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A First Order Method for Differential Equations
of Neutral Type

By R. N. Castleton and L. J. Grimm*

Abstract. A first order method is presented for solution of the initial-value problem
for a differential equation of neutral type with implicit delay in the critical case where the
time-lag is zero and the method of stepwise integration does not apply. A convergence
theorem is proved, and numerical examples are given.

1. Introduction. In this note, we present a first order method for the numerical
solution of the initial-value problem (IVP) for a neutral-type functional-differential
equation without previous history:

1) x'(t) = f(t, x(1), x(g(t, x(1))), x"(g(t, x(1)))),
2 x(a) = xo,  x'(a) = z,,

where z, is a real root of the algebraic equation

3) z = f(a, xo, X0, 2).

Here, x(¢) is a scalar function to be determined on some finite interval [a, b]. We
shall make the following assumptions regarding f and g:

(H1) { and g are continuous and satisfy uniform Lipschitz conditions of the
form

IA

|f(t, X1, Vi, 21) — f(ts Xa, Vo, 22)| = L{lxl - le + IJ’1 - .Vzl} + L, lzn - 22|,
lg(t, x,) — g(t, x2)| £ Ly|x1 — x|

in their respective domains E and E’, where
E={(t,x,y,2:a St b, |x —x|Sc,|y— x| Zc |zl £ M)

and E’ is the projection of E in the (¢, x) space; ¢, M, L, L,, L, are constants, with
L, < 1, Mis such that sup..., »er |f(, X, y, 2)| < M, and M(b — a) < c.

(H2) a < g(t, x) < tfor (t, x) € E'.

Our hypotheses, together with additional smoothness and growth conditions
on f and g, ensure the local existence of a solution of the IVP (1)-(2). Furthermore,
x(¢) is the only solution having a bounded derivative on [a, b]; see [2], [4]. Our result
extends a method developed by Feldstein [3] for the equation of retarded type
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572 R. N. CASTLETON AND L. J. GRIMM

x'(1) = [(t, x(1), x(g(1)))

to the neutral-type equation with implicit delay (1). Other methods for implicit-
delay equations are given in [1].

2. The Algorithm . Let y(r) = x(g(t, x(1)); z2(r) = x'(g(z, x(2))). Let N be
a positive integer, and let ~ = (b — a)/N. For each nonnegative integer n < N,
let £, = a + nh. Let [s] denote the integer part of s. Define the algorithm U as follows:

4) fo = ftny X0y Yoy 22)s 8 = 8t X),

©) qn) = [(g. — a)/h],  r(n) = (g. — a)/h — q(n),
(6) Yo = Xo, Yo = Xq + hr(m)foem s
@) Zn = foms

® X1 = X, + hf.

Note that condition (H2) implies g(i1) < n, thus, the algorithm is well defined.
Forn =0, g, = a,q(0) = 0, and r(0) = 0. Thus, y, = x, and z, = f(a, x,, X0, Z,).
Let u,, an approximation of the root z,, be chosen independently of A. It is of interest
to note that such an approximation does not destroy the order 4 convergence of the
algorithm. It is of further interest that (6) may be simplified to y, = x,.,. The error
bound established in the convergence theorem for this “simplified” algorithm is
larger but still of order A, as noted following the proof of convergence of the algo-
rithm 9. The second numerical example of Section 4 demonstrates both the algo-
rithm U and the simplified algorithm.

Ifg, = t,foranyn, 1 < n < N, then g(n) = n, r(n) = 0, and (7) becomes z, =
1(t., X., Y., 2,) Which has exactly one root z in the interval [— M, M] under the con-
ditions (H1)-(H2) together with the smoothness and growth conditions mentioned
in Section 1. We must in general include a procedure for finding this root, and this
in turn will affect the error estimate. As before, such an estimate does not destroy
the order A convergence of the algorithm. For simplicity, we do not take this into
account, since our aim is to show the convergence of the algorithm .

Thus, we shall assume in the convergence proof that (7) will not reduce to z, =

f(tay Xns Vs Z)y 0 = 1.

3. Convergence.

THEOREM. Let | and g satisfy (H1)-(H2) and suppose, in addition, that there
exists a unique solution x(1) of (1)-(2) with sup,. ., |x"()] £ B. Then, for each t, &
[a,5],0 < n = N,

[x, — x(1)] < h{L, lzg — uol """ + % G{—i—’)(e“"_"’ - 1)} + O(r*)

where

s = L(1 + c) + Ly,
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cw =1+ ML,
= (L(2 + ML{/) + BL())/(I - Lz)a

u, is the approximation to z, mentioned above, and x, is given by algorithm .
Proof. Lete, = |x, — x(t)|; €% = |y. — y(1.)|; ex* = |z, — 2(1,)|. From (8)
and Taylor’s formula, we obtain

(9) eni1 < e, + h(L(e, + o*) + L.ef*) + h°B/2.

Equation (5) implies that g, = f,., + Ar(n), and hence, in a similar manner, we
have (after replacing n by (n 4 1))

(10) et = ML, ., + eotnen

+ hr(n + 1){L(eq(n+l) + (’:f(nu) + Lze:lk(ﬁ+l)} + h2r2(n + 1)3/29
an erk = BL,e, .1 + L, + (’fu.n)) + Lze:‘(t+l) + hr(n + 1)B.

We then have two cases to consider:
Case 1. gn + 1) = n+ 1 and r(n + 1) = 0. Under these conditions, (9) is
unchanged:

(9a) w1 = (1 + hL) + e*hL + e**hL, + K’B/2.
(10) becomes

(10a) e S el + ML) = e,..10.

And (11) becomes

():‘4*1 é (L + BL(/)"VH—] + Le:‘#—l + Lze:(‘:-kl

or

L+ BL, + L( + ML»)
Crt1 = Cn+1Cy

*k <
(112) eth < ( —

Define the partial ordering for vectors: v, = (v}, -+ , t) < v, = (v3, -+ , V)
ifvo; < vj,i=1,---,k Then, in vector form, (9a), (10a), and (11a) become

Ci1 1+ AL hL  hL, || e. h/2

IIA

(1 4+ hL)ey hLcy hL., || e¥ | + hB| heo/2

C’:‘H
ex3 (1 + hL)e, hLc, hL,c, oF* h(‘,/2
which is of the form d,,, < A.d, + b,.

Case2. gn+ 1) =nand0=r(n+1) <1
Let

8, = max e;, 6 = max e*%, 0¥* = max e**.

1<isn 1<isn 1isn

Then, (9) becomes

(9b) 81 = 8,(1 + hL) + 8*hL + 8**hL, + h’B/2.
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And (10) becomes
8%, < ML,6,., + 8,(1 + hL) + hL&* + hL,8** + h°B/2.

Using (9b), we have
8% = (8.(1 + hL) + 8%hL + 8¥*hL, + n*B/2)(1 + ML,)

or
(10b) 6*., < 8,(1 + hL)co + 6%hLcy + 6*¥*hL,co + hcoB/2.
Finally, (11) becomes

6:~:kl S 6n+1BLa + 8nL + B:L + 8n**Lz + hB‘

Further, enlarging 6, to §,., and &* to §*, on the right, and using 1 — L, > 0,
we find

L + BL ) L hB
k<L —_— * .
6n+l = 6n+l<l _ L, + 6n+1 1 _ L, + 1 . L,

Using (9b) and (10b), we have

sor < (Mﬂ)(m 4 oRL) 4 SAL 4 BFRL, + u*) 4 _hB_

mrh = 1—L, 2 1—-1L,
or
2

(116) 8% S 81+ hD)ey + hLe, + S¥hLe, + o + 29E.
Then, as a vector system, (9b), (10b), and (11b) become

Oni1 1 4+ AL hL hL, 0, h/2
(12) 0¥, =1 + kL), hLcy hLcol|| 6F |+ hB heo/2

6,,*:,*]‘ (] + hL)C) hLC] hLzCl 6:* hC]/2 + 1/(1 - L,)

which is of the form d,,, £ A4,d, + b,. Comparing this with the result obtained
in Case 1, we find that 4, and A, are identical and that b, < b,. Thus, any bound
obtained here in Case 2 for d,., will also bound d,., in Case 1.

To complete the proof, we shall use the following lemmas [3] which may be
verified by induction:

LeMMA 1. Suppose A is a k X k real matrix and b is a real k-vector. Let {d,}
(n=0,1,--)satisfyd,,, < Ad, + b. Then

diy £ A"y + (Z A‘)b.

i=0

LEMMA 2. Letp = (pi, -+ , P, 4 = (G, -+, ). Suppose the k X k matrix
A has the form A = p"q. Then

k n—1
A" = (Z_; p,-q,-) A.
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By Lemma 1,
dyir S Ag”dﬂ + (Z A;)b_;,
i=0
where
ey [ 0 i
dy=le¥ | = 0
ex* lzo — uol

Then, because
1
A, = |co |(1 + AL, KL, hL)),
€
we can make use of Lemma 2 to obtain
Ay = (1 + AL + hLcy + hL,c)) "4, = (1 + hs)' ™' A,.

Two results follow from this: A2*' = (1 4+ hs)"d, £ e"" " A4,, and

S o= A X ay = UEEE =D L p — ) — 14

i=1 i=1 hs -

Finally,

dy = A;”du + (Z A‘i;)bg

i=0

1

I\

s (bh—a)
Izu - Uo! L.c “| co

"l_l

h
_] 2
B 1+ 5) R heq (
+m@+n—u@ Dica| + B >
Cy !zﬁ + 1
L2 1—L,]

which gives

“(h=a B 1+ L) «t-a hB
Cuit é 6rH-I é h{lz() - u(il Lz(, ¢ ' + 5; (hs + l_i-_l,—:)(e o ) - ]) + _2'}

and the theorem follows.
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For the simplified algorithm, where (6) is replaced by y, = x,,, the following
bound is possible:

fl
duir S hYlzo — uo L,e‘“"")[Co

C1.

B 1+L,) 1<ML )) ome) _
13 +<2s<hs+l—L, ts\t= L)) D) co
C1.
o
2 0
+8 4 Mo
ML
hCl 1_ l_L,
L2 "1 —-1L,]J

and hence

s(b-a)
€1 = h{IZO — uo| L.e

B 1+L,) 1<_ML )) e Q_lz},
+(2s(hs+l—L, i\ )/ D+35

TABLE L.  x,(h) denotes the value of x, for step size h.

t, x(t,) x(27%) x(27°) x(27°) x(27%)
0 0 0 0 0 0

.0625 .0039 0 .0029 .0034 .0039
.1250 .0158 .0078 .0138 .0153 .0157
1875 .0360 .0238 .0329 .0352 .0358
.2500 .0653 .0484 .0610 .0642 .0650
3125 .1048 .0825 .0990 .1032 . 1044
.3750 . 1562 L1275 . 1485 . 1541 . 1556
.4375 .2224 . 1853 .2119 .2196 .2217
.5000 .3078 .2593 .2942 .3043 .3069
.5625 .4206 .3547 .4026 .4159 .4194
.6250 L5771 .4856 .5518 .5705 .5754
.6875 .8185 .6707 L1778 . 8080 .8159

. 7500 1.3244 .9860 1.2205 1.2968 1.3174
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TABLE II.  x!"(h) denotes the value of x, for step size h by algorithm
A; xi?(h) denotes the value of x, for step size h by the simplified

algorithm.
t, x(1,) x(27%) x2(27%) %27 227"
.25 2474 .2500 .2500 .2483 .2478
.50 .4794 .4930 .4892 .4838 . 4759
.15 .6816 7180 .6866 .6942 .6739
1.00 .8414 .9228 . 8569 .8697 .8273
t x(1,) x(27%) x227% X2 x2(27")
.25 . 2474 . 2475 . 2471 .2474 .2474
.50 .4794 .4797 . 4787 . 4794 . 4794
.75 .6816 .6825 .6802 .6817 .6815
1.00 .8414 .8435 .8390 .8416 .8413

4. Examples. (a) We solve the IVP

A
4 4 log® cos ¢

(zo = 0, x, = 0, z = xX(g(t, x(?))) = x'(¢tx*(t)/(1 4+ x*(1)))) on the interval [0, .75].
The existence and uniqueness of the solution is guaranteed by the results of [2] men-
tioned earlier. The only solution is x(f) = —3 log cos 21.

The results of the computation by algorithm % are given in Table I.

(b) Consider the IVP

x'(t) = cos t(1 + y) + xz — sin(t(1 + sin® 1)),

with y = x(1x*(1)), z = x'(tx*(1)), z, = 1, x, = 0, on the interval [0, 1]. As in example
(a), existence and uniqueness of the solution are guaranteed by the results of [2].
Here, the solution is x(¢) = sin .

The results of the computation by the algorithm 9 and by the simplified algorithm
are given in Table II.

x'(t) = 4+ tan2r + Ltan”' z
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