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Computation of Hermite Polynomials

By Laurance C. Eisenhart* and George E. Trapp, Jr.

Abstract. Projection methods are commonly used to approximate solutions of ordinary

and partial differential equations. A basis of the subspace under consideration is needed to

apply the projection method. This paper discusses methods of obtaining a basis for piece-

wise polynomial Hermite subspaces. A simple recursive procedure is derived for gen-

erating piecewise Hermite polynomials. These polynomials are then used to obtain ap-

proximate solutions of differential equations.

1. Introduction. Projection methods using piecewise Hermite polynomials

have been applied to the approximate solution of differential equations. A partial

list of contributors would include: Birkhoff, Curry, Goel, Jerome, Lanczos, Schoen-

berg, Schultz and Varga [1], [3], [5], [7], [9], [10], [12], [14]. In particular, Varga and

Jerome ([7] and [14]) discuss the use of projection methods for ordinary differential

equations. Piecewise polynomial subspaces are useful because the solution matrices

are well suited for inversion procedures.

The above authors have shown the advantages of higher order polynomials in

increased accuracy. In this paper, we present a method of constructing these higher

order polynomials. Goel in [5] has considered this problem. His results are primarily

for low order polynomials.

We begin by showing that the construction of piecewise Hermite polynomials

of degree 2M — 1 is equivalent to inverting an M by M ill-conditioned matrix.

Because of the ill-conditioning, we develop a recursive procedure to generate the

polynomials.

We construct the polynomials on the interval [0, 2], then we note that a simple

change of variable gives the required polynomials for any mesh structure (see [12]).

Finally, we illustrate the use of these polynomials by obtaining numerical ap-

proximations for ordinary differential equations.

2. Statement of the Problem. Given an ordinary differential equation on an

interval [a, b], a mesh structure is defined by

a = x0 < xx < ■ ■ ■ < xK < Xn+i — b.

An approximate solution is sought in a finite-dimensional Hermite subspace of the

appropriate Sobolev space, where a weak solution is known to exist [16]. The piece-
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wise polynomials, which are used in the projection from the Sobolev space to the

finite-dimensional Hermite space, are required to have nonzero support only in an

interval of the form [x¡.x, xi+x]. We also require that the piecewise polynomials have

M — 1 continuous derivatives, when the degree of the polynomials is 2M — I. We

show in Section 5 that once the polynomials have been constructed on one interval,

a simple change of variable will give them on any interval. Therefore, our attention

may be focused on obtaining a piecewise polynomial basis on one such interval.

We will use [0, 2] for ease of notation.

Definition. A class of M polynomials {Pfx)}, each of degree less than or equal

to 2M — 1, is called a Hermite class of order M on [0, 1] if, for each z = 1, • • • , M,

the following conditions are satisfied for j = 0, • • • , M — 1:

Hx:    P(i'f0) = 0,

H2: P^H) = «..,♦>

Given \Pfx)\, a Hermite class of order M on [0, 1], we define functions p, by

the following:

PÁx) = i

Pfx),

i-l)' + 1Pf2 - x),

0,

x e to, i],

xG [1,2],

x £ [0, 2],

These piecewise polynomials pfx) clearly have support in [0, 2] and, by con-

struction, they have M — 1 continuous derivatives.

In Sections 3 and 4, we consider the problem of finding the Pfx), i = 1, • • • M,

on [0, 1].

3. Matrix Solution. Let M be a fixed positive integer. Define Pfx) =

Ef-o1 GiX"". It is clear that /^"(O) = 0 for j = 0, • ■ • , M - 1, since />, has a zero

of order M at x = 0. Hence, to make {Pfx), i = 1, • • • , M) into a Hermite class,

it is enough to determine the C,, so that H2 is satisfied. Let ffx) = x"*''1, for j =

1, • • • , M, and let Aix) be the matrix defined by

Aix) =

fiix)

ffx)

Uix)

fiix)

Uiix)

Vuix)

l\M-U(x)    1
(M-n

ix)
AM-l)
¡M ix)]

, /if],Since the ffx) are independent functions and DET(/4(x)) = Wronskian [/,,

it follows that A = Ail) is invertible.

Lemma 1. Let C = [Cif] be the matrix of coefficients of the P{, then AC = I

if and only if the Pi are a Hermite class.

Proof. By direct computation, we have Aix)C = [P^'^fx)], and, thus, -4(1)C =

[P<'—>(1)] = [5,.] = /if and only if ^'""(l) = á„. Therefore, AC = /if and only if

the Pi satisfy H2.   Q.E.D.

The elements of the matrix A may be explicitly determined. Since ffx) = xM+'~\

we have



COMPUTATION  OF  HERMITE  POLYNOMIALS 627

/,*'(1) = (M + j

= (M + j

1) ■ • • iM + j - k)

1)\UM + j - k - 1)\.

The determinant of the matrix A can probably be evaluated by using the results

of Lavoie and Michaud [8], but a simple method is also available, and we will consider

it instead.

Define Fft) = ffe') and let Bit) = [F,"-u(/)]. If we also let X,= M + / - 1,
then since ffe') = ex" we have

DET(5(/)) = Wronskian [e • ,e
XM'1    =    £<X'I+" •+x"" Vandermonde [X„ • • • , \M].

. ^Af] = ILsios» (A< "" M> we obtain the followingSince Vandermonde [Xi,

result.

Lemma 2.   DET(A) = ± JJf-i (M - i)l
Proof.   Since DET(A) = DET(A(l)) and A(l) = B(0), we have

DET(A) = Vandermonde [X„

Therefore, for X, = M + i — 1, we obtain

, Xju-].

DET(^) =±nO'-0=±ÍÍ(M- <)!•       Q.E.D.
i<l 1-1

The aiM element of A is given by aiM = /!m_1,(l) = Hw' (M + ' ~ fc)- Therefore,

since AÍ + / — /c ^ z, for /c ^ M, we have a,M ^ l*-1. If we divide each row of the

matrix A by aiM and evaluate the resulting determinant, we obtain the following

sequence of inequalities:

DET(/1)
/ M

I       i-l

DET(/4)
/M

M IM

è  UiM-iV./lJi"''
< -1 '      i: -1

Af

< n ím - i)\/iM\f~i

« l/M\.

A matrix is termed ill-conditioned whenever the absolute value of the determinant

of the normalized matrix is small. The normalized matrix is obtained by dividing

each row z of the given matrix by C22f,x a2/)1'2. The computation given above shows

that A is ill-conditioned because

DETM)
/M

IKE«?,)1i-i
DET(^)

/ M

/n«<i* i-i « l/M\.

Since the matrix A is ill-conditioned, another procedure for determining the

Pi is needed. In the next section, such a method is developed. Since that procedure

determines the inverse of the matrix A, it may be applicable to general Vandermonde

matrices (see Traub [13]).

Since determining each P{ is a Hermite-Birkhoff interpolation problem of degree

2M, the method of Galimberti and Pereyra [4] can be applied. References [2] and [6]



628 LAURANCE  C.   EISENHART  AND  GEORGE   E.   TRAPP,   JR.

also discuss solving Vandermonde systems. In Section 5, we compare our method

with that of Galimberti and Pereyra.

4. Computation of the Hermite Polynomials. In this section, we describe a

recursive procedure for the computation of a Hermite class of order M on [0, 1].

Let qfx) = xM(x - 1)*~7(' - l)\, i ^ 1. Clearly, each qfx) satisfies Hx and,

for i ;S M, qfx) is of degree ^ 2M — 1. Since qi+fx) = qfxfx — l)/i, we have

by induction

îiîiW = q\'\x)ix - l)/i + ij/i)q\'-l)ix).

Letting x = 1 in this equation gives the following lemma.

Lemma 3.

q(iÍ\il) = C//0i"-1)(l).

Lemma 4.

q(fil) = 0   for j < i - 1,

=  1     for j =  ( -  1.

Proof.   Suppose the lemma is true for i = k, by Lemma 3 we have

qiÍ\U) = ij/kWf-'fl).

Thus, if j < k then ¿'""(l) = 0, and if y = k, then qk«\(l) = (k/fyq^fl) = 1.
The lemma is clearly true for i = 1 and hence for all i.   Q.E.D.

Let PM(x) = xM(x — l)M~l/(M — l)\; clearly PM satisfies H2 since it has a zero

of order M - 1 at x = 1, and P^~l\\) = (M - l)\/(M - l)\ = 1. Define Pfx)

for k = M — 1, • • • , 1 by the following:

M

(*) " Pk(x) = qk(x) +    E   CrkPfx),    where Crk =  -ql'^il).
r-k+l

Theorem 5.    The {Pfx)} defined by (*) are a Hermite class of order M on [0, 1].

Proof.   The Pk are linear combinations of the qt, and thus they satisfy Hx. Further-

more, since Pifx) = x"ix — l)M~1/iM — 1)!, we see that PM satisfies H2. For k < M,

M

PAX) =  qkix) +     E    CrkPrix)
7=t+l

and, in view of q\/fl) = 0 and P^fl) = 0, for j < k - 1, we see that P)/'1 = 0
for y < k — 1. For y = k — 1, only qfl) remains after y differentiations and Lemma 4

shows this value is 1. Since j > k — 1 implies Pl'fl) = 1, the definition of the Crk

gives Pi"(l) = 0.   Q.E.D.
The backward recursion formula (*) and the C,, are all that are needed to compute

the Pk.

We have ql'fx) = MiM - I) ■ ■ ■ (M - j + l)xM~\ therefore q[i}(l) = y!(f).
The following theorem supplies the values of the C,, in general.

Theorem 6.   If j ^ i then q(,'fl) = y! (,_f+1)/(/ - 1)!.
Proof. The case z = 1 is given above. Suppose the result is true for i = k, then

from  Lemma  3  we have ^+¡(1)   =  j/kq^'^fl), by our induction  hypothesis
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il' °(1) = (J —  IV- ii-k)/ik —  I)'- Substitution into the expression above gives

flCÍÍU) « ß ii-ù/kl   Q.E.D.

5. Computational Aspects. Section 4 gives the equations needed for com-

putation of a Hermite class. It is quite easy to program these equations. Since the

qfx) can be written as binomial coefficients of powers of x and the C,, are factorials,

factorial evaluation and large integer division are the two major problems encountered.

On the CDC 6600 (29S), the above procedure with

EM = max {{Py\l) - 5,., + 1|, |/\<o(0)|},
lí tí M ;0í JíAÍ-1

gave the following results.

M 2       3 4 5 6 7

EM 0       0        10"" 10~9 10~9 lO-

For M = 4, the Pfx) are

Pfx) = 35/ - 84/ + 7.0/ - 20/,

P2ix) =  -15/ + 39/ - 34/ + 10/,

P3ix) = 2.5/ - 7/ + 6.5/ - 2.0/,

Ptix) =  -1/6/ + .5/ - .5/ + 1/6/.

These polynomials are exact, the error £4 above is caused by computer roundoff

in taking derivatives and evaluation.

The polynomial Pfx) for any M is defined by P['f0) = 0, y = 0, • • • , M — I,
Pfl) = 1, and P<"(1) = 0, j = 1, • ■ • , M - 1.

This polynomial is generated last by our recursive procedure, and, in all cases

tried, has the most roundoff buildup. Therefore, we compared this polynomial to

that generated by the Galimberti and Pereyra method [4]. We will mention the result

for M = 9, that is the 17th degree polynomial Pfx). In running the program listed

at the end of the paper of Galimberti and Pereyra, we encountered the following

inconsistency.

Whereas part of the input to be specified for subroutine "DUALCONF" includes

values of the derivatives at the various nodes, what is actually needed is the value

of the yth derivative divided by y!. This is apparent from reading the text of the paper.

The maximum difference between the coefficients of the 17th degree Pfx) poly-

nomials occurs for the coefficient of x11. This difference is less than 10-7.

Moreover, both coefficients are within 10~7 of the true answer. Therefore, both

methods supply accurate polynomials, and both require 0(M3) operations to compute

the M polynomials. It would seem that the only advantage of our method is the

facility of computing all of the polynomials at the same time. This, we feel, is a minor

advantage.

It should be noted that once the polynomials have been constructed on [0, 1],

a simple change of variable is all that is needed to obtain a Hermite class defined
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for arbitrary mesh spacing. If we are given the interval [hx, h2], let A = h2 — hx and

for i = 1, ••• , M define

*,(*) = A^'Pfix - hx)/A),

where {Pfx)} is the Hermite class on [0, 1].

Then, for j - 0, • • • , M - 1, we have RVfx) = (A^Va')/^"«* - hx)/A).
Since P^fO) = 0, we see /?!"(//,) = 0; moreover, P<"(1) = Silj+1 impUes R^fhJ =

(A'-'/A')^.^! and, therefore, RYfh,,) = ô,,i+1. Thus, the polynomials Rfx) satisfy

the appropriate derivative conditions at x = hx and x = h2.

Now, given [hx, h2] U [h2, h3], let A, = h2 — hx and Rfx) be defined as above,

and let A2 = h3 — h2 and S.-(jc) be the equivalent polynomials for [zz2, h3].

We now define the piecewise polynomials pfx), i = 1, • • • , M, by the following

formula:

Rfx), x G [Ai, A*].

ft(x) = l(-l)i+1Siih2 + A3 - x),       * G (h2, A8],

.0, x $ [A„ Aa].

In terms of the Pfx), we may write

Al-'Pfix - A,)/A,), * € [Ax, A,],

p,(x) = j(-l)< + 1 A2-'P.((A3 - *)/A2), x E [h2, A,],

.0, *£[A,,A,].

The {pfx)} so defined are piecewise polynomials on [hx, h3] and have M — 1 con-

tinuous derivatives. This shows that once the Pfx) have been constructed on [0, 1],

the pfx) can be constructed for any interval of the form [h„ h2] U [h2, h3].

One additional note, for two-dimensional rectangular meshes, is that a direct

product of these polynomials supplies a basis (see [1] or [5]).

6. Applications. Given the Hermite class, the projection method discussed in

[4] may be implemented. This was done for a few simple ordinary differential equa-

tions. Since integration of the polynomials times the coefficient functions and the

nonhomogeneous term is required, we considered only constant coefficient problems

with polynomial nonhomogeneous term.

To further simplify the calculations, the interval [0, 10] was used with

a mesh spacing of A = 1. The relative error was measured by computing

E = maxti |m(*.) — £Cx.)I/Im(*.)| where p is the true solution, p. is the Hermite

approximate solution and the x¿ are one hundred equally spaced points in [0, 10].

All problems had p(0) = ¿1.(10) = 0 as boundary conditions. The results are sum-

marized only for M = 2, • • • , 7. The case Ai = 7 is polynomials of degree 13. These

are sufficient for the cases below, considering the mesh size of one.

1. -D'p = x2, p.(x) = -//12 + lOOOx/12

M 2 3 4 5 6 7

E 10~3 10~12 10"12 10"10 10"10 10~10
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2. -D2p + p. = x, p(x) = x - (lO/e10)fex - e~x)

M 2 3 4 5 6 7

E 10"2 10"5 10"7 10-7 10~7 10"7

3. -D2p. - p. = x, u(x) = -x + 10 sin x/sin(10)

M 2 3 4 5 6 7

£ 10"' 10"4 10"6 10~9 10"9 10"

4. -D2u- p. = x2, p(x) = -x2 + 2 + (98 + 2 cos(10)) sin x/sin(10) - 2 cos x

M 2 3 4 5 6 7

£ 10_1 10-4 10-6 10-9 10~9 10-

For case 1, the solution should be exact for M ^ 3, the error reported is due only

to roundoff. No special considerations were used in programming this problem

to avoid roundoff buildup.

With this in mind, these results indicate that the use of higher order polynomials

is one method of reducing approximation errors. The formulas developed in this

paper allow computation of these higher polynomials quite accurately.
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