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A First Order Method for Differential Equations

of Neutral Type

By R. N. Castleton and L. J. Grimm*

Abstract. A first order method is presented for solution of the initial-value problem

for a differential equation of neutral type with implicit delay in the critical case where the

time-lag is zero and the method of stepwise integration does not apply. A convergence

theorem is proved, and numerical examples are given.

1. Introduction. In this note, we present a first order method for the numerical

solution of the initial-value problem (IVP) for a neutral-type functional-differential

equation without previous history:

(1) x'it) = fit, xit), xigit, xit))), xfgit, xit)))),

(2) xia) = xo,        x'ia) = z0,

where z0 is a real root of the algebraic equation

(3) z = fia, Xo, x0, z).

Here, xit) is a scalar function to be determined on some finite interval [a, b]. We

shall make the following assumptions regarding / and g:

(HI) / and g are continuous and satisfy uniform Lipschitz conditions of the

form

|/(/, xu v,,z,) — /(/, x2, y2,z2)\ g L\\xx — x2\ + l^ — .v2|} + L2 \zx — z2\,

\g(t, xx) - git, x2)\ ^ L,\xx - x2\

in their respective domains E and £", where

E =  ft, x, y,z): a g / g b, \x - x0| g c, \y - x0\ ^ c, \z\ g M}

and E' is the projection of E in the (/, x) space; c, M, L, L,, Lz are constants, with

Lz < 1, M is such that supe,,*,,,, !)€E |/(/, x, y, z)\ < M, and Af(/3 — a) < c.

(H2) a ^ git, x) S t for (/, x) £ E'.

Our hypotheses, together with additional smoothness and growth conditions

on / and g, ensure the local existence of a solution of the IVP (l)-(2). Furthermore,

xit) is the only solution having a bounded derivative on [a, b]; see [2], [4]. Our result

extends a method developed by Feldstein [3] for the equation of retarded type
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Xft) =  f(t, xit), x(git)))

to the neutral-type equation with implicit delay (1). Other methods for implicit-

delay equations are given in [1].

2. The Algorithm 31. Let y(t) = x(g(t, x(t))); z(t) = x'(g(t, x(t))). Let AT be

a positive integer, and let h = (b — a)/N. For each nonnegative integer zz 5¡ N,

let /„ = a + nh. Let [s] denote the integer part of s. Define the algorithm 31 as follows:

(4) /„ = f(tn, xn, yn, z„),        gn = g(/„, xn),

(5) qin) = [ig„ - a)/h],        r(n) = (gn - a)/h - q(n),

(6) y0 = x0, y„ = *,(„) + hrin)f,M,

(7) z„ = /„<„),

(8) xn+x = x„ + /;/„.

Note that condition (H2) implies q(n) g n, thus, the algorithm is well defined.

For n = 0, g0 = a, q(0) = 0, and /-(O) = 0. Thus, y0 = xu and z0 = f(a, xQ, x0, z0).

Let u0, an approximation of the root z0, be chosen independently of h. It is of interest

to note that such an approximation does not destroy the order h convergence of the

algorithm. It is of further interest that (6) may be simplified to yn = xQ{n). The error

bound established in the convergence theorem for this "simplified" algorithm is

larger but still of order h, as noted following the proof of convergence of the algo-

rithm 31. The second numerical example of Section 4 demonstrates both the algo-

rithm 3Í and the simplified algorithm.

If g„ = /„ for any zz, 1 iS n ^ N, then q(n) = n, r(n) = 0, and (7) becomes z„ =

/(/». x„, y„, z„) which has exactly one root z in the interval [ — M, M] under the con-

ditions (H1)-(H2) together with the smoothness and growth conditions mentioned

in Section 1. We must in general include a procedure for finding this root, and this

in turn will affect the error estimate. As before, such an estimate does not destroy

the order h convergence of the algorithm. For simplicity, we do not take this into

account, since our aim is to show the convergence of the algorithm 31.

Thus, we shall assume in the convergence proof that (7) will not reduce to zn —

/(/*„, xn,yn, z„), zz ̂  1.

3. Convergence.

Theorem. Let f and g satisfy (H1)-(H2) and suppose, in addition, that there

exists a unique solution x(t) of (l)-(2) u»z'//z sup[(,, M \x"(t)\ ^ B. Then, for each tn G

[a, b], 0 < n ^ N,

\x„ - xit„)\ ^ h\L, |ro - n.| e'('-o) + ys (j^~*)ie'a'-°) - 1)} + 0(/i2)

where

s = LU +c„) + Lzcx,
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c„ =  1 + MLa,

c. = (L(2 + ML.) + BL,)/H - L,),

u0 is the approximation to z„ mentioned above, and x„ is given by algorithm 31.

Proof.    Let en = \xn - x(t„)\; e* = \yn - y(t„)\; e** = \z„ - z(t„)\. From (8)

and Taylor's formula, we obtain

(9) eB+I £ <?„ + hilfe. + et) + ¿A?*) + h2B/2.

Equation (5) implies that gn = i,(n) + A/'OO, and hence, in a similar manner, we

have (after replacing n by (zz + 1))

(]Q.       e*+x g  ML„en+1 + <?„<„+„

+ M» + l){X.(e>(.+1) + e?(.+1, + L^t+n] + ftV(zz + l)ß/2,

(11) CÎ+*i ̂ Sí-An + L(e.„+1) + <?*<»+„) + I..c?(* + „ + /zr(« + 1)5.

We then have two cases to consider:

Case I.    <7(zz + 1) = zz + 1 and r(rt + 1) = 0. Under these conditions, (9) is

unchanged:

(9a) en+x g, en(l + hL) + e*hL + e**hh, + h2B/2.

(10) becomes

(10a) e*+, ^ c„+i(l + ML„) = e„+1c0.

And (11) becomes

e*?x Ú (L + BL>n+] + Lc„*+l + Lte**x

or

...   . „   < (L + z3L„ + L(l + ML„)\
(11a) e*+, ^ I-_-K+i = c„ + 1c,.

Define the partial ordering for vectors: p, = (v\, ■ ■ ■ , c*) g v2 = (v\, ■ ■ ■ , v2)

if v[ ^ v2, i = I, ■ ■ ■ , k. Then, jn vector form, (9a), (10a), and (11a) become

[e„ + i

LaSSJ

which is of the form dn+x ̂  A¡d„ + b,.

Case 2.    q(n + 1) g zi and 0 g /(zî + 1) < 1.

Let

5„ = max e¡,        5* = max e*,        5** = max ef*.
1 £ í Í 71 1 £ i S it 1 £ i S 7t

Then, (9) becomes

(9b) 5„ + 1 ^  a,(l + AL) + 5>L + «**AL. + /i2ß/2.

1 + hL        hL       hL,       en h/2

(1 + hL)c„    hLco    hL2c0    e*     + hB zV„/2

(1 + hL)c,    hLc,     hL.cAie** Lhc,/2
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And (10) becomes

8*+i ^  ML,ôn+x + 5„(1 + hL) + hLÔ* + ALA** + h2B/2.

Using (9b), we have

tf+i ú («»(1 + hL) + 8\hL + 8**hLz + A2ß/2)(1 + MLa)

or

(10b) 8*+x g  j„(l + hL)c0 + 8thLc0 + S**hL.c0 + A2c0.B/2.

Finally, (11) becomes

«Ä á  5„+1ßL0 + 5„L + Ô„*L + 8**LZ + Aß.

Further, enlarging 5„ to 5n+1 and S* to 5*+1 on the right, and using 1 — Lz > 0,

we find

hB

1 - Lz

Using (9b) and (10b), we have

CÄ ^ (¿ V-'lt   -)(^d + hL) + 5*„AL + h**hL, +~) + 7^

or

Í. D L'y,    D

(lib)       «**  g í.(l + AL)c + «Ale, + í**A¿.ci + ;- +
1 - Lz

Then, as a vector system, (9b), (10b), and (lib) become

(12)

$n+l 1 + hL        hL       hLz

(1 + hL)c0    hLco    hLzCo

L(l + hL)cx    hLc,     hL,cx.

Sn

8*

S**

+ hB

A/2

Ac„/2

hcx/2 + 1/(1 - L,).

which is of the form dn + 1 ^ A2dn + b2. Comparing this with the result obtained

in Case 1, we find that Ax and A2 are identical and that A, ^ b2. Thus, any bound

obtained here in Case 2 for dn+l will also bound d„+x in Case 1.

To complete the proof, we shall use the following lemmas [3] which may be

verified by induction:

Lemma 1. Suppose A is a k X k real matrix and b is a real k-vector. Let \dn)

(zz = 0, 1, • • •) satisfy dn+¡ ^ Adn + b. Then

dn+x ^   An*xdo + (¿ A')b.

Lemma 2.    Let p = (/>,, • ■ ■ , pk), q = (9,, • • • , qk). Suppose the k X k matrix

A has the form A = pTq. Then

A" = ( £/>«?.)" lA.
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dn+i g  AV'do + [22 A'f\b3,

where

do =

i'n

Then, because

A., =

0

0

|z„ —  ZZ„|J

(1 + hL, hL, hL,),

we can make use of Lemma 2 to obtain

Ai = (I + hL + hLco + hL,c,y~l A2 = (1 + hs)"' A2.

Two results follow from this: A"f ' = (1 + hs)"A2 g e"(b~a}A3, and

((1 + A*)" - 1)
22 Ai =  A, 22 (' + *»)'"i = i *' = i

Finally,

rf„+, á ¿;+,</o + (¿ /i;)a2

As
A2 è- (exp(s(A - a))

hs
l)A2.

< h «ni Lje"

i 0 + f^"~' - »

/;
2

Ad
2

7!£i   .

which gives

\z„ - «(,| z.y<6-"' + £ ('»+f*£)

L 2    '   1 - I,

>""-"' - d + ^

and the theorem follows.
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For the simplified algorithm, where (6) is replaced by y„ = x„M the following

bound is possible:

dn+i è A \z0 — u0\ Lze'

(13)

and hence

+ (l(- + f^t) + KT^r)k -   D

1

Co

Lei.

+ B

h

2

hep

2

1Aci

.2   i~ 1 - L J

+

0

M

ML

Lz.

en+i è hS \zo — Mo! Lze

+ë(*+fêt)+i(ï^)>i-, _ d + M

Table I.    x„(A) denotes the value of xnfor step size h.

X(tn) xf2~4) XfX") x„(2-8) *»(2-10)

0
.0625
.1250
.1875
.2500
.3125
.3750
.4375
.5000
.5625
.6250
.6875
.7500

0

.0039

.0158

.0360

.0653

.1048

.1562

.2224

. 3078

.4206

.5771

.8185

.3244

0

0

.0078

.0238

.0484

.0825

.1275

.1853

.2593

.3547

.4856

.6707

.9860

0

.0029

.0138

.0329

.0610

.0990

.1485

.2119

.2942

.4026

.5518

.7778
1.2205

0
.0034
.0153
.0352
.0642
.1032
.1541
.2196
.3043
.4159
.5705
.8080

1.2968

0
.0039
.0157
.0358
.0650
.1044
.1556
.2217
.3069
.4194

.5754

.8159
1.3174
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Table II. xnl)(h) denotes the value of xnfor step size h by algorithm

31; xn2)(h) denotes the value of xnfor step size h by the simplified

algorithm.

U              x(tn) xnl\2'2)           xT(2~2) x^ÇT*) xl2)(2-4)

.25           .2474 .2500                .2500 .2483 .2478

.50           .4794 .4930                .4892 .4838 .4759

.75           .6816 .7180                .6866 .6942 .6739
1.00           .8414 .9228                .8569 .8697 .8273
L              x(tn) xn»(2-s)           x^(2-s) x»'(2-12) ^2>(2-12)

.25           .2474 .2475                .2471 .2474 .2474

.50           .4794 .4797                .4787 .4794 .4794

.75           .6816 .6825                .6802 .6817 .6815
1.00           .8414 .8435                .8390 .8416 .8413

4. Examples,   (a) We solve the IVP

■4tx2(t)
x'if) = i—rr~^~. + tan 2t + 5 tan

4 + log   cos t
z

(z0 = 0, Xo = 0, z = x'(g(t, x(t))) = x'(tx\t)/(l + x2(t)))) on the interval [0, .75].

The existence and uniqueness of the solution is guaranteed by the results of [2] men-

tioned earlier. The only solution is x(t) = — \ log cos 2/.

The results of the computation by algorithm 31 are given in Table I.

(b) Consider the IVP

x'it) = cos /(l + y) + xz — sin(/(l + sin2 /)),

with^ = x(tx2(t)), z = x'(tx2(t)), z„ = 1, Xo = 0, on the interval [0, 1]. As in example

(a), existence and uniqueness of the solution are guaranteed by the results of [2].

Here, the solution is x(t) = sin /.

The results of the computation by the algorithm 31 and by the simplified algorithm

are given in Table II.
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