
mathematics of computation, volume 27, number 123, july, 1973

The Calculation of Best Linear One-Sided LP

Approximations

By G. A. Watson

Abstract. The calculation of linear one-sided approximations is considered, using the

discrete Lv norm. For p = 1 and p = <», this gives rise to a linear programming problem,

and for 1 < p < »,toa convex programming problem. Numerical results are presented,

including some applications to the approximate numerical solution of ordinary differential

equations, with error bounds.

1. Introduction.   Let b be a real zzz-dimensional column vector, and let A be

a real m X n matrix with n < m. Then the problem:

(1.1)

find a vector a = (ax, a2, ■ ■ ■ , an)T to minimize

(m \l/p

where

(1.2) r = b -  Aa,

is a linear discrete L„ approximation problem. The expression (1.1) defines the vector

norm ||r||„ for 1 ^ p < co, with ||r||„ = maxliiSm |r,|.

Such problems arise, for example, as discretizations of the continuous Lv ap-

proximation problem: find a to minimize

[^ kwr^J(1.3)

where

fi

(1.4) ripe) = bix) -  Z «¿Ax),        a^ xú b,
• -i

and bix), <^,(x) £ C[a, b] for i = 1, 2, • ■ • , zz. The expression (1.3) defines ||z-(*)IIp

for 1 g p < œ, with ||>"(*)IU = rnaxoSlSi, \r(x)\.

Both the discrete and continuous problems have been considered by a number

of authors, and good algorithms are available for obtaining solutions under very

general circumstances (see, for example, [1], [2], [8], [14], [23], [24]).

Now suppose that we require that a be constrained to lie in the set R, where
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608 G.   A.   WATSON

(1.5) R =  {a :r,: ^ 0, z =  1, 2, • •• , zzi}.

In this case, the approximation problem is said to be one-sided. The class of

problems which we have defined is a subset of the class of all approximation problems

in which the difference between the approximation and the approximand is one-

signed in the region of interest. Such problems occur frequently in analysis, and

examples have been discussed by Bojanic and De Vore [3], De Vore [6] and Marsaglia

[12].
For all values oî p such that 1 g p ^ °°, the discrete one-sided Lp problem may

be conveniently posed and solved (where a solution exists) as a mathematical pro-

gramming problem. Formally, we may write the problem as:

subject to   r = b — Aa ^ 0.

The cases p — 1 and p = °° give rise to linear programming problems, and some

properties of these problems are considered in Section 2. Section 3 is concerned

with the remaining values of p: in this case, problem (1.6) is a convex programming

problem. Finally, in Section 4, some numerical results are presented. These include

some applications to the approximate numerical solution of ordinary differential

equations, with error bounds.

It is clear that a solution to the one-sided Lv problem will exist if and only if R

is nonempty, and this will be assumed. Further, the special case of problem (1.6)

when the set of equations b — A a. = 0 are consistent is of little interest. We will

therefore assume in what follows that no solution r = 0 is possible.

2. The Cases p = 1, °°. In this section, it is necessary to make use of some

standard linear programming results. These will be quoted without reference, but

details may be obtained in, for example, Hadley [10].

It is clear that the one-sided L, problem can immediately be posed as the linear

programming problem:

minimize    eTb — e  Au.

subject to     Act ^ b

where e is a vector each component of which is 1. This may be solved conveniently

by going to the dual problem:

maximize    eTb — bTw

subject to     A w = eTA,       w ^ 0.

An algorithm for the continuous one-sided Lx problem is given by Lewis [11],

based on the solution of a sequence of discrete one-sided Lx problems in this form.

Provided that the matrix A has rank zz, a solution to (2.1) can readily be obtained

by standard techniques, for example, the simplex algorithm. In this case, the solution

will be such that at least zz values /*, are zero there. This is an immediate consequence

of the result that if a variable is in the dual basis, then the corresponding primal

constraint holds with equality.
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Remark. The simplex procedure can of course be applied to (2.1) when the

rank of A is less than zz, and will identify the redundant constraints. These may then

be removed, leaving a reduced problem which will satisfy the above rank condition

for a different value of zz. By 'simplex algorithm', we mean here its implementation

as an automatic procedure, starting from this point.

As in the standard (two-sided) Lx problem, the question of uniqueness of the

solution vector is not straightforward. Even when the matrix A satisfies the Haar

condition, i.e., all zz X zz submatrices of A are nonsingular, examples can readily

be constructed which have nonunique solutions.

The case p = » (the one-sided Chebyshev approximation problem) has been

considered by Watson [20]. The notation of that paper, with regard to partitioned

vectors and matrices, is adhered to in what follows. It was shown that the one-sided

Chebyshev problem may be posed as the linear programming problem:

(2.2)

minimize    e„+,

subject to

a

h.

A    e

-A    0

b

-b

where en+1 is a vector each component of which is zero except the (n + l)st which is 1.

Again, it is more efficient to solve the dual problem, which is

maximize    z [br - br]w

(2.3)
subject to

AT    -AT

0

w = e„+1, w ^ 0.

We now state some results given in [20] which characterize the linear programming

solution of the one-sided Chebyshev problem.

Lemma 1. Let the rank of A be n. Then problem (2.3) zzza>> be solved by the simplex

algorithm.

Lemma 2. At such a solution, zz + 1 equations of the set (1.2) hold with rt = 0

or r, = max; z*,. The matrix A' formed by the corresponding rows of A has rank n.

Lemma 3.    We write

b' —  A'ol = hg,

where gi = 0 or 1 and h = max, r¡. Then there exists a nontrivial vector à such that

XTA" = 0, whose nonzero components satisfy

X, > 0    if g, « 1,

X, < 0    // gi = 0.

We use these results to prove

Lemma 4. If A satisfies the Haar condition, the solution to the one-sided Chebyshev

problem is unique.

Proof. Let a = x be a solution found by the simplex method of linear pro-

gramming, and let « = y be any other solution. Then there are zz + 1 equations

such that
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b"  -   A'X =   hg

where h = max, r„ and (re-ordering if necessary)

gi = 1,        i = 1, 2, ■•• , /,

g, = 0,        r = / + 1, • • • , zz + 1.

Since y is also a solution, it follows that

b" —  A'y = hv

where 0 g d, ^ 1.

Now, there exists a vector X satisfying the conditions of Lemma 3. Further, by

the Haar condition, X, ¿¿ 0, i = 1, 2, • • • , zz + 1.

Then

X g = 1 v

and so

Zx, g ¿u ^ ¿x,.
■ -1 1 = 1 i = 1

Thus v = g. Since it is a consequence of Lemma 3 that the matrix [A" g] is

nonsingular, it follows that the solution is unique.

3. The Cases 1 < p < °°. For 1 < p < œ, the problem (1.6) represents the

minimization of a strictly convex function subject to linear inequality constraints,

and this is a convex programming problem. The theory of such problems is well-

developed, and the reader is referred, for example, to Fiacco and McCormick [7].

Before proceeding, we note that the problem (1.6) may be simplified by replacing

the objective function by its pth power; clearly, the same values of a solve both

problems. Thus, we deal subsequently with the problem:

m

,- n minimize    Z r<
(3.1) i-i

subject to    r = b —  Aet ^ 0.

An immediate consequence of the strict convexity of the objective function is

Lemma 5.    The vector a. solving problem (3.1) is unique.

The solution may be characterized by making use of the Kuhn-Tucker conditions.

A direct application of the theory to this problem gives

Lemma 6. Let Dr be a diagonal matrix with (/', i) element rf"\ Then the vector «

solves problem (3.1) if and only if

(1) r 2: 0,

(2) there exists a vector X ^ 0 such that
(i)   Xtt = 0,

(ii)   XT A = peTDrA.

There exist a number of methods for minimizing a nonlinear function subject

to linear constraints (see, for example, the review paper by Fletcher [9]). Among

the best known of these are the reduced gradient method of Wolfe ([21], [22]), and
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methods based on the gradient projection algorithm of Rosen [17], for example

that due to Murtagh and Sargent [13]. In particular, when the objective function

is convex, as in this case, it is possible to guarantee convergence.

We mention, finally, some results which are precise analogues of those for two-

sided approximation, and which can readily be proved in a similar manner. Let

a(p) denote the solution to the one-sided Lv problem for 1 < p < °°, and let

r(" =b - Activ).

Lemma 7.   Ifp < q, then \\r'v)\\v ^ \\tia)\\Q.

Since the sequence of points {a!l>)} is bounded, it possesses convergent sub-

sequences, which we may also call { «<p'|- We have

Lemma 8.   Let

lim a(p> = a*,
p-tco

lim a<p) = 5.
p-i

Then a* and 5 respectively solve the one-sided Chebyshev and one-sided Lx prob-

lems.

4. Numerical Results. All the numerical results of this section were obtained

on the Elliott 4130 of the University of Dundee, using single length arithmetic.

For floating-point computation, this gives about 11 decimal places.

The numerical solution of the convex programming problem of Section 3 was

considered using both the reduced gradient method of Wolfe, and Rosen's gradient

projection method. Both methods are iterative by nature, and move from point to

point within the set R reducing the objective function at each step. They differ in

the way in which directions of motion are obtained.

The application of these methods to problem (3.1) as it stands runs into numerical

difficulties for large p because of the size of the objective function, and some form

of scaling strategy is essential. The procedure adopted for both methods involved

the following modifications to the basic algorithms. For full details of these algorithms,

see [17] and [22].

1. Choose an « £ Ä, and set k to a prescribed value.

2. Compute

r = b — Act,

F=  22ikr,Y,
i-l

andset/c:= k* F~Up.

3. Compute 5 a, the direction of motion, and test for convergence, as in the

basic algorithms.

4. Compute d = A 8 a, and find X to minimize

Z ikir, - \di))\
t = 1
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5. If a + X5a G R, then set y = X. Otherwise, choose y to be the maximum

value such that a + y8a G P-

Remark. This procedure is closely related to the application of the basic algo-

rithms to the original problem (1.6). The computed value of k at each step gives

the inverse of the current value of the norm.

Except for the case p = 2 (when an analytical solution is available), the minimum

in step 4 was obtained in the following simple manner. A direct search procedure,

starting from X = 0, was used to obtain three values of X spanning the minimum.

A quadratic was then fitted through these 3 points, and the value of X giving the

minimum of this quadratic accepted as the true value.

The algorithm proved to be effective for problems involving large values of p,

provided that reasonable care was taken in deciding when to accept convergence.

Essentially, this amounts to deciding when to accept 5 a = 0 in step 3. In addition

to the obvious criterion

I ««I < T,

where T is some prescribed tolerance, it was found necessary to take into account

the step length y, and the sensitivity of the solution by also testing to see whether

il«, - «,+1|U < r||«.iL,

where a, and ai+1 are two consecutive values of a, or

11/*;    -    l/ki + X\    <    T,

where k{ and /V, + 1 are two consecutive values of k. (For all the examples of this paper,

T = 10"6.) This latter test was only invoked if it was found that the convergence

was ultimately slow, with the directions of progress confined to lie in the intersection

of a fixed set of hyperplanes r¡ = 0. Both algorithms tended to suffer from this defect

for larger problems, with the projected gradient method slightly worse. This reflects

the slow ultimate convergence generally associated with steepest descent type methods,

and a better algorithm in this case is that of [13].

Our first example is a simple problem which possesses an analytical solution.

Example 1.

1.0 0.5

-1.0       2.0

1.0    -1.0.

b =

1.0

0.0

0.5

It is readily verified from Lemma 6 that the problem with this data is solved by

,„       8(5/3),/"-,> + 5

10(5/3)' + 6 '

(p) tai     =2 2«

for 1 < p < ».

The solution was first obtained for p = 2 using the initial approximation a =

(0, 0)r. Solutions were then obtained for an increasing sequence of values of p, using

the previous solution as initial approximation. For p = 10, the value of the objective
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Table 1

2

4

10

100

500

0.808 823

0.811 200

0.812 060

0.812 460

0.812 492

0.382 353

0.377 599

O.375 880

O.375 081

O.375 016

0.085 749

0.073 556

0.066 752

0.062 915

0.062 583

Solutions to Example 1

function of (3.1) at the minimum is O(10 I2), and it is interesting to note that without

the scaling introduced above, the solution for p = 4 was accepted for p = 10 and

for all higher values of p.

In Table 1, we give solutions for values of p up to p = 500. The value of k was

initially set to 1.0 for p = 2, and to the current value for other values of p. Note

that the final value of k for each p gives the inverse of the minimum value of the

norm. The calculated coefficients were in fact correct to one figure in the 8th decimal

place. The exact solution for p = oo is

a, = 0.8125,        a2 = 0.375, 0.0625.

We now present two examples derived by discretizing continuous approximation

problems.

Example 2.    Let

and define

rix) ia¡ + a2x + a3x2). 1  < x < 2,

rix,), 1, 2,

Table 2

5

2

4

10

40

100

500

°0

0.444 697

0.445 189

0.445 284

0.445 077

0.444 982

0.444 926

0.444 911

0.626 623

O.625 842

O.625 691

O.626 020

O.626 170

O.626 261

O.626 283

-O.071 320

-O.071 031

-0.070 975

-0.071 097

-0.071 153

-0.071 186

-0.071 194

0.003 113

0.002 047

0.001    659

0.001

0.001

0.001

0.001

537

523

516

514

Solutions to Example 2
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In Table 2, we present the results of computing one-sided approximations on

the set of points

Xi = 1 + 0.1(z - 1),        i = 1, 2, ••• , 11.

The initial approximation lor p = 2 was a = (0, 0, 0)r.

Example 3.   Let

rix) = bix) -  Z a.*'"'.        0^^2,

where

bix) = e',

+ e — e \

Oi^l,

1 < x < 2.

In Table 3, we present the results of computing one-sided approximations on

the set of zzz = 21 points

Xi = 0.1(z - 1),        i = 1,2, ,21.

The initial approximation for p = 2 was taken to be a = (0, 0, 0, 0, 0)r. (In

many cases, however, it may be worthwhile calculating the solution for p = 1 (or

p = œ ) to use as a good initial approximation for any other value of p.)

Remark. Because of the presence of a constant in the approximating functions

of Examples 2 and 3, the one-sided Chebyshev approximations are just shifted

two-sided Chebyshev approximations (Phillips [15]).

Finally, we present some examples of the use of one-sided approximations to

obtain approximate numerical solutions to certain types of ordinary differential

equations, with error bounds. The derivation of the error bounds is based on the

differential operators involved satisfying certain monotone properties. The use of

such properties to obtain approximate solutions with error bounds has been con-

sidered, for example, by Collatz [4], [5] and Rosen [18], [19].

We illustrate the principle involved for the problem of finding the function u

in some bounded domain D, where u satisfies

L[u] = f    in D

Table 3

i

2

4

10

20

40

1.000 00

1.000 00

1.000 00

1 .000 00

1.000 00

1 .000 00

-0.306 09

-0.642 49

-0.985 94

-1.1M 63

-1.136 45

-1.165 57

4.925 44

5.814 48

6.714 76

7.020 71

7.104 44

7.176 62

-4.132

-4-835

-5-536

-5.777

-5.831

-5.881

23

91

86

62

70

70

O.965 88

1.137 51

1.302 90

1.359 71

1.367 62

1.376 62

O.402 344

O.270 738

O.230 744

0.221 012

O.216 331

0.212 302

Solutions to Example 3
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and takes prescribed values on dD, the boundary of D. Here, L is a linear differential

operator, and we say that this operator is monotone if the conditions L[v] g L[w]

in D, and v ^ w on dD imply that v ^ wonflW dD.

For example, consider the ordinary differential equation boundary value problem

(4.1) L[yix)] = fix),        a g x g b,

subject to

(4.2) yia) = yx,        yib) = y2,

where L is a linear differential operator. Now suppose z,(x) is such that

L[zx] ^ fix),        aúx^b,

zi(a) ^ 7i.

Zl(ft)   ^   72,

and z2(^) is such that

L[z2] ^ fix),       a^x^b,

z2(a) ^ yx,

z2ib) ^ 72.

Then if L is monotone in the sense described above, it follows that in [a, b]

(4.3) z2ix) è yix) á zfx).

For example, a suitable L is given by

(4.4) L[y] = y" + gix)y' + hix)y

where fix), gix) and hix) are bounded in [a, b], and zz(x) ^ 0 in [a, b] (Protter and

Weinberger [16]).

Our method of solution is as follows. Let

(4.5) 0(a, x) =  Z «.■*.■(*).        «<(*) G C2[a, b],
i = i

be an approximation to X*) defined by Eqs. (4.1), (4.4) and (4.2), and let x¡, j =

1,2, • ■ • , zzz, be a set of points such that a = xx < x2 < ■ ■ • < xm = b.

Let

rix) = fix) - L[<pi<x, x)]

and assume that there exists at least one a satisfying <£(a, a) = 7,, #(a, b) = y2

such that rix) 3; 0, a ^ x ^ /3. Then a suitable z,(;t), which will be optimum with

respect to the form of the approximation 0(a, x), can be obtained by choosing a

to solve the problem

minimize    ||rU)||P        ÍP è  1)

subject to    rix) 2? 0,        a ^ x ^ b,

and the additional constraints
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(4.6) <7i(a, a) = yx,       0(«, b) = y2.

Approximations to this optimum zfx) can be obtained by discretizing the prob-

lem on the set of points x¡, j = 1,2, ■ • ■ , m, and solving the linear discrete one-

sided problem defined by

z\ = riXi),        i = 1, 2, • • • , m,

bi = fixi),        i = 1,2, ■ ■■ , m,

and

An = L[<f>iiXi)],        i = 1,2, ■■■ , m; j = 1,2, ■■■ ,n.

The constraints (4.6) may be included as two extra inequality constraints, which

may be forced to hold with equality.

A similar approach is used to approximate the optimum zfx), the only difference

being that we define

rix) = -fix)+ L(4>ia,x)].

A monotone property, similar to the one defined above, can be shown to apply

to initial value problems with the operator (4.4), where the initial conditions are

y(a) = 5,, y'(a) = 52. Then, if we define zx(x) such that

L[zx] ̂  fix),       a S x ú b,

zfa) ^ 5,,

zfia) a; «2,

and zfx) such that

L[z2] Ú fix),       a ^ x g b,

z2ia) g Sx,

z2'ia) g «„

then, under the same conditions on fix), g(x) and /z(x) as before, we have zfx) ^

y(x) ^ zfx) (Protter and Weinberger [16]).

Suppose, therefore, that we obtain approximations 0(ß, x) and </>(y, x) of the

form (4.5) to the optimum zfx) and zfx) respectively. Then, assuming that the

monotone property is unaffected by the discretization, we have

<l>(f, Xi) ^ y(Xi) g <K5, Xi),        i = 1, 2, • • • , zzz.

Then it is clear that

(4.7) \yiXi) - 0(w, Xi)\ è <t>(v, Xi),        i = 1, 2, • ■ • , zzz,

where

w = (5 + r)/2,      v - (g - y)/2.

Example 4.

(4.8) y" + -£~2 y> - ~-2 y = —J—2 ,        Oá,ál,
1 + x 1 + x 1 -t x
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Table 4

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.80

0.88

0.96

p-l

2.4 E-4

4.9 E-4

5-7 E-4

4.6 E-4

2.9 E-4

2.1 E-4

2.9 E-4

5.0 E-4

7.3 E-4

8.1 E-4

6.2 E-4

2.0 E-4

<7>(v, X.)

1.2 E-3

2.0 E-3

2.6 E-3

3.1 E-3

3.3 E-3

3.4 E-3

3.4 E-3

3-3 E-3

2.9 E-3

2.4 E-3

1.6 E-3

6.2 E-4

p=2

«(*.)

2.8 E-4

4.8 E-4

4.6 E-4

2.4 E-4

3.5 E-5

2.0 E-4

1.6 E-4

5.6 E-5

3-4 E-4

5.1 E-4

4.3 E-4

1.4 E-4

0(v, *.)

1.3 E-3

2.3 E-3

3.0 E-3

3-5 E-3

3.8 E-3

3.9 E-3

3.8 E-3

3.5 E-3

3.1 E-3

2.5 E-3

1.7 E-3

6.2 E-4

p = 10

e(x.)

2.2 E-4

3.6 E-4

2.4 E-4

8.1 E-5

4.4 E-4

6.7 E-4

6.6 E-4

4.1 E-4

5-7 E-5

2.3 E-4

2.9 E-4

1.1 E-4

<p(\, *,.)

1.4 E-3

2.5 E-3

3.3

3.9

4-3

E-3

E-3

E-3

4.4 E-3

4.3 E-3

3.9 E-3

3.4 E-3

2.6 E-3

1.7 E-3

6.2 E-4

Errors and Error Bounds for Example 4:n = 6

Table 5

n = 9

>(*..) <Mv, *,.) <ix) <p(v, X.)

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.80

0.88

0.96

2.2

3.6

2.4

8.8

4.6

6.9

6.8

4-4

8.1

2.1

2.7

1.0

E-4

E-4

E-4

E-5

E-4

E-4

E-4

E-4

E-5

E-4

E-4

E-4

1.4 E-3

2.5 E-3

3-3 E-3

3-9 E-3

4.3 E-3

4.4 E-3

4-3 E-3

3-9 E-3

3-4 E-3

2.6 E-3

1.7 E-3

6.2 E-/4.

5.9 E-7

1.0 E-6

1.4 E-6

6.9 E-7

2.7 E-6

2.0 E-6

3.8 E-7

1.4 E-6

2.9 E-7

2.2 E-6

1.4 E-6

6.4 E-8

1.6 E-5

2.8 E-5

3.8 E-5

4.4 E-5

4.8 E-5

4.9 E-5

4.8 E-5

4.4 E-5

3.8 E-5

3.0 E-5

1.9 E-5

7.0 E-6

Errors and Error Bounds for Example 4:p = <*>

(4.9) .y(O) = v(l) = 1.

This has the exact solution

yix) = 1 — 37T*/4 + 3x tan-1 x.
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Approximations <¿>(a, x) = Zî-i a,*'-1 were obtained for yix) in the manner

described above for a number of values of p up to p = 500. In Tables 4 and 5, we

present some actual errors and computed error bounds derived from Eq. (4.7) for

approximations on 26 equispaced points in [0, 1] using the Lx, L2, LXQ and L„ norms.

Note that, for p = 1 and p = oo, the constraints (4.6) are readily incorporated into

the linear programming formulations of these problems. The true error is denoted by

eixt) =  \yiXi) - 0(w, *,)|,        z =  1, 2, • • • , zzz.

Example 5.

2.v 1 - x 2e

1 + * 1 + * I + x'

yiO) = y'iO) = l.

This has the exact solution

yix) = exix + 1/(1 + x)).

Polynomial approximations and error bounds were again obtained on 26 equi-

spaced points in [0, 1]. In Tables 6 and 7, we give results similar to those in Tables

4 and 5.

5. Conclusion. We have considered methods for calculating linear discrete

one-sided Lp approximations to given data, for all values of p satisfying 1 ^/?^ ».

The methods have been illustrated by examples, including applications to the nu-

merical solution of ordinary differential equations, with error bounds. It is clear

Table 6

p=\ p=2 p= 10

Kx.) Kv, x.) Ax.) i(v, X.) Äx) </J(v, x)

0.04

0.12

0.20

0.28

O.36

0.44

O.52

0.60

0.68

O.76

O.84

0.92

1 .0

1 .0

2.7

2.5

1.5

3.2

4.9

6.5

7.8

9.2

1.1

1.3

1.6

1.9

E-5

E-5

E-5

E-4

E-4

E-4

E-4

E-4

E-4

E-3

E-3

E-3

E-3

1.5

1.2

3.3

6.2

9.8

1.4

1.9

2.5

3.1

3.8

4.6

5.5

6.6

E-5

E-4

E-4

E-4

E-4

E-3

E-3

E-3

E-3

E-3

E-3

E-3

E-3

8.5 E-6

1.9 E-5

3.5 E-5

1 .5 E-4

2.9 E-4

4.1 E-4

5.0 E-4

5-5 E-4

5.8 E-4

6.3 E-4

7.4 E-4

9.2 E-4

1.1 E-3

1.3 E-5

1 .1 E-4

2.9 E-4

5.4 E-4

8.7 E-4

1.3 E-3

1.7 E-3

2.3 E-3

2.9 E-3

3.7 E-3

4.5 E-3

5.5 E-3

6.7 E-3

5.1

2.6

E-6

E-6

7.6   E-5

2.0    E-4

3.2

4.1

E-4

E-4

4-4 E-4

4.1 E-4

3-5 E-4

3.1 E-4

3.1 E-4

3.8 E-4

4.9 E-4

9.2 E-6

8.2 E-5

2.3 E-4

4.5 E-4

7.5 E-4

1.1 E-3

1.6 E-3

2.2 E-3

2.9 E-3

3.7 E-3

4.6 E-3

5.7 E-3

6.9 E-3

Errors and Error Bounds for Example 5:n = 6
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0.04

0.12

0.20

0.28

O.36

0.44

0.52

0.60

0.68

O.76

0.84

0.92

1.0

eix.)

4.7 E-6

4.9 E-6

7.9 E-5

2.0 E-4

3.2 E-4

4.0 E-4

4.1 E-4

3.6 E-4

2.9 E-4

2.2 E-4

2.0 E-4

2.5 E-4

3.3 E-4

Table 7

<£(v, x.)

8.7 E-6

7.9 E-5

2.2 E-4

4-4 E-4

7.4 E-4

1.1 E-3

1.6 E-3

2.2 E-3

2.9 E-3

3.7 E-3

4.6 E-3

5.7 E-3

7.0 E-3

eixt)

3.0 E-9'

2.8 E-7

3.4 E-7

1.8 E-8.

1.2 E-7

2.2 E-7

7.6 E-7

9.6 E-7

6.8 E-7

3.2 E-7

3.8 E-7

7-4 E-7

7.5 E-7

«¿(v, X.)

6.9 E-8

6.2 E-7

1.7 E-6

3-5 E-6

5.8 E-6

8.8 E-6

1.3 E-5

1.7 E-5

2.3 E-5

2.9 E-5

3.6 E-5

4.5 E-5

5.5 E-5

Errors and Error Bounds for Example 5:p = °°

that the general approach can be a powerful one, and may be applied to other types

of operator equation, for example, to elliptic partial differential equations and to

integral equations. The author hopes to consider this in more detail in a further

paper.
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