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An Algorithm for the Exact Reduction of a Matrix to

Frobenius Form Using Modular Arithmetic.   II

By Jo Ann Howell*

Abstract. Part I contained a description of the single-modulus algorithm for reducing a

matrix to Frobenius form, obtaining exact integral factors of the characteristic polynomial.

Part II contains a description of the multiple-modulus algorithm. Since different moduli may

yield different factorizations, an algorithm is given for determining which factorizations are

not correct factorizations over the integers of the characteristic polynomial. Part II also

contains a discussion of the selection of the moduli and numerical examples.

C. The Multiple-Modulus Algorithm

7. Introduction. The algorithm described in Chapter B uses single-modulus

residue arithmetic to reduce a matrix A to Frobenius form (1.1). We recall that the

size of the modulus p depends on the bound ß (4.4). If 2ß is too large to be represent-

able in a computer as a single-precision integer, then /? will have to be stored as a

multiple-precision integer, making computations modulo p too difficult to be practical.

In order to avoid this problem, we select a set of prime moduli, pu p2, ■ • ■ , p„ with

(7.1) p = Pip2 ■ ■ ■ p,,

because this enables us to obtain results modulo p by doing most of the arithmetic

modulo pi, for i = 1,2, • • • , s. Choosing the moduli as primes also guarantees

that** (/?,, Pi) = 1, for ; ;¿ j. Furthermore, we choose the moduli so that

(7.2) p ^ 2/3 è 2-max |&}"|,
i . i

where the b¡n are defined in (4.2).

We perform similarity transformations modulo /?¿ on \A\Pi, for i = 1,2, ■ ■ ■ , s,

by using the single-modulus procedure described in Chapter B in order to obtain the

residue representations (see Szabo and Tanaka [1967, p. 12]) for the factors of the

characteristic polynomial modulo /? of A,

(7.3) /,(\) ~ ! |/,(X)L, |/,(X)L, • • • , \ii(X)\p,}.
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906 JO ANN HOWELL

From these s-tuples we can determine |/i(X)|p using the Chinese Remainder Theorem

or some variation of it such as the mixed-radix conversion procedure. (See Szabo

and Tanaka [1967, pp. 27, 43], Lipson [1971], and Howell and Gregory [1970].) This
means that since /? is chosen according to (7.2), we can determine /,(X). Examples

illustrating the algorithm are given in Chapter E.

Since different moduli may give us different factorizations, we must monitor the

reductions, keeping a record of rows which are interchanged and pivots which vanish

in order to use only the factorizations modulo /?, which give us the correct factorization

over the integers for det (A — XI). This monitoring scheme and the multiple-modulus

reduction are described in the next sections.

8. Block Structures in the Frobenius Form. In the ideal situation all moduli

used would yield the same block structure (blocks of the same order and arranged in

the same pattern along the diagonal). This is not always the case, as Example (6.2)

illustrates.

In order to guarantee that we can reconstruct the factors by means of the Chinese

Remainder Theorem, the factors obtained using the modulus /?, must be of the same

degrees as those factors obtained using pk (for all ; and k). Moreover, the factors must

appear in the same order along the diagonal. This implies that even if two or more

factors of the same degree, r,, are obtained using the modulus /?,, they must appear

in the same order as their corresponding factors of degree r, obtained using the

modulus pk.

We now show that if we have obtained blocks of corresponding orders for two

or more moduli, then these blocks can be combined using the Chinese Remainder

Theorem to obtain the blocks we would have obtained had we done our calculations

modulo /?j/?2 •••/?„ = p. That is to say, if the blocks obtained using the multiple-

modulus algorithm are of corresponding sizes for different moduli, then they are in

the proper order for obtaining the Frobenius form modulo /? using the Chinese

Remainder Theorem.

We prove this by considering the transforming matrices J[vi\ where

\j7i)-'(P,)A7i)jri)\ ■o?,) Jo(PiUl J"

(8.1) = ly^-oo^V'-'L
D?

H[pi)A

and D[pi) is a (y + 2) X (y + 2) submatrix which is in Frobenius form except for the

subdiagonal elements which are not yet reduced to unity. We must show that if

j?'-i(P)Ar j?'\, ,(»)-\p) y0    (p)a0 j0 JTl

(8.2)
\JM-'(p)A0p)JM\

D\p

H[v

where D\p) is a (y + 2) X (y + 2) submatrix in Frobenius form except for the nonunity

subdiagonal elements, then

(8-3) \Jw\Pi =  \J(vi,\pi
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for all /', and hence

(8.4)

and

(8.5)

|ö.(P,|pi = oípi>

|ffí"L = H¡"\

The same arguments can then be applied to the submatrices H\pi) and H\p) to show

that

D^li =  Dipi)(8.6)

and

(8.7) \H{p)\pi = H

Continuing in this manner we can show that

(8.8)
r)(p>|       _    r)<»"')
L>k      o.-   —    L>k

for all k. We now prove (8.4) and (8.5).

First we examine J[p) (k = 1, • • • , y). We shall assume for the moment that no

row interchanges have taken place. We have

(8.9)
r(P)    _

Jk        —

Jk+1

(p)
~Mi,ft+i

(p)
"Mft+i ,t+i

M*+3,t+l

(p)
" Pn, k + 1

(k = I, ■■■ ,j)

where

(8.10)

Since

(8.11)

then

(8.12)

Thus,

(8.13)

lp)        _    i   (Dip)    „l*)lP,-V„M
P-l.k + 1   —    |"I,*+1   '"* + 2,*+l \P)\p-

"Ml,ft + 1    —     ||«I.*+1   ■flt + 2,t+l lP>|p|p(

_     I     «)<»,•) [«(Pi)-W       VI
—     I" i . ft + 1     ' "ft + 2 , fc+ 1    U>i)|pi I     M¡,t+i|pii

,<p;>
•/ft

I''"I™ = UÍ"/.'" J)
(,.) I
J    IP«

= ly^'/i"' ••• /^'L = |y(,,f)|



908 JO ANN HOWELL

and hence

(8.14) \Jm-\p)L = l^'-'O.)!,..

Therefore,

\Jw-'(p)A™ Jw\pi =  \Jw~1(p) \A\, /p,|p,

(8.15) =  \Jl'°-'(pt)\A\pi J('{)\Pi

and thus,

(8.16) |Oi(P)U =  D(p"

and

(8.17) \H¡p)\pi = H[v<).

Applying the same arguments to H{p) and H{kvi) (k = 2, • • • , j — 1) we thus prove

(8.8). It follows immediately from this that

(8.18) \FÍv)\Pi = Ft"\

We see from the above that applying the Chinese Remainder Theorem to the

FlP<) gives the F(kp), the blocks we would have obtained had we done our arithmetic

modulo/? instead of modulo/?,, i = 1, • • • , s. It is important to note that this analysis

is based on the assumption that partitioning occurred at the same point for all moduli.

If a zero pivot occurs somewhere between columns one and y + 1 which can be

removed by pivoting rows, then the same rows must be pivoted for all moduli. This

necessitates a monitor on the rows being pivoted during the course of reduction. If it is

impossible to pivot the same rows for all moduli, then the odd modulus (or moduli)

must be discarded and another tried. This assures us that even when pivoting occurs,

(8.8), (8.13), and (8.18) still hold.
From the above arguments and Theorem (6.4), we see that if fl}tVf*+i ̂  0> then

the same pivot must be nonzero in the rational arithmetic algorithm, provided previous

pivots for the two algorithms vanished at the same point. Thus, if «"V'+i vanishes

for pk (k ?¿ i), it must be vanishing because

(8.19) tàXi+Mïuif' ••• tóí'/'L = 0

or because |a,-+2l>+iU = 0 and w?r because a^!2l + 1 = 0.Thus,pk should be discarded.

This implies that if we compare the size of the initial (leading) blocks (F(p<))

obtained by reductions modulo pu p2, ■ ■ ■ , /?,, then only the moduli which have

produced those blocks of maximum size should be retained and all others should

be discarded. Thus, if the í of the moduli produce an initial block of order y + 1, then

either a%2iJ+1 = °> or «íÍVí+i is an integer and \a^2ii+1\p = 0, or

(8.20) \a\%,i+1(a]í-11,))bl ••■ (a¡Tf'\v = 0,

where /? is the product of the s moduli. By demanding that we have at least K moduli

which produce like factorizations (K > 1 being some input parameter dependent

upon the size of the computer word and the size of the moduli used) we can make /?

as large as we like. By choosing /? large we lessen the chance of having
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(8.21) ai+2,i+i(aí+l,j)    ■ ■ ■ (a21 )    = C-p,

where C is an integer not equal to zero. Thus, a large p will increase the probability

that a}i?#tl = 0 if and only if a}?,,,*, = 0.

By comparing the sizes of blocks 2, • • • , /, in a similar manner we can eliminate

"bad" choices of/?, until we are left with a set of moduli which have all produced the

same block structures with blocks of maximal size. If their pivoting patterns are all

the same, if the number of "successful" moduli is greater than K, and if the product

of the moduli is greater than 2ß, then we can apply the results of the last section and

use the Chinese Remainder Theorem to get the factors modulo /?, where /? is the

product of the moduli.

We must emphasize that even though we have at least K matching reductions, and

this increases the probability that a\^*]+l = 0 if and only if a|+2ii+1 = 0, we cannot

guarantee that this is the case. For example, if K = 3 and /?¿ are approximately 107,

then /? = 1021. Then, for the method to fail to produce the correct factors, we must

have «j-ty*/»,! = 0 and either

(8.22) a,í.t.m(«íÍ7.í)*' ••• (aiT)"' = C-Plp2p3 = C-10",

or

(8.23) «i+2,, + 1 = C-p1p2p3,

where C is an integer. Although it is extremely unlikely for the left side of (8.22) or

(8.23) to be an integer multiple of /?i/?2/?3, a product of primes, the possibility never-

theless still exists.

An example of the multiple-modulus algorithm is in Section 11.

The following is an algorithm for the reduction of a matrix to the form F in (1.1).

Algorithm III. Reduction of a Matrix A to the Form (1.1) (Multiple-Modulus

Algorithm).

Input: An n X n matrix À, a set of stored moduli (/?,, p2, • • • , /?„), min (minimum

number of moduli to be used), ndigit (number of digits stored in each word for a

multiple-precision integer).

Output:   An n X n matrix F in the form (1.1).

(1) Compute a bound 0 for the product of the moduli. (We must have/?i/?2 •••/?.

è 2-ß.)
(2) Set i <— 0, product <— 1, errorcode <— 0, £ , <— 0 (t = 1, • • • , q).

(3) Set i <— i + 1, s <—/,/? <— Pi, product *— product/?,, A <— \Ä\P.

(4) Apply Algorithm I and Algorithm II to A.

(5) Set £, <- /', k *- 0.
(6) For/ = 1, •■•,/',setm<-k+ I,fe*-fc + r{<*),»,,«<-«,.»(/ = m, ■■■ ,k).
(7) [Check to see if enough moduli have been used.] If product < 2- ß, go to (10).

(8) If i < min, go to (10).

(9) If errorcode = 0, set match «— /'. Go to (12).

(10) [Compare i with total number of moduli stored.] If i < q, go to (3).

(11) [An insufficient number of moduli is stored.] Exit (failure).

(12) For / = 1, • ■ • , q, set modulus, <— 0 and temp, <— t; sety'<— s, errorcode «— 0,

AT«— max, £, (t = 1, • ■ ■ , 5).

(13) Setfc^-0.
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(14) [Compute maximum block size.] Set k *— k + 1, maxblock <—

maxiS,si r'k(ptea!"), counter «— 0.

(15) Set t *- 0.
(16) Set /<— / + 1.
(17) [Compare block sizes.] If ^(pte"""> t¿ maxblock, go to (19).

(18) Set counter <—counter + l,/?temD„„„„,„ <— />temP1.

(19) If t < j, go to (16).
(20) Set y <-counter.

(21) If y < match, set errorcode <— 1, and go to (10).

(22) Set K<^- max, £lemp, (/ = 1, • • • , j). If k < K, go to (14).

(23) Set/c<-l.

(24) Setfc«-fc+ 1.
(25) Set t *- 0.
(26) Set f <— í + 1.
(27) [Compare pivoting patterns.] If, for all v (1 s¡ v g « — 2),

pivoti'î""*' = pivote"""'    and   pivote"""' = pivot^2°mI",,

go to (28), otherwise go to (35).

(28) Set modulus, <—/?tempi, modulus2 <—/?tempt, ip <— 2.

(29) Set ii <- k.

(30) Set ii«-ii + 1.
(31) If, for all v (l Ú v è « - 2),

pivotíP{emPt) = pivotía'1"""'    and    pivot^*"""' = pivot^2empii) ,

go to (32), otherwise go to (33).

(32) Set //?<—;/?+ 1, modulus,,, «— /)lemp,v

(33) If iï< y, go to (30).
(34) If ip ^ match, go to (38).

(35) If t < k - 1, go to (26).
(36)Iffc<y, go to (24).
(37) Set errorcode «— 1, and go to (10).

(38) Set errorcode *- 0, / <- £K, and rk <- rkmod''iUB") (k = 1, • ■ • , /).

(39) For t = 1, • • • , ip, set 91,.,, <— 9t*imoduiu51 (fe = 1, • • • , n).

(40) For k = 1, • • • , n, combine the residue digits 31*,i, • • • , 3lt,,p using the

Chinese Remainder Theorem Algorithm.

(41) Store the multiple-precision combined results in 9ltil through 3I*,¿„ ndigit

digits per word, with the most significant digits in 3Lk,iP.

(42) Set F<- 0, counter 2 <- 0.

(43) For i = 1, •••,/, set counter 1 <— counter 2+1, counter 2 *— counter 1 +

ri — 1, /t,<!ounter2 <— multiple-precision integer {3lt.,s, ••■ , 3lft,i} (k = counter

1, • •• , counter 2).

D. Selection of the Moduli

9. Introducton. In practice, the moduli are chosen as large prime numbers.

The choice of the moduli as primes is necessary in order to guarantee the existence

of inverses for integers and matrices. We recall that when pk is a prime, the integers
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modulo pk form a field. Furthermore, by choosing the pk as primes, we guarantee

that

(9.1) (Pi, Pi) = 1,

for i 9e j, as required by the Chinese Remainder Theorem.

Ideally, the primes should be chosen as large as possible and so that ptp¡ does

not overflow a fixed-point computer word, for all i and y. This guarantees that an

intermediate result will not overflow before it can be reduced modulo pk for all k.

In addition to this, time can be saved by using a small number of large primes rather

than a large number of small primes. Furthermore, by choosing the moduli as large

prime numbers we greatly increase the probability that the disappearance of a pivot

during the reduction modulo/?* has occurred because the same pivot would disappear

during the rational arithmetic algorithm. We must further have pk > n for all k in

order to be able to reconstruct the characteristic polynomial from its residue repre-

sentation.

(10.1)

10. Calculation of a Bound for p.   Let

det(A - XI) = (-l)n(X" - xX'1 - ... - X„^X - x„)

= /i(X) • • • /,(X),

where

(10.2) /,(X) = (-inxri - b^X'-1 - • • • - tfjL,x - bly).

We wish to compute a lower bound for p so that if we have a prestored set of primes

we select and use as many moduli as necessary to guarantee a solution (i.e., to guar-

antee that |det (A - XI)\P = det (A - XI)).

If it is known that the matrix A has a characteristic polynomial which is irreducible

over the integers, then / = 1. In this case we obtain a bound for max, |x,| by utilizing

the fact that x, is plus or minus the sum of the principal minors of order j. From

Hadamard's inequality we have

(10.3) |*| g (¿k,f ••• £ M2)"* = k.
\1-1 i-1 /

Thus, any principal minor of order less than n is also bounded by k.

Since the number of principal minors of order y is equal to ("), we have

(10.4)

Hence

M ^ (")•*■

(10.5) maxilla maxQ.A: = ([B;2]).Ä

and we should choose p so that

(10.6) >*2'{w2¡)-k-

Therefore, in (4.4) we have
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(10.7) ß =  (    -    )
\[«/2]/

If it is not known that / = 1, then the bound (10.7) may not be sufficient. It is

possible for some of the coefficients of the /<(X) to be greater in absolute value than

max,- |jCf| .

A method for bounding the coefficients |6|-°| is based on a suggestion by Collins

(see Knuth [1969, p. 392]). We note that

(10.8)
/i(X)= (-1)"(X" -¿»rv'-1 - - W-t* - b%)

= (-l)"(X-7i') (X - Vlr?).

where the -yj" are eigenvalues of the matrix A. Thus, if we have a bound a for the

eigenvalues of A, then

ICI ^ (?)«'(10.9)

Therefore

(10.10) maxl^l á max(^ = (^

and we should choose p so that

(lo.ii) ^(;2,)-^

Bounds for a such as ||/4||«, \\A\\U or the bound given by Ostrowski [1952] are

suitable. In practice, the bounds computed using either (10.6) or (10.11) are larger

than necessary to guarantee that |ô|-0|p = ft"'.

In the next section we give examples illustrating the computation of a bound ß and

examples of the multiple-modulus algorithm.

E. Examples and Numerical Results

11. Two Examples.    Let
"2   0   0

0    1    0

.0    4    5.

We let the stored set of moduli be {7, 11, 13, 17, 19}. We shall assume that regardless

of the computed bound ß we require at least two moduli to give the same block

structures. If we compute a bound ß by (10.7) we have

ß = (i)-(4-l-41)I/2 = 3(12.8) = 38.4.

The bound from (10.11) with a = ||^||, is

ß = (j) • 53 = 375,
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and with a = \\A\L it is

ß = ^.9" = 2187.

If a is computed from Ostrowski [1952], we have

a = R - (I - <t)K,

where

R= IMIU = 9, = min £ |a,,| = 1,

K = minlfli,! = 1    and   a = ((r - K)/(R - K))U2 = 0.

Then

« = 9—1 = 8   and   ß = ^-8" = 1,536.

Clearly, all of these bounds are larger than necessary to guarantee that |/,(X)|„ = /,(X).

In practice, the bound given by (10.7) is usually adequate, even if it is not known

that / = 1.
To illustrate the multiple-modulus algorithm for the matrix A, we choose /?i = 7

and/?2 = 11. (Note that 77 = 2/3, where ß is computed by (10.7).) Transforming the
matrix modulo 7, we obtain

7") _

0 0

0 2

1 -1

Thus, the residue modulo 7 of the factors of the characteristic polynomial are

|/i(X)|7 = X - 2    and    |/2(X)|7 = X2 + X - 2.

Now rows were interchanged to produce a nonzero pivot. Transforming the matrix

modulo 11, we have

Fm) =

0 0

0 -5

1 -5.

Thus,

|/i(X)|„ = X - 2    and    |/2(X)|U = X2 + 5X + 5.

Again, no rows were interchanged to produce a nonzero pivot.

The residue representations for /,(X) and /2(X) for moduli Pi = 7 and /?2 = 11

are thus

h(X) ~ {X - 2, X - 2}    and   /2(X) ~ {X2 + X - 2, X2 + 5X + 5}.
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Since the two moduli used yield the same block structures, and since the same pivoting

strategies were used in both cases, we can apply the Chinese Remainder Theorem to

the coefficients of the polynomials |/¿(X)|Pi, and obtain results modulo p,p2 = 77:

Hence,

|/i(X)|77 - X - 2    and    |/2(X)|77 = X2 - 6X + 5.

A(X) = X - 2    and    /2(X) = X2 - 6X + 5.

In the next example we let A be the matrix, used in (6.1) and (6.2),

0    0    10

0    0    0    0

7    10    1

_5    0    0    0_

and the stored set of moduli be {5, 7, 13, 17, 19}. Again we require that at least

two moduli give the same block structures. Computing ß by (10.7) we obtain

ß

Thus, we should have

■ Ö«51 -25),/2 = 6(35.7) = 214.2.

p ^ 428.4.

We saw in (6.3) that transforming A modulo 5 leads to an interchange of rows 2

and 3, and we obtain

0 2

1 0

0    0 0 0

.0   o I 0 I 0_

Thus, we have three factors

|detM - X/)|5 =  |(X2 - 2)-X-X|5.

For p2 = 7, we interchange rows 2 and 4 and obtain

pm _

0 0    3

1 0    0

0    1    0

Lo   o   o I    o.

0

0

-2

and the factorization

|detM - X/)|7 = |(X3 - 3)-X|7.
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For /?3 = 13, we interchange rows 2 and 3 in step one, and later rows 3 and 4. We

obtained, in Example (6.1),

F(13)    =

0 0        5

1 0    -6

0    1        0

.0    0

-4

0

-5

0       0.

and hence the factorization

\det(A - X/)|„ = |(X3 + 6X - 5)-X|13.

At this point we note that the product of moduli used so far exceeds the bound

2/3 (j?i/>2/?3 = 455). If all block structures are the same at this point, and if all pivoting

strategies are the same, we can apply the Chinese Remainder Theorem to the factors

obtained. However, this is not the case in this example. We can immediately discard

/?, since it produced an initial block which is smaller than the one obtained using p2

and p3. The remaining two moduli yield identical block structures, but different

pivoting strategies. It is not apparent at this point which is the correct one. Hence

we must try other moduli. Since the bound 2/3 indicates that at least three moduli will

have to yield identical reductions (blocks of corresponding orders and the same

pivoting strategies) we will have to try at least two more primes.

For/?4 = 17, we obtain

'"o    0    5 I 2

F(I7)    =

1    0    7

0    1    0

0    0    0 | 0.

and the factorization

\det(A - X/)|,7 =  |(X3 - 7X - 5)-X|

The rows interchanged are 2 and 3 and rows 3 and 4.

For/?5 = 19, we obtain

F(m =

0 0    5

1 0    7

0    1    0

.0001     0.

and the factorization

|det(/l - X/)|„ =  |(X3 - 7X - 5)-X|19.

The rows interchanged are rows 2 and 3 and rows 3 and 4.

We compare the results obtained using p2, p.u pt, and pr>. The block structures are
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all the same. For /?„ /?4, and /?5 the pivoting strategies are the same. Since p3p,p5 Si 2ß

we can use the Chinese Remainder Theorem to obtain the coefficients of the factors

modulo /?3/?4/?5 = 4199. We thus obtain

\det(A - X/)|4199 = |(X3 - 7X - 5)-X|4199,

and hence

dct(A - X7) = (X3 - 7X - 5)X.

In a computer program it is more efficient to use the largest stored primes first,

since this may decrease the number of primes which must be used to guarantee

that /? = 2/3.

13. Results from a Computer Program. A program for reducing a matrix to

Frobenius form and obtaining a factorization of its characteristic polynomial by the

method described in this paper was written in FORTRAN for the CDC 6600 at the

University of Texas at Austin. The set of stored primes used are as follows (Lehmer

[1914]):

10,000,019

10,000,079

10,000,103

10,000,121

10,000,139

10,000,141

10,000,169

10,000,189

10,000,223

10,000,229.

The bound ß was computed using (10.7). In each of the following examples we exhibit

a matrix and the factorization of its characteristic polynomial obtained using the

program. We required at least three like reductions, regardless of the size of ß.

Example 1.   (Slotnick [1963, p. 4-43])
"3-I-4       2

2        3-2-4
A =

2-1-3        2

1        2-1     -3_

Eigenvalues:

X, = 1, X3 = 1,

X2 = -1,       X4 = -1.
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ß computed by program: 3.10 X 103.

Number of moduli used: 3.

Factorization of det (A — XI) from program:

det(A - XI) = (X3 - X2 - X + 1)(X + 1).

Example 2.   (Eberlein [1962], Gregory and Karney [1969, p. 90])

15    11 6      -9    -15

13 9-3-8

7      6 6-3    -11

7      7 5-3    -11

.17    12 5    -10    -16_

Eigenvalues:

X, = 1.5 + (12.75)1/2i,

X2 = 1.5 + (12.75)1/2f,

X3 = 1.5 - (12.75)1/2i,

1.5 - (12.75)1/2i,
X4

X5 = -1.

ß computed by program: 2.41 X 107.

Number of moduli used: 3.

Factorization*** of det (A — XI) from program:

detU - X7) = (-1)5(X5 - 5X4 + 33X3 - 51X2 + 135X + 225).

Example 3.   (Gregory and Karney [1969, p. 7])

c]

where

B =

■364,270

1

0

A =

0

■364,270

1

BJ

0

0

•364,270

-918,326 0

1 -918,326.

and

*** We note that this is a case in which the characteristic polynomial is factorable over the

integers, (-l)1^ + 1) (X4 - 6X3 + 39X2 - 90X + 225), but the program finds only one factor, that

factor being the characteristic polynomial itself.
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c =

-694,488 0 0

0 -694,488 0

0 0 -694,488

965,197 0

0 965,197.

Eigenvalues:

X« = -1,058,758,

X7 = -1,058,758,

X8 = -1,058,758,

X9 = -1,883,523,

X10 = -1,883,523.

X! = 330,218,

X2 = 330,218,

X3 = 330,218,

X4 = 46,871,

X5 = 46,871,

ß computed by program: 1.79 X 1062.

Number of moduli used: 9.

Factorization of det (A — XT) from program:

(X2 + 1,836,652X - 88,282,606,533)-(X2 + 1.836.652X - 88,282,606,533)

•(X6 + 2.185.620X5 + 543,448,747,068X4 - 1,141,589,515,081,478.560X3

- 1,901,066,815,376,621,816,592X2

+ 267,158,841,389,405,409,701,792.512.320X

- 42,735,849,656,157,591.523,087,007,405,518,784).

F. Concluding Remarks

Since different moduli may yield different Frobenius forms and, hence, different

factorizations for the characteristic polynomial it is recommended that the multiple-

modulus algorithm and not the single-modulus algorithm be used in designing a

computer program. The multiple-modulus algorithm is also recommended when 2/3

is larger than a'2, where a is the largest computer-representable integer.

Care must be taken in using the multiple-modulus algorithm, however. A check

must be made on reduction modulo /?, for all i to insure that their pivoting patterns

are identical. The moduli yielding reductions with identical block structures and

pivoting patterns are then checked to see if their product is greater than some preset

constant, K. If so, then the Chinese Remainder Theorem is applied to the residue

representations for the coefficients of the factors.

The number K should be some number greater than 1 such that a product of K

moduli yields some "large" number. As K becomes larger, the probability becomes

greater that the vanishing of a pivot for all moduli means that the same pivot would

have vanished had we used rational arithmetic. (See Theorem (6.4).) It cannot be

overemphasized that the method can fail if either K is too small or if not enough

moduli are stored to give /? > 2/3.
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The bound ß can be computed by several methods, most of which yield bounds

which are larger than necessary. By choosing the moduli as large as possible we can

reduce the amount of work to be performed even though the bound is too large.

We emphasize that the block structure obtained for a given matrix is not unique.

The form obtained depends upon the order in which the elements below the first

subdiagonal are annihilated. Changing the order in which the elements are annihilated

may change either the order of the blocks on the diagonal or the size of the blocks.

Clearly, the form obtained is not a canonical form, as the following example illustrates.

Example. Let/?i = 13 (we are assuming it is known that 13 ^ 2-max,,, |&J0|)

and

A =

2 0 0

0 1 0

.0    4    5

The modified Danilewski algorithm transforms A into the form

F =

2   0 0

0 -5

1 6.

Hence

If we select

det(A - XI) = (X - 2)(X2 - 6X + 5).

A'

2    0    0

0    1    0

.0    0    5.

(a matrix similar to A), we obtain

F> =

Hence

det(A - XI) = (X - 2)(X - 1)(X - 5).

Thus, A and A' yield different factorizations for the same characteristic polynomial.
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