

c2(a,, • • • , a,) = lim sup min M"| *n+l + «1*1 + • • • + anxn\,
M-ta

where the min is taken over all integers x, (I £ i £ n + i) satisfying

1 ^ max (IxjI, • • ■ , |x»|) £ Af.

It is clear that, for any c < Ci(ai, • • • , a„), (1) can be improved by the constant c,

and that this is false for any c > c^aj, • • • , an). Similarly, for any c < c2(au • • • , an),

(2) can be improved by the constant c, and this is false for any c > c2(au ■ ■ ■ , a„).

In the case n — 1, c^a) = c2(a) and it is possible, by the use of continued fractions,

to completely solve the problem of evaluating Ci(a).

Let [a0, au a2, ■ ■ ■] denote the simple continued fraction expansion of the real

number a. Then, independently and at about the same time, Davenport and Schmidt

[3, Theorem 1, pp. 113-114] and Lesca [6, p. 61] proved that

(3)       Ci(a) = ( 1 + lim inf [0, an+1, an+2, ■ ■ ■ ]• [0, an, «„_!, • • • , ax

Lesca [6, Chapter 3, pp. 57-72] carried the study of c,(a) further. He showed that

there is an infinite sequence of values of c^a) between its smallest possible value

(5 + \/5)/10 (attained for a = + V5)) and (1 + V5)/4. This sequence of

successive minimal values of Ci(a) is analogous to the more familiar sequence of

successive minimal values of lim infv^ra \y(ay — \ay})\ (here {ay} denotes the nearest

integer to ay) first described by Markoff (see, for example, Chapter II of the book

by Cassels [1]). Lesca proved various further results about the sequence of minimal

values of c^a), analogous to some of Markoff's theorems.

It follows immediately from the formula (3) that Ci(a) = 1 for almost all a,

and that d(a) < 1 if and only if the partial quotients a, in the continued fraction

for a are bounded, i.e., a is "badly approximate". This suggests an interesting

question: For n > 1, what is the largest constant c„ such that c^a^ • • • , an) ^ c„

holds for almost all n-tuples au ■ ■ ■ , anl This problem was posed by Jarnik [5]

in 1958; I am not aware of any earlier references to the problem.

There was no progress on this problem until Davenport and Schmidt [4] proved

that, for each n -\ 1, Ci(a,, ■ • • , an) = 1 for almost all a„ ••• , a„. They also showed

that c2(<*i, • • • , a,) = 1 for almost all a,, • • • , a„.

Davenport and Schmidt [3, Theorem 2, p. 115] also proved that, for each n > 1,

a sufficient (but not necessary) condition for the constants c,(au ■ ■ ■ , an) and
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c^ai, ■ ■ ■ , «») to be less than 1 is that au ■ ■ ■ , an is a badly approximable n-tuple.

(An «-tuple au • ■ ■ , an is said to be badly approximable if there is some constant

c > 0 such that

max |a,-xn+i — x,\ > c \xn+x\~Wn

for all integers x{ (1 -£ i £ n + 1) with x„+1 ?^ 0; or, equivalently, if there is some

constant c > 0 such that

|x„+1 +       + • • • + <*„*„[ > c(max       ) "

for all integers Xj (1 £ i £ n + 1) with xu ■ ■ ■ , xn not all zero.) Since any numbers

, a„ in a real algebraic number field of degree n + 1 such that 1, au • • • ,

are linearly independent over the rationals make up a badly approximable w-tuple

(see Cassels [1, pp. 79-80]), it follows that the constant c2(6, d2), with which this paper

is concerned, is less than 1. Davenport and Schmidt [3, pp. 122-126] proved that

c2(0, 02) < 10/11 = .90909 ....
The obstacle in (he way of an exact evaluation of c2(0, 02) is, of course, the absence

of a continued fraction algorithm, which was essential in deriving (3). However, it

turns out that the algorithm introduced in my paper [2] for the purpose of finding

integer solutions x, y, z of the inequality

\x + ay + ßz\ max (y2, z2) < c,

where a and ß are algebraic integers in a totaHy real cubic field and c is a small con-

stant, has many features similar to those of the simple continued fraction algorithm.

In fact, the algorithm of [2] makes it possible to evaluate c2(0, 02) via some moderately

lengthy computations.

2. Some Preliminaries. I begin by giving a brief exposition of the application

of the method of my paper [2] to the inequality

(4) \x + 6y + 62z\ max (y2, z2) < 1.3.

For a detailed account of the method and proofs of various assertions made here,

the reader should refer to [2].

Let F denote the cubic field defined by 0, and let 0' = 2 cos(47r/7), 0" =

2 cos(67r/7) be the conjugates of 0. Then (note that all decimals in this paper are

truncated, not rounded off)

0 = 1.24697960 . . . ,   0' = -.44504186 . . . ,   0" = - 1.80193773 ....

Since F is a cyclic or Abelian field, 0' and 0" belong to F. Also, 1, 0, 02 is an integral

basis for F.

The field F and the linear form x + dy + &2z were used as an example in [2,

Section 6], so I simply state the results obtained there.

Let tp = 1/0' as in [2, Section 6], so 0, <p is a pair of fundamental units for F.

If co is any unit of norm 1 in F, let ß(co) denote the 3 by 3 integer matrix which satisfies

[1 0 02]ß(co) = [lv cod tod2]

(in the terminology of [2, p. 166], Q(u>) takes x + dy + 02z to co(x + dy + B2z)). Thus
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Q(8) = Q(ip) =

-1 0 -1

_o    l  -U L o -l o_

The set of matrices jß(co): to is a unit with norm 1 in F\ is a commutative group

under matrix multiplication with generators ß(0) and Q(<p) [2, Lemma 1, p. 167].

Given any unit « of norm 1 in F, to'1 = 0"V" for some unique integers m and

n. Define R(m, ri) = 0aT!; then [2, formula (13), p. 169],

\R(m, n)\ + g™0 + /C>02

where b{*\ g^\ k™ are the entries of the middle column of ß(0"V"), read from top

to bottom. Further define

(5) S(m, n) \R(m, n)\ max«^"')2, (k(mn)f).

For each integer n, let c(n) denote the value of m with the property that S(v(n), ri) <

S(m, ri) for all integers m ^ tin). If, as in [2, Section 4], the values of S(m, ri) are

tabulated in a rectangular array with the integers m arranged on a vertical axis and

the integers n arranged on a horizontal axis, then S(v(n), ri) is the smallest entry

in one of the columns of the array. The second quadrant (m 2t 0, n < 0) of the array

is the only portion which is of interest for the linear form x + 8y + 82z [2, formula

(19), p. 171]. For the convenience of the reader, Table 1 of [2], which gives part of

the second quadrant of the array for n St —40, is reproduced in this paper.

It is proved in [2, Section 7] that if (x, y, z) = (b, g, k) is a solution of

\x + 8y + 82z\ max(v2, z2) < .187/V, where TV is the smallest value larger than 1

which can be taken by the norm of x + 8y + 82z, then, except possibly for a finite

number of exceptions, (b, g, k) = (b£\ g^\ A£°) for some integers m St 0, n < 0.

It is easy to see that N St 7, for a computation gives

Norm (x + 6y + 82z) = x + yz + z — x2y + 5x2z

— 2-sc.y2 + 6xz2 — >>2z — 2>>z2 — xyz

and simple congruence considerations show that the right-hand side is divisible

by 2, 3 or 5 if and only if each of x, y, z is divisible by 2, 3 or 5, respectively. Hence,

except possibly for a finite number of exceptions, every solution of (4) corresponds

to some S(m, ri) with m St 0, n < 0.

If a is any function of 8, 8' and 8", let a' and a" denote the numbers obtained

by replacing 8, 8', 8" by 8', 8", 8 and 8", 8, 8', respectively, in the expression for a.

Thus if co^1 = 0"V, then co'"1 = 0'V and to""1 = 0"V"*. Now let n be any fixed

integer and put co'1 = 0"V"; define u(ri) to be the value of m with the property that

I KW«;«! - i| < I KMI - i|
for all integers m 5^ w(«). The function u(ri) is easy to calculate, as the following

lemma [2, Lemma 5, p. 170] shows:

Lemma 1. Define Ex = 88'2 and E2 = |w'2|. The integer u(ri) is equal to the

unique integer m which satisfies

(6)
log(2(l + £,)-')

log Ei
< m

n log E2 < t      log(2(l + ff,)"')

log £1 log £\
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Let E(ri) denote »£'„)/»£(*) = (00'2)"<n>(w'2)"; this function will be very important

later on. Note that it follows simply from the definition of u(n) that [2, formula (17),

p. 170]

(7) 2d'1 > \E(n)\ > 26'2

for every n. So we define E+ = 20"1 and £1 = 2d'2.

By [2, Theorem 1, p. 171], for every integer n < 0,

f\     v(ri) — u(ri) St r2,

where /*i and r2 are integers which can be calculated.

The calculation of n and r2 depends on the following considerations. Define

Tm.n = max (|^"„)+m|, \Kn(l)+m\). It is easily seen [2, remarks preceding Lemma 6]

that S(u(ri) + m, ri) < S(u(ri) + m + 1, ri) holds if and only if

(8) Tm+1,n/Tm,n > fT1/2;

and that, for each n, Tm+1,JTm,n —» |0"| > 0~1/2 as m —> + co and Tm+1,n/Tm,n —»

|0'| < 0~1/2 as w —» — co. Thus, for a given n, (8) is true for all sufficiently large m

and false for all sufficiently large \m\, m < 0. If integers m+ and can be found

with the property that, for each n < 0, (8) holds for all m St m+ and (8) is false for

all m f£ ni- — 1, then we may clearly take rx = m+ and r2 = m_.

A method for finding m+ and m_ is given in [2, Lemma 6]. The following notations

simplify the explanation of this procedure: For any m and n, Tm+Un/Tm,n is equal

to one of the four quotients

I    (n> /   (n) I I    in) /£.Cn) I lz/n) /Z.Cn) I l£-(n) /rr{n) I«
|«a(«)t«+l/S»(n)tt.|i      |£u(n) +m+l/K*(n) +m\>      l^u (») + m+ 1 / K»(n) + m \ >      l^u <n) + m + 1 / Su (n) + m I )

we say Tm+Un/Tm,n is of ly/je 1, 2, 3 or 4, respectively. Next we define

(9) G = k6(6'2 - B"2),      K = \6(d" - 6'),

and further define two numbers / = I'm, ri) and J = J(m, ri) in F, each of which

depends on the type of Tm+Un/Tmin, as follows: If the type of Tm+1,n/T„,n is 1, 2,

3 or 4, then (/, J) equals (G, G), (G, K), (K, K) or (K, G), respectively.

Define the function f ,(m, E) for t = 1, 2, 3, 4 by

f,(m, E) = \6'EI'e'm + 0"/"0'""|/|£J'0"" + 7"0'""|

where / and J have the values which they take on for type / and £ is a parameter

which satisfies E+ > \E\ >

It is proved in [2, Lemma 6] that for each sufficiently large fixed \n\, n < 0, the

inequality (8) is false for some m only if / ,(m, E) < 0~1/2 is possible for some choice

of t and E. A calculation shows that \6"I"/J"\ > 0~1/2 for each /, so f t(m, E) must

exceed 0~1/2 for large enough m. This implies (8) is true for large enough m, and

so gives an upper bound on v(ri) — u(ri). Carrying out the calculations for each /

gives the following:

f«(0, E) < 0~1/2   is not possible for t = 1,3, 4,

(10) /2(0, E) < 0"1/2   is possible, but only for E < 0,

/2(1, E) < 6'1/2   is not possible.
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It follows that 1 St v(ri) — u(ri) for \n\ large enough, n < 0.

It is also proved in [2, Lemma 6] that, for each sufficiently large fixed \n\,n < 0,

the inequality (8) is true for some m only if E) > 0~1/2 is possible for some

choice of t and E. Since \6'I'/J'\ < 0~1/2 for each t, f(m, E) is less than 0~1/2 for

sufficiently large \m\, m < 0. Thus we can calculate a lower bound for v(n) — u(n)

as follows:

/,(-1, E) > 0~1/2  is possible for t = 1,2, 3, 4,

(11) /,(-2, £) > 0~1/2   is possible only for t = 1,2, 4,

/«(-3, E) > 6~1/2   is possible only for t = 4.

It follows that tin) — u(ri) St —3 for |«| large enough, n < 0.

In fact, 1 St u(n) — u(n) St — 3 holds for all « < 0, as was remarked in [2, p. 177].

For the purposes of this paper, it is convenient to improve on these inequalities.

Theorem 1. For each even integer n < 0, u(n) equals either c(ri) + 1 or v(n) + 2.

For each odd integer n < 0, u(ri) equals either u(n) or v(n) + 1.

Proof.   Define the function g(m, E) by

g(m, E) =
EG'd'm + G'

EK'6m + K"ff

where G and K are the constants defined by (9) and E is a parameter which satisfies

£+ > \E\ > E-.
By an argument similar to that used in [2, Lemma 6], we find that for each suffi-

ciently large fixed \n\, n < 0, the inequality

\git(n) +m/kl(„) +m [   < 1

is false for some m only if g(m, E)> 1 is possible for some choice of E. A calculation

shows that g(m, E) tends to a constant less than 1 as m —> + <» and asm^ — 00,

and a little more computation gives

g(i, E) > 1 holds for i = 0, -1 if and only if E > 0,
g(2, £) > 1 is not possible,

g(+l, £) > 1 is possible, but only for E > |030'|_I = 1.1588 ... ,

g(-2, E) > 1 is possible, but only for E satisfying |0"|-1 = .5549 ... > E > 0,

g(—3, £) > 1 is not possible.

It follows immediately that, for all sufficiently large \n\, n < 0,

Tm,n = |Aii(i)+m|    for each m £ — 3   and each m St 2,

+       is only possible if £ > |030'|_1,

(12) r,

T-2

n = \git«)+i\,    E(n) > 0, =0—1)

» = £(«) < 0,

. = IÄ-2I     is only possible if |0"|-1 > £ > 0.

Referring to (10), we see that 1 = v(n) — u(ri) could occur only if TUn =

To.n = IKTn)] and E < 0; however, this would contradict the second statement in
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(12), so we may conclude that 0 St v'ri) — u(n) for all sufficiently large \n\, n < 0.

Similarly, (11) implies that v(ri) — u(ri) = — 3 could occur only if v"_2,„ = |fci<i)_2|

and T^3,n = |gl"„)_3|, which would contradict the first statement in (12). Therefore

v(n) — u(ri) St —2 for all sufficiently large \n\, n < 0.

In order to establish that u(n) = v(ri) does not hold for some integer n, it suffices

to show that (8) holds with m = — 1 for the given n. It is proved in [2, Lemma 6]

that, for each sufficiently large fixed \n\, n < 0, the inequality (8) is true with m = — 1

if/((— 1, E(n)) > 0~1/2 is true, where t is the type of Ta,n/T-i,n, Since E(n) is positive

if and only if n is even, it follows from the third statement in (12) that u(ri) = v(ri)

is false for each sufficiently large even \n\, n < 0, provided /,(— 1, E) > 0~1/2 is true

for any allowable positive value of E (which can be verified by a simple calculation).

If u(ri) = !?(«) + 2 for some n, then (8) is true with m = —2; it then follows from

the second statement in (11) that, if \n\ is sufficiently large and n < 0, 7Ll n/r_2,„ is

of type 1, 2 or 4. Since E(ri) is positive if and only if n is even, the third statement

in (12) implies that T„Un/T~2.„ can be of type 1 or 2 only if n is even, and the third

and fourth statements in (12) imply that T-lin/T-2rn cannot be of type 4. Thus for

\n\ sufficiently large, n < 0, we can have u(ri) = v(ri) + 2 only for n even.

This completes the proof of the theorem for sufficiently large \n\, and it is easily

verified that in fact the theorem holds for every n < 0 (see [2, Tables 1 and 2]).

The following simple lemma summarizes some useful facts about the function u(ri).

Lemma 2. Suppose n < 0; then u(h) increases as n decreases. There are no more

than four consecutive values of n for which u(ri) has the same value. Whenever u(ri)

takes on a given value, it has that value for at least three consecutive values of n. For

n < 0, u(n) takes on every integer value StO.

Proof.   A little calculation using (6) in Lemma 1 gives

u(n - 4) = u(n) + 1 ä «(» - 1) = u(n)

for every n < 0. We also find that

«(« — 1) = u(n) + 1   implies u(n — 1) = u(n — 2) = u(n — 3).

Putting these facts together gives the lemma.

The pattern of values of u(ri), — 1 St n St — 40, is easily seen in Table 1, where

the numbers S(u(n), ri) are indicated by asterisks.

3. Evaluation of c2(0, 02). Since 0, 02 is a badly approximable pair (see the

Introduction), there is a positive lower bound for the numbers S(m, ri). The following

result [2, Lemma 10, p. 177] gives the value of the smallest constant c such that,

given any e > 0, the inequality S(m, ri) < c + e holds infinitely often. This constant

is plainly equal to lim inf„^_„ S(v(n), ri).

Lemma 3.   Let 0 = 2 cos(2ir/7); then

lim inf min \x + 6y + 92z\ max(/, z2) = Tg<02 + 30 - 3) = .1874 ... ,

where the min is taken over all integers x, y, z such that max (\y\, \z\) = M.

The following lemma indicates, among other things, that S(u(n) — 1, ri) is arbi-

trarily near the constant of Lemma 3 for suitable even values of n.

Lemma 4. Let E(n) = (00'2)"(",(¥)^'2)". If n -> - » through even values of n,

then
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S(u(n) + i, n) - fl' + 1(fl"'G' |£(«)|1/2 + QniG" \E(n)\~U2f -» 0

(,• = 0 or -1).

If n —> — oo through odd values of n, then

S(u(n) + i, n) - 0i + 1(0"A" \E(n)\in - 9"' K" \E(n)\-'/2)2 -» 0

(i — 0 or -I).

Proof. Define to",1,,, = 0U("V. It follows from the definition of R(m, n) that,

for any integer i, R(u(n) + i, n) = 6' + 1w~*n), so (5) implies

(15) S(u(n) + i, «) = 0i + 1 Ico^l max((g^) + >)2, (^„) + i)2)

for any integer i.

It is obvious that E(ri) is positive if and only if n is even; hence the third statement

in (12), (15) and [2, formula (16) with p = u(n), m = 0 or — 1] imply that

(16) S(u(n) + U »> - 7^1 (~ + + U = 0, -1),

where the constant // is equal to either G (if n is even) or .ty (if n is odd).

It is easily seen that E(n) = = («»(njwi2»))-1 and |wu(„,| -» °° asn-^- oo.

These facts in conjunction with (16) imply the lemma.

If i = — 1, the functions appearing in (13) and (14) are important enough to be

given names; define

t(E) = <EU2G'/d' + E-U2G"/e"f,      k(E) = (E1/2K'/d' - E-1/2K"/d"f.

The minimum value of t(E) occurs for E = 0-1, and t(0_i) is just the constant of

Lemma 3 (see Figure 1). Hence

(17) lim inf S(p'n), n) = lim inf S(u(n) - 1, «>.
n—*— co 7i even

This relation does not, of course, mean that v(n) = w(n) — 1 for n even. It can be

shown that the equality v(ri) = u(ri) — 2, which is allowable for n even by Theorem 1,

does occur, although very rarely.

We now turn to our main result.

A:(E_, .2117

k(E)^,—* B:(l/d, .1874

C: (E+, .2108

D:(E_, .4332.

F:(-l/6", .4211,

G:(E+, .5512.

.3961... E+= 1.6038..

Figure 1
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Theorem 2.  Let 0 = 2 cos(2ir/7); then

(18) lim sup min M2 \x + By + 62z\ = y(20 + 3) = .78485 . . . ,

where the min is taken over all integers x, y, z satisfying 1 ^ max (\y\, |z|) g M.

Because of (17), the integers TlUn, n even, will play a special role in what follows.

We first require a lemma giving bounds on the ratio T2_l n_2/Tlltn, n even.

Lemma 5.   If n —> — °° through even values of n such that u(n — 2) = u(n), then

nm r-i..-,      .   ,  e(n)g'/6'2 + g"/6"2

(19) r_1>B     1+ £(«)c7/e'+ g"/07'

(20) lim sup = 5.6773 . . . ,      lim inf ^Ej^ = 4.4707 ....

If n —> — oo through even values of n such that u(n — 2) = u(n) + 1, ?/ze«

(21) t_,,n       1 + £(«)G7e' + g"/0"

(22) lim sup %2]— = 4.5715 . . . ,      lim inf = 3.5998 ....
J - 1 ,n 1 - I ,n

Proof. Note that by Lemma 2 the only possible values for u(n — 2) are u(n)

and u(ri) + 1. By the third statement in (12), T-X.n = |g„"i)-i|. The same statement

plus a little manipulation with the matrices in [2, Section 3] gives

tto.T* = iC-i - &«rt + AÄ>-il   if «(" - 2) = u(n)

and

r_ttB_, = - frX-> + *fö>-i|   if "(« - 2) = «(«) + 1.

Using [2, formula (16) with /? = u(ri), m = —1], we can calculate functions of

E(n) to which and A^„)_,/,?„?„)-i tend as n —> — °° through even values;

we use the same facts about E(ri) and cou(n) that were applied to (16) in the proof of

Lemma 4. A little more calculation gives (19) and (21).

To prove (20) and (22), we need only find the maximum and minimum of the

functions of E(ri) in (19) and (21), subject to the constraints

u(n - 2) = u(n) if and only if £_ < \e(n)\ < 2d38'2 = .7680 . . . '

u(n - 2) = u(n) + 1   if and only if 2 030'2 < \e(n)\ < e+.

To prove (23), we use the fact that E'ri) = j-t-)+«-jf»«<«>+« Thus Ecn - 2) =

Einye'd'2 fa 2.0881£(n) if u(n - 2) = u(ri) and E(n - 2) = E(n)/63 fa .5157£(«)

if u(n — 2) = u(n) + I; hence (7) implies (23).

For future reference, define

u t^      ~(eg'Id'2 + g"/6"2) . .    _    -(eg' + g")
"   £g'/0' + g'7/e"   '    hA ' ~ eg'ye' + g77/e'7'

Figure 2 gives graphs of these functions.
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It may be appropriate to mention here that \E(ri)\ (n = —1, — 2, • • •) is dense

in the interval [£1, E+] (this follows easily from Kronecker's theorem on inhomo-

geneous Diophantine approximation [1, p. 53]). This fact will be used several times

later on, without explicit mention (e.g., in the discussion after Lemma 6 in this

section).

It follows from (13) that

(24) lim sup TtUn + =   max   r(£) = .2117 . . . ,
n->— co -n even E— 5 £?£ E+

so we may assume in (18) that It, „_2 > M2 > t% ,„, n even, say M2 = «7!, ,„, a > L

Hence

(25) > « > 1.

It is clear from (24) that the lim sup in (18) will be approached only for those M for

which a is reasonably large. Lemma 5 gives upper bounds on the size of a, because

of (25).

Since all solutions of (4) correspond to some S(m, n) and we know c2(0, 02) < 1,

in evaluating min M2 \x + By + 02z| in (18), where M2 = aTi1%n and (25) holds,

it suffices to consider only those integer triples (x, y, z) which are equal to (b£*l)y+m,

g»*n+;>+»» K"nl)) + m) f°r some integers j and m. Given such a triple, we have

M2 \x + By + 82z\ = aT2.Un \R(u(n + j) + m, n + j)\

and

(26) M2 = aT2.Un ^ T2m,n+i.

Combining (25) and (26) gives

(27) fikW*&.4 > « ^ T2m,n+i/TlUn.

Thus the problem of evaluating the constant in (18) is reduced to that of evaluating

(28) lim sup min sup aT2-lin \R(u(n + j) + m, n +
n—* — oo       i ,m a

where j and m are any integers and a satisfies (27). The remainder of this section is

devoted to evaluating (28).
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By the definitions R(m, n) = du'1 and w'1 = 6'" 6' ",

\R(u(n + j)+ m,n + j)\ = 8m+1+^n |0T~'

= 0"<n+,)-"(")+m+1 |0T' \R'u(n) - 1, m)\.

Hence, by Lemma 4 with i = — 1, if n —> — °° through even values of n, then

(29) 1^,. |/?(«(« + /) 4- m, n + j)\ - **"»-««♦-» |0'|-'r(£(«)) -» 0;

if n —> — co through odd values of n, then

?!,.„ |Ä(«(« + y) + m, n + j)\ -      »«-^w—i ^j^))) _> 0.

Calculations based on (29) will give the following lemma.

Lemma 6.   Suppose n < 0, n even. If \n\ is sufficiently large, then

(30) min sup «r!,,, \R(u(n + j) + m, n +
j , m a

where j and m are any integers and a satisfies (27), is given by the following integer

pairs j, m:

(A)      j = 0, m = -1    (7 -302 + 30 + 2 = 1.0760 . . . < E(n) < E+,

j = o, m = -2   ('/ 2030'2 - .7680 . . . < E(n) < -3 02 + 30 + 2

( } or £_ < E(n) < \d"\~' = .5549 ... ,

(C)      j = -2, m = 0   if 10'T1 < E(n) < 2 030'2.

We postpone the lengthy proof of Lemma 6 until the next section, and conclude

this section by deriving Theorem 2 from Lemma 6. We deal with the three cases in

Lemma 6 one at a time.

Case (A). By (23), we have u(n — 2) = w(n) + 1, so (21) applies. It follows

from (21), (25) and (29) that

lim sup sup a I*,., \R(u(n) - 1, n)\ = max (1 + h2i.E))2t(E),
n-»-co        a E

where the max is taken over —302 + 30 + 2 ^ E £ E+. Calculation shows that

the maximum occurs at E = — 302 + 30 + 2, and the value of the maximum is

(20 + 3)/7 = .78485 ....
Case (B). Suppose first that 2030'2 < E(ri) < -302 + 30 + 2, so u(n - 2) =

u(n) + 1 by (23). Then (21), (25) and (29) imply

lim sup sup aT2-!,n \R(u(n) — 2, n)\ = max (1 + h2(E)f 0"1 r(£),
n-»— od        a E

where the max is taken over 2030'2 g E f£ —302 + 30 + 2. Calculation shows that

the maximum is strictly smaller than (20 + 3)/7.

Now suppose that £L < E(n) < \B"\'\ so w(n - 2) = u(n) by (23). Then (19),

(25) and (29) imply

lim sup sup a7ti,„ \R(u(n) — 2, n)\ = max (1 + hi(E))2d'1t(E),
n~*— co        a E

where the max is taken over £_ g E g |0"|-1. Calculation shows that the maximum

occurs at E = \0"\~\ and the value of the maximum is (20 + 3)/7 = .78485 ... .
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Case (C).   By (23), we have u(n - 2) = u(ri), so (19), (25) and (29) imply

lim sup sup aTtx,n \R'u(n - 2), n - 2)| = max (1 + hi'E)fdd'2T(E),
n-*-oo        a E

where the max is taken over |0"|_1 i£ E 2030'\ Calculation shows that the maxi-

mum is less than .3.

Combining the above results for Cases (A), (B) and (C) gives Theorem 2. Indeed,

we have proved even more, for the preceding discussion clearly gives considerable

information about those values of M for which min M2 \x + 6y + 02z| in (18) is

near its lim sup.

4. Proof of Lemma 6.   First we require three computational lemmas.

Lemma 7.   For each integer m, if n —> — co through even values, then Tm,„/T-Un —

q(E(ri), rri) —> 0, where

qim' 1} = :ffoG7/0'''+ G'W        11 E~ < m K |f?3<n ' = 1-1588 " * '

im ^ n       E(n)G'd' + G"6" * , ,
q(EM> l) = E^Tt^G^W 'nedl <£('0<£+'

q(E(n), 0) = h2(E'n)),

(31) <?(£(«), -2) = Ai(£(«))   if £- < £(«) < 10'T' = -5549 . . . ,

(32) "2) - '^ß/f+ffi" if W < E(n) <

(33) «(£(„), ») = ̂ %IS'P   H rnS^V >n = 2.

Corollary 1. If n < 0, n even and \n\ is sufficiently large, then Tm,n > T-i,n

holds for all integers m 9^ 0, — 1.

Corollary 2. If n < 0, n even and \n\ is sufficiently large, then r_l n > T0,„

holds only if E(ri) > |030'|-1 = 1.1588 .. . .

Corollary 3. If n < 0, n even and \n\ is sufficiently large, then for each integer

m £ -3 we have T2mJTiltn > 7-4_m-3.

Proof. The various statements in (12) determine Tm_n for each integer m, with

conditions involving the size of E(ri) if m = 1 or m = —2. Thus the formulas for

q(E(n), rri) follow as in the proof of Lemma 5.

The first corollary follows from the fact that, if m ^ 0, q(E, rri) > 1 holds for

all E satisfying £_ ;£ E ^ E+. The second corollary follows from the fact that q(E, 0)

S; 1 if and only if E = |0V|_1.
To prove the third corollary, we calculate that if m £ —3, then q(E, — 3)2 S;

(2.75)2 > 7 and q(E, rri)2 2t (2.75)2 |0'r2"'~6 > 7-4""'"3 for all E satisfying £_ ^

E g E+.
Lemma 8.   If n —> — °° through even values of n such that u(n — 1) = u(ri), then

(34)

and

T^.n-jT^.n   -   (1   +   *,(£(«))) ->0
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(35) lim sup ^5—- = 6.4376 . . . ,      lim Inf = 4.4707 ....
T-i,n 1-1,n

If n —> — od through even values of n such that u(n — 1) = u(n) + 1, then

T-.^/T-u, - (1 + h2<E(n))) 0

and

(36) lim sup %2—- = 5.5380 . . . ,      lim inf = 3.5998 ....
T-1 , n * -1 , n

Corollary. T/'w < 0, n even and \n\ is sufficiently large, then ?"_,,„-, St f_,,n_2,

with equality if and only if E'ri) < 2d36'2 = .7680 . .. or£(«) > 2 | ö'T1 = 1.1099
Proof. Note that by Lemma 2 the only possible values for u(n — 1) are u(n)

and w(n) + 1. We proceed as in the proof of Lemma 5, using the facts

(37) T_,.„_, = |Co-i - f&i-i + if«(« - i) = "("),

(38) r.,,,-, = fo*£>-i - + 2fti^,_,|   if «(« - 1) = «00 + L

and

u(n - 1) = «(/i) if and only if £_ < \E(n)\ < lid"]'1 = 1.1099 . . .,

u(n - 1) = u(n) + 1     if and only if 2|0"|~' < I £001 < E,.

To prove the corollary, we observe that comparing (37) and (38) with the cor-

responding formulas for r_lin^2 in the proof of Lemma 5 shows that r_i,*-i =

r_i,R_a if u(n — 1) = u(n — 2); combining (23) and (39) gives the ranges of E(n)

for which u(n — 1) = u(n — 2) holds. For the remaining values of E(n), a calculation

using (21) and (34) gives T-^n-! > 7,_1,„_2.

Lemma 9.   For each integer m, if n —> — °o through even values, then

r„.„_,    i iz-02 - i)| rg"" - r'g'H ; 0

Corollary 1. If n < 0, n even and \n\ is sufficiently large, then r»,,., > £-i,„-i

holds for all integers m ^ 0, 1, — 1.

Corollary 2. If n < 0, n even and \n\ is sufficiently large, then 7*_,,0_, > 7'0,„_1

holds only if \E(n - l)j > 6'1 = .8019 ... andT.i,^ > T1,,»-, holds only if \E(n - l)j

> 02 = 1.5549 ....

Corollary 3. If n < 0, n even and \n\ is sufficiently large, then, for each integer

m ^ -4, we have T'ltn_JT_^n_, > 20-4""*-4.
Proof.   It follows from (12) that r„,»_, = for all w, so Lemma 9

follows after a by now familiar kind of calculation (note that E(n — 1) is negative

because tj — 1 is odd).

The proofs of the corollaries parallel the proofs of the similar corollaries to

Lemma 7.

We shall prove Lemma 6 by showing that the only possibilities for the minimum

in (30) are those given by (A), (B), (C) in the lemma.

The case j = 0, m = —1. Here (27) reduces to (25), which holds for all suffi-

ciently large \n\ by Lemma 5. So the case j = 0, m = — 1 always gives a candidate

for the minimum in (30).
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The cases j = 0, m St 0.   For j = 0, m St 0, (29) gives

T2-i,n \R(.u(n), n)\ - 6m+\(E(n)) -» 0

and for j = 0, m = — 1, (29) gives

(40) TU.n \R(u'n) - 1, n)\ - r(£(«)) -» 0,

as n —* — 0° through even values. Since m St 0 implies r(£) < 6"'+1t(E) for any is,

the min in (30) cannot occur for j = 0, m St 0 if |n| is sufficiently large.

77?e case j = 0, m = — 2.   In this case (29) gives

(41) It,.. \R(u(n) - 2, n)\ - rVJSfr)) -» 0.

The corresponding result for y = 0, m = — 1 is (40), so j = 0, m = —2 is a better

candidate for the min in (30) whenever (27) holds for j = 0, m = —2. Calculations

using Lemma 5 and (31), (32) of Lemma 7 show that, for sufficiently large

\n\, T.^-n/T-t.n > T-^JT-Ln is true if £(«) < -302 + 30 + 2 = 1.0760 ... , but
false if £(n) > — 302 + 30 + 2. Thus j = 0, m = —2 is a better candidate than

j = 0, m = -1 if and only if £(n) < -302 + 30 + 2.

The cases j = 0, m g —3. For /n f£ —3, the size of 712 „/T2, „ is determined

by Lemma 7, (33); calculation shows that q(E, mf St (2.75)2 > 7 for £L iS £ g E+.

Since T2.,,„_,/£!,,„ = 6 for |n| large by (20) and (22), we find that (27) never holds

for j = 0, m £ —3, \n\ large.

The case j = —2. By Lemma 7, Corollary 1, (27) with j = —2 is possible for

large \n\ only if m = 0. Even when m = 0, by Lemma 7, Corollary 2, (27) holds only

if E(n - 2) > ^'p1 = 1.1588 ....

By (23), £(« — 2) > 1.1588 implies u(n — 4) = «(n — 2) + 1, and by Lemma 2

this implies u(n — 2) = w(n). Thus we have (see the discussion below (23)) E(n — 2) =

£(k)/040'2, and (27) holds only if 2030'2 = .7680 ... >£(«)> |00'| = 10'T1 =

.5549 .... For these values of £(n), / = — 2, m = 0 is a better candidate for the

min in (30) than j = 0, m = — 2, because (29) gives

ltiin \R(u(n - 2), n - 2)| - 00'2t(£(«)) -» 0

if y = — 2, m = 0, and the constant 00'2 = .2469 ... is smaller than the constant

0_1 = .8019 ... in the corresponding formula (41) for the case j = 0, m = —2.

Putting together the candidates j, m for the min in (30) which we have so far,

we obtain exactly the Cases (A), (B), (C) of Lemma 6. Thus the proof of Lemma 6

is complete if we show that the pairs j, m not yet considered (that is, pairs with /" ̂  0

and j 9^ —2) never give the minimum in (30).

The cases j ^ —4, j even. It follows from (27) that F_i,B_2 > Tm_n+ f. We know

from Lemma 5 that r_i,n_a < T*_i,»_4 for all large \n\ and from Lemma 7, Corollaries

1 and 2, that 7,^1,„^4 < F„,„U for m ^ 0 or £(n - 4) < |030'|"\ and all large |«|.

Hence if j £ —4, / even, (27) is possible with \n\ large only if r_,,» > r0.»-2 can

occur with |n| large and £(n — 2) > |030'|_1. As we saw in the case j = —2, this

implies u(n — 2) — u(n), so the reasoning of the proof of Lemma 5 gives

7*0,n-2  ~ j?u(i)-l  "f" 2/cu(„)_i|.

As in the proof of (21), we find that T0,n-2/T-Un — (1 + h(E(ri))) —> 0 as n —>• - oo

through even values. The function 1 + ä2(£) always exceeds I, so T-u„ > j,0,„-2
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cannot occur for large This eliminates the cases ^ —4, /' even as candidates

for the min in (30).

The cases j St 2, j even. Let j = It, t ^ 1; then the following lower bound on

the coefficient of r(E(n)) in (29) is a trivial consequence of Lemma 2 and the fact

that |0T2 = 5.0489 ... > 5:

The coefficient of r(E(n)) in (29) is 1 if j = 0, m = — 1 (see (40)); hence an integer

pair j = It, m can be a candidate for the minimum in (30) only if

(42) 0m+1-'5( < 1.

Since / St 1, (42) implies m ^ — 3.

If (27) holds for j = 2t, t St \, m£ —3, we deduce the following for all sufficiently

large |n|:

(43) 6,+1r!1,„+1- st r2.,,,,^ > r;„,„+; > 7-4~m~3r21,„+,-.

The first inequality follows from (20) and (22), the second from (27), and the third

from Lemma 7, Corollary 3.

Now (43) implies 61 + 1 > 7-4~m~3, which gives a lower bound for m in terms of t.

Calculation shows that for any t j£ 1, this lower bound contradicts (42). Hence the

cases / St 2, j even never give a candidate for the min in (30).

The case j = — 1. If j = — 1 and m St 2 or m g — I, it follows immediately

from Lemma 8, Corollary and Lemma 9, Corollary 1 that (27) is impossible for

large |n|.

If j = — 1, m = 0, it follows from Lemma 8, Corollary and Lemma 9, Corollary 2

that (27) is possible only if \E(n — 1)| > 0_1 = .8019 . . . ; this inequality implies

E(n - 1) = E(n)/e2d', and so is equivalent to 2 |00'| = 1.1099 ... > E(n) > \6d'\ =

|0"r' = .5549 ... . In the range 2030'2 = .7680 . .. > E(n) > \6"\~\ the candidate
j = — 2, m = 0 for the min in (30) is superior to the candidate j = — 1, m = 0,

because the coefficient of t(£(«)) in (29) is 00'2 = .2469 . . . if j = -2, m = 0 and

is |00'| = .5549 .. . if y = -1, m = 0. In the remaining range 2 |00'| > E(n) > 2030'2,

we have for \n\ large

(44) ^^•^^ = ^ > (5.6X.85) > 4.7 >
l,n      ^ -] ,n-l -*-l,n l-\,n

(the first inequality follows from a calculation using (34) and Lemma 9 with m = 0,

and the third inequality follows from Lemma 5, (22)), so (27) does not hold. This

completes the proof that j = — 1, m = 0 does not give the minimum in (30).

If j = —\,m= 1, it follows from Lemma 8, Corollary and Lemma 9, Corollary 2

that (27) is possible only if \E(n - 1)| > 02 = 1.5549 .. . , that is, only if 2 |00'| =
1.1099 ... > £(«) > |040'| = 1.076 ... ; but (44) shows that (27) does not hold for
this range of E(ri).

The cases j S —3, j odd. If (27) is true for j £ —3, j odd, and any m, then

7,_l n_2 > Tm,n+ j. However, for large \n\ a calculation using Lemma 9 gives T2 „+I >

.6T!i,n+, for any m and (35), (36) give TiUn+i > mii,,+f„. Thus (27) would imply

Tl],»_2 > 2.1T2, n+) + 1, which plainly contradicts Lemma 5 for j ^ —3, j odd.
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The cases I, j odd. Let j = 2t + 1, r ^ 0; these cases are dealt with in the

same way as the cases j 2: 2, / even above.

First we find a trivial lower bound on the coefficient of r(E(n)) in (29):

QU(n+ j)-u(n) 1   |^/| — J   >   ßm~l   |$'|-2'_i   ]> 20m_'5'

The analogue of (42) is

(45) 20m~'5' < 1

(which implies m £ — 4 since ? 3: 0) and the analogue of (43) is

(46) ß'^Tlx,^, ^ 7l,,n_s > 7t,a+., > 20-4—4Ti1>,+„

where the last inequality follows from Lemma 9, Corollary 3. Calculation shows

that, for any / ^ 0, the bounds on m given by (45) and (46) are contradictory.

All cases have now been covered, so the proof of Lemma 6 is complete.

5. Concluding Remarks. It is clear that if the method of [2] can be applied to

a linear form x + ay + ßz, then the method of the present paper can be used to

attempt to find c2(a, ß). The attempt will succeed if and only if the method of [2]

gives all solutions of jx + ay + ßz\ max(y2, z2) < c for a sufficiently large c. It is

certainly sufficient if c 2t 1, as was the case for the example in this paper (see (4)

and the first paragraph after (25)). It may even be the case that if the method of [2]

applies to the linear form x + ay + ßz, then the constant c can always be taken

large enough to permit the evaluation of c2(a, ß); but it appears to be difficult to

prove anything in this direction.
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