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On the Stability and Accuracy of One-Step Methods

for Solving Stiff Systems of Ordinary

Differential Equations

By A. Prothero and A. Robinson

Abstract. The stiffness in some systems of nonlinear differential equations is shown to be

characterized by single stiff equations of the form

y' = g'(x) + \\y - g(x)\.

The stability and accuracy of numerical approximations to the solution v = g(x), obtained

using implicit one-step integration methods, are studied. An S-stability property is intro-

duced for this problem, generalizing the concept of /4-stability. A set of stiffly accurate one-

step methods is identified and the concept of stiff order is defined in the limit Re( — X) —» œ.

These additional properties are enumerated for several classes of ^-stable one-step methods,

and are used to predict the behaviour of numerical solutions to stiff nonlinear initial-value

problems obtained using such methods. A family of methods based on a compromise between

accuracy and stability considerations is recommended for use on practical problems.

1. Introduction. The study of numerical methods for integrating stiff systems

of ordinary differential equations has centred largely on the concept of ^-stability

proposed by Dahlquist [1]. As Dahlquist also showed that the maximum order

of an /1-stable linear multistep method is two, subsequent research on higher-order

methods has concentrated either on the formulation of multistep methods satisfying

some less restrictive stability condition (e.g., Widlund [2], Norsett [3], Gear [4]),

or on the study of other classes of integration methods which combine /4-stability

with high-order accuracy (e.g., Treanor [5], Norsett [6], Ehle [7], [8], Axelsson [9], [10],

Chipman [11], [12] and Watts and Shampine [13]). Much of the work in this latter
category has concerned the /I-stability properties of implicit one-step methods

([7]—[13]); several classes of such methods, containing processes of arbitrarily high

order, have been shown to be /i-stable.

In using ^-stable one-step methods to solve large systems of stiff nonlinear

differential equations [14], we have found that

(a) some Astable methods give highly unstable solutions, and

(b) the accuracy of the solutions obtained when the equations are stiff often

appears to be unrelated to the order of the method used.

This has caused us to re-examine the form of stability required when stiff systems

of equations are solved, and to question the relevance of the concept of (nonstiff)

order of accuracy for stiff problems.
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We consider an initial-value problem involving a set of ordinary differential

equations

(1.1) y' = t(x, y),       y = y0   at* = 0.

This set of equations may be approximated, in the neighbourhood of the solution

y = g(x), by

(1 2) y' » i(x, g{x)) + J(x)\y - g(x)}

= g'(x)+ J(x){y- g(x)\,

where J denotes the variational (or Jacobian) matrix

(1.3) J(x) = fs(x,g(x)).

The problem (1.1) is termed "stiff" if the eigenvalues X(x) of the variational

matrix J(x) are such that

(1.4) Max{Re(-A(jc))¡ » Max{ Re(X(;c))}
X X

over some range of x in the required range of the solution. Now, in many problems

in which the eigenvalues are widely spread in the sense (1.4), it is possible to define

a subset S of "stiff eigenvalues" such that

(1.5) -Re{X(*)} » Max |Re{X(*)}| = X(*),
xes xss

i.e., the stiff eigenvalues S are "widely separated" from the remainder. In such a

situation, there exists a matrix Js(x), with nonzero eigenvalues equal to the eigen-

values \(x) G S, such that

(1.6) Ja(x) =  J(x) + 0(\(x)).

The greater the separation between the two sets of eigenvalues in (1.5), the nearer

are Eqs. (1.2) in form to the set of equations

(1.7) y' = g'(x)+ JXx){y - g(x)\,

and the more closely may we expect the Eqs. (1.7) to characterize the stiffness prop-

erties of the system of nonlinear Eqs. (1.1). The numerical difficulties arising from

the stiffness of Eqs. (1.1) may thus be directly related to the problems of solving

the set of Eqs. (1.7), and these may be analysed effectively in terms of the stability

and accuracy of numerical solutions to a single equation of the form

(1.8) / = g'(x) + \(x){y - g(x)},

obtained using an integration step-size h such that h Re(— X) » 1.

To a first approximation, we may neglect the dependence of X on x in Eq. (1.8).

The rate of change of X with x is in general of the same order of magnitude as g'(x),

and the integration step-size is such that hg'(x) « 1, so that

\d\/dx\ « Re(-X).

In this paper, therefore, we examine the stability and accuracy of numerical ap-

proximations, using implicit one-step methods, to the solution y = g(x) of the dif-
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ferential equation

(1.9) y' = g'(x) + \{y - g(x)},

where g'(x) is any given bounded function, for complex X such that h Re(— X) » 1.

We show that the ^-stability property [1], while necessary, does not ensure the

stability of solutions to Eq. (1.9) for g'(x) yá 0, and we derive necessary and sufficient

conditions for such stability (which we term S-stability). Conditions for strong

(or stiff) S-stability are also proved.

The accuracy of numerical solutions to Eq. (1.9) is treated by considering the

asymptotic form of the local truncation error, proportional to hs+l\', in the limit

h Re(— X) —> oo and h —> 0. A subset of stiffly accurate one-step methods is defined

for which / = — 1, and maximum values on the effective stiff order 5 are obtained.

We then determine the S-stability and stiff order properties of several classes

of implicit one-step methods, based on Gauss-Legendre, Radau and Lobatto quad-

rature formulae. All the classes studied have been shown to be ^-stable ([7], [9], [10]),

but significant differences in their S-stability and stiff-accuracy properties give us

good reason to prefer two particular classes for solving stiff equations, both of the

linearized form (1.9) and, for the reasons developed above, of the general nonlinear

form (1.1).

2. Stability of One-Step Methods. An /--stage one-step method for the numerical

solution of a first-order differential equation

(2.1) y' = f(x, y)

may be expressed in the general form

r

(2.2) y*+i = y„ + \y, biki
7-1

where

(2.3) kt = hf[xn + he,, yn + ¿ auk,]        (i = 1, 2, • ■ • , r)

and h = x„ + 1 — xn. The r X r array A = (a,,) and the vectors br = (bu b2, ■ ■ ■ , br)

and cT = (c,, c2, • • • , cr) are constants satisfying c, = }£î-i a<>> the values of

which uniquely define a particular one-step method.

We wish to categorize those one-step methods which give a stable numerical

solution when applied with positive step-size to any equation of the form

(2.4) / = g'(x) + X{y - g(x)},

where X is a complex constant with negative real part, and where g'(x) is any function

that is defined and bounded in some interval x £ [0, Je]. To this end, it is necessary

to define a stability property, termed S-stability, which generalizes to equations

of the form (2.4) the concept of ^-stability introduced by Dahlquist [1] for the related

equations y' = \y.

Definitions. A one-step method (2.2) is said to be S-stable if, for a differential

equation of the form (2.4) and for any real positive constant X0, there exists a real

positive constant h0 such that
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■Vn+l    —   g(*n+l)        <    j

-Vn   -   g(Xn)

provided y„ ¿¿ g(xn), for all 0 < h < h0 and all complex X with Re(— X) ̂  X0, x„,

x„+i G [0, Jt]. If the above conditions only hold for |arg (—h\)\ < a, then the method

is said to be S(a)-stable.

An S-stable one-step method is said to be strongly S-stable if

y„+l — g(xn+1) _^

yn - g(xn)

as Re(— X) —» «, for all positive h such that x„ xn+1 G [0, x\.

It may be seen that, for g'(x) = 0, these definitions are equivalent to the defini-

tions of ^(-stability and strong ^-stability for one-step methods.

When the one-step method (2.2) is applied to Eq. (2.4), the vector kr =

(ku ■■■ ,kr)is given by

(2.5) (/ - h\A)k = hg' + h\{yne - g]

where gT = (g(*i), • • • , g(xT)) with x, = xn + hc{, g' is similarly defined, and

eT = (1, • ■ • , 1). Equation (2.5) defines k uniquely for positive h and for all X with

Re(X) < 0 only if the array A has nonnegative eigenvalues. A one-step method

with positive semidefinite or positive definite array A is therefore termed "well-

defined" and, for such a method, the increment

(2.6) brk = hT(zI - /Q_1ke + g(xn)e - g + feg'},

where z = (hX)'1 and e„ = y„ — g(xn), is uniquely defined for all complex z with

Re(z) < 0.
For simplicity, we assume that the abscissae c, of the one-step methods lie in

the interval [0, 1], although this restriction need not be made provided g(x) and

g'(x) are defined and bounded over an appropriately wider range of x. Also, without

loss of generality, we order the abscissae so that c, ^ c, if i < j. Let there be r*

(1 á r* á r) different abscissae c* in c, and define an r X r* array E(z) by

En = —z    fore, = cf = 0,

= c¡      for c, = cf í¿ 0,

= 0       otherwise.

Using Eq. (2.6), the difference equation (2.2) may be expressed in the form

(2.7) i„+1 = (1 - hT(A - ziy'eK - hGo + hhT(A - zI)~1E(z){G1 - zG2\,

with the dependence on the function g(x) contained in

hGo = g(xn + h) - g(xn)

and the r*-vectors G, and G2 defined by

(G,), = g'(xn) if c* = 0,

= (X/hc*){g(xn + he*) — g(xn)}    otherwise,

and
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(G2),  =  0 ifc* =  0,

= g'(xn + hcf)    otherwise.

Thus, the stability of the solution to Eq. (2.4) is governed by the properties

of a difference equation of the form

(2.8) 6n+1 = a(z)e„ + hß(z, G0, G„ G2)

with

a{z) = 1 - hT(A - z/)_1e

and

ß(z, G0, G,, G2) =  -Go + hT(A - zir1E(z){Gl - zG2\.

To establish conditions for S-stability, therefore, we first prove a lemma on the

stability of solutions to equations of the general form (2.8).

Lemma. Define e(z, h, «0) = a(z)e0 + hß(z)for all complex e0, all real h G (0, h]

and for all z G R, where R is the region of complex z with 0 < Re( —z) g z.

Then there exists a real positive ha = h0(z, e0) á h such that

\e(z, h, eo)| < |eo|

for all to 7a 0, h G (0, h0] and all z G R, if and only if
(1) \a(z)\ < 1 in R, and

(1) ß(z)/(\ - \a(z)\) is bounded in R.

Proof, (a) Necessity. If |a(z*)| ^ 1 for z* G R, then, for any positive h, there

exists an e0 ^ 0 such that ]e| > |e0| at z = z* provided ß(z*) y¿ 0. If ß(z*) = 0,

I e| è | e0| at z* for all e0 ̂  0.

If/3(z)/(l — |a(z)|) is not bounded in R, there exists z G i? and ío = 1 — \a(z)\ ¿¿ 0

such that

1/3(2)1 _      |fl(*)|
e„      "  1 - |«(z)| ^  A

for any real positive K. Since |e| = |e0| \a(z) + A/S(z)/€0|, for any positive h, there

exists A^such that |<=| > |e0|.

(b) Sufficiency. If /3(z)/(l — \a(z)\) is bounded, there exists a real positive A'

such that

1  -  |a(z)|

for all z £; R. Now

|*| á  |at»| |c| + A \ß(z)\ =  Id - {1 - |«(z)|}{|d - . -7a(l)|} '

and, if |«(z)| < 1 in R, then |e| < |e0| for all z£Ä, all e0 5^ 0, and all h G (0, A0]

where/ío = Min{Â, | e0|/AT}.

For a given function g(x), this lemma establishes conditions for the stability

of solutions to Eq. (2.8). By applying the lemma, firstly to functions g'(x) = 0 (for
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which ß = 0), and secondly to g(x) with bounded g'(x), the necessary and sufficient

conditions for A -stability and S-stability may be defined.

Corollary 2.1. A well-defined one-step method is Astable if and only if \a(z)\ < 1

for all z with Re(z) < 0.

Corollary 2.2. A well-defined one-step method is S-stable if and only if it is

Astable and ß(z, G0, G,, G2)/(l — \a(z)\) is bounded for all z with 0 < Re(—z) ^ z

(any z > 0) and for all g(x) with g'(x) defined and bounded in [xn, xn + h].

We are now in a position to state theorems which relate the conditions for S-

stability to the values of the parameters defining a one-step method. We define the

following limits as \z\ —» 0 and Re(z) < 0 noting that the value of these limits may

depend on the way in which the limit is taken:

a0 = Lt a(z) =  I - LtbT(A - ziy'e,

a, = Ltz-'fl - |a(2)||,

bo*T = LthT(A - zI)~lE(z).

In addition, it is convenient to identify the particular subset of one-step methods

for which

(2.9) Lt  ß(z, Go, G„ G2) = 0.
>i I—>0

Since hß(z, G0, Gu G2) represents the local truncation error, methods satisfying

condition (2.9) may be termed stiffly accurate. It is readily shown that for a method

to be stiffly accurate it must include an abscissa cr* = 1 and also

b„*T = (0,0, •■■ ,0, 1) = ef..

It follows from the definition of b0* that, if a method has a single abscissa cr = 1

and a nonsingular array A, the conditions for it to be stiffly accurate are

cr = I,        b{ = ari        (i =  1, • • • , r)

in which case kr = hf(xn+1, yn+1).

Theorem 2.1. A well-defined Astable one-step method is S-stable if and only if

(a) |a0| < 1 and h0* is finite; or

(b) \a0\ = 1, «i 9e 0, and the method is stiffly accurate.

Theorem 2.2. A well-defined S-stable one-step method is strongly S-stable if and

only if it is strongly Astable (a0 = 0) and stiffly accurate.

Proofs. Let R be the region of complex z with 0 < Re(—z) g z.

(la) If the method is Astable and |«0| < 1, (1 — |a(z)|)-1 is bounded in R.

ß(z, G0, Gi, G2) is finite for all z G R and for all bounded g'(x), and is bounded if

and only if b0* is finite. Hence, by Corollary 2.2, the method is S-stable if and only

if b0* is finite.

(lb) If the method is /1-stable, |a0| = 1 and a, j£ 0; z(l — |a(z)|)^' is bounded

in R. Since z~lß(z, G0, G,, G2) is bounded in R for all bounded g'(x) if and only if

Lt|S|^0 ß(z, G0, G,, G2) = 0, by Corollary 2.2 the method is S-stable if and only if

it is stiffly accurate.

If |a0| = 1 and a, = 0, it is necessary for z~2ß(z, G0, G,, G2) to be bounded in R.

This requires that bo*rG, = G0 and b0**7'G1 = b0*TG2, where b0**T =

Lt|,l^oZ-1{br(^ - zI)~lE(z) -ho*T\.\ïho*TGi = Go for all bounded g'(x), b0* = er.,
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so that we require b0**TG, = e,.7^ = g'(xn + h). Since g'(xn + h) is not an element

of Gi for positive h, this identity cannot hold for all bounded g'(x).

(2) From Eq. (2.8), |en+1| —* 0 as |z| —> 0 in R if and only if a0 = 0 and

Lt,.HoÄr, GcG„ GO = 0.

3. The Stiff Order of One-Step Methods. Having established conditions for

the stability of numerical solutions to equations of the form (2.4), we consider now

the accuracy of such approximations. As Re(—X) —> <», the true solution to Eq.

(2.4) tends to g(x) for x > 0, regardless of the initial condition at x = 0. Thus, if

Eq. (2.4) is stiff, a measure of the accuracy of a one-step method is provided by the

difference

(3.1) L = y»+i — g(xn+1),

where yn+i is the solution at xn+l = xn + h to the initial-value problem

(3.2) y' = g'{x) + \{y - g(x)\,        y = g(xn)    at x = *„.

The local truncation error /„ is dependent both on h and X, as well as g(x), and the

asymptotic dependence

/„ oc A'+1X'    as Re(-AX) -» °° and A -» 0

defines the s»j(f o/y/ít (5, /) of a one-step method. In this section, we derive some

general results on the stiff order properties of one-step methods.

The local truncation error /„ is obtained from Eq. (2.7) by setting e„ = 0, so that

(3 3) L =  -hGo + hhT(A - zI)~lE(z){G, - zG2)

= hß'z, G0, G„ G2).

The term bT(A — zI)~lE(z) may be expanded as a power series in z, giving

(3.4) br(/f - ziy'Etz) = z'm Y, '*ti
o-O

where m W\ 0,

d0r =    Lt znbT'A - zl)~lE(z),

\t\-0

dTa  =    Lt  zrabr(^ - ziy\(A - ziy'Eiz) + E(\) - £(0)J.

Therefore, we have

(3.5) h~lln = -Go + do^G.z-' + ¿ {dfG, - dllG2}zQ'm.
Q-l

To establish the stiff order (s, t), we consider the limiting form of Eq. (3.5):

/;"'/„ oc h"'z''    as h, \z\ -> 0.

In the following theorems, we assume that g(x) is sufficiently differentiable and

denote the ith derivative at x = x„ by g„l''. The notation c,*T = (c1*',c2*', • • • ,c,*')

is also used.

Theorem 3.1. A stiffly accurate one-step method has stiff order (s,  —1) with
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s iZ r' — 1, where r' (¿r*) is the number of nonzero elements o/di.

Proof. For stiffly accurate methods, LtU|_0 ß(z, G0, G„ G2) = 0. Thus A~'/„ —»

zfd/Gi — d0rG2) as \z\ -» 0, and since d0 ■ b0* = er. then d0TG2 = g'(xn+1).

Expanding g'(xn+1) and G, about xn gives

h-lln -* A'z ^r-j-Ty gn' + u {dfe?. - (<?' + 1)}    as    |*|. * -» 0,

where dfcf-, = 9    for 9 =  1, 2, • • • , g',

¿¿ g    for g = 9' + 1.

Since c?' g /•', then s = <?' — 1 ^ /■' — 1 and r = — 1.

Theorem 3.2. A one-step method which is not stiffly accurate has stiff order (s, m)

with s g r' for m — 0 and s g m + r' — 1 for m > 0, wAere r' (úr*) is the number

of nonzero elements ofd0.

Proof. For m = 0,

A-1/, -> dórG1 - Go    as |z| -> 0,

-* A°' ÖT+7)! g"° +U {d°c* ~ ! !    as h ~* °'

where

d-fc*.! =1    îox g = \,2, ■■■ ,g',

?íl    for ? = g' + 1.

Since q' g r', s = tf á r' and f = m = 0. For w > 0,

.-1.      ^   -M.r/i       v  ,a' -777 (('ii).rAi
A   L —> z   d0 Gi —> A z     7-7   .   ... ;?„       dn cf.

where

d0rc*_, = 0    for? = 1,2, ••• ,q',

9± 0    for g = g' + 1.

In this case, q' ^ r' — 1, so that s = w-f(j'gw + r'— 1 and t = m. Since

w = 0 for S-stable methods, it follows that

Corollary 3.1. S-stable methods that are not stiffly accurate have stiff' order

(s, 0) with s ^ r', where r' are the number of nonzero elements ofd0.

Also, since (doX = 0 if c¡* = 0 and A is nonsingular, we have

Corollary 3.2. Methods that are not stiffly accurate with c,* = 0 and nonsingular

array A have stiff order (s, m) with s ;£ r* — 1 for m = 0 and s ^ m + r* — 1 for

m > 0.

4. The S-Stability and Stiff Order of Some Classes of One-Step Method.

In this section, we consider the S-stability and stiff order of several classes of pre-

viously published ^-stable one-step methods based on quadrature formulae. The

processes considered are the class G methods of Butcher [15], based on Gauss-

Legendre, classes IA and IIA of Ehle [8], based on Radau, and, finally, classes IIIA
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Table 1

Summary of the stability, stiff accuracy and orders of

some classes of one-step methods

Stability

Quadrature      -      Stiffly        Order

Class A     Strong-/!    S     Strong-S     Accurate p

Stiff Order

;

Gauss

Radau IA

Radau IIA
Lobatto IIIA

Lobatto IIIB
Lobatto IIIC

V
V
V
V
V
V

v

V

V
V
+

V

V

V

V
V

V

2r

Ir - 1

Ir - 1

Ir - 1*

Ir -1
Ir -1

r

r - 1

r - 1

r —

r —

r - 1

0

0
-1

1*    -1
1      +1

1

The absence of an entry indicates that the property does not hold.

* The methods of class IIIA have fc,  = hf(xn, yn) and kr = hf(xn+l, y„+1), so

that, except for n = 0, each step only requires r — 1 evaluations of f(x, y).

1 This class is S(a)-stable for a G (0, v/2).

and IIIB of Ehle [8] and class IIIC of Chipman [11] based on the Lobatto quadrature

formula. The ,4-stability of these classes has been determined by Ehle [7] and Chipman

[12] inter alia, and the S-stability and stiff order properties are summarized in Table 1

with more detailed considerations presented in the form of a collection of theorems

in this section.

Before considering the theorems in detail, we present some notation and also

two lemmas which will assist in the proof of some of these theorems. We define

V, =

C,

C, =

2 M 2C¡

[C,

to be r X i matrices, with the suffix i denoting the number of columns,

Í1

rr r* =

r 1

to be r X r diagonal matrices, and

Y? = H.*. ■•• . »/«'],     r.*r = ti,2, ••• , f]

to be / vectors. We take e to be the unit vector and e, to be the vector having the

ith element unity with the remaining elements zero: the length of both these vectors

is assumed to be that applicable at the time of use. We also use Butcher's notation

[15] for representing certain conditions satisfied by the parameters a,¡ and A,-. Finally,
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we omit the asterisk from the abscissa c, and also from the number of stages of the

methods, since all classes under consideration here have distinct abscissae.

Lemma 4.1. An Astable one-step method is S-stable if A is positive definite and

a0 < 1.

Lemma 4.2. A strongly Astable one-step method is strongly S-stable and stiffly

accurate if

(1) A is positive definite,

(2) b'A-1 = e/,

(3) the method contains a single abscissa cr = 1.

Proof.

b0*r =    Lt  bT(A - ziylE(z)
M->0

= hTA~lE(Q) = err£(0) = err.

Consequently, the method is stiffly accurate and hence, by Theorem 2.2, strongly

S-stable.

Theorem 4.1. The processes of class G are not S-stable and have stiff order (r, 0).

Proof. For this class, | a01 = 1, since a(l/z) reduces to the diagonal Padé approxima-

tion to exp(l/z). As this class does not have an abscissa of unity, it cannot be stiffly

accurate, so, by Theorem 2.1, the processes are not S-stable. Now

d0r =    Lt  bT(A - zI)'1E(z) = bTA~lE(Q)
1x1-40

= y?(A Kr)-'£(0)    by B(r)

= yfC^EiO) by C(r)

= rfrr1 K1 = eTv;' => / è o.

Since this class does not contain an abscissa of unity, we have t = 0. As d0rKr = er,

by Theorem 3.2, s = r.

Theorem 4.2. The processes of class IA are S-stable and have stiff order (r — 1, 0).

Proof. The S-stability of this class is a direct consequence of Lemma 4.1. Since

this class does not have an abscissa of unity, it cannot be stiffly accurate and so, by

Corollary 3.2, the stiff order is (s, 0) where s ^ r — 1. Now

dlVr-, = b7,/T1£(0)Fr_1

= b^-'c-.r*.,

= bV^.r,*.,    by C(/-- 1)

= Tr'-ir?-, by B(r - 1)

= er.

Hence, by Theorem 3.2, s — r — I.

Theorem 4.3. The processes of class IIA are strongly S-stable, stiffly accurate

and have stiff order (r — 1, —1).

Proof. By B(r),

bT = YrT v;1 = efc, v;1

= erA    by C(r).
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Hence, by Lemma 4.2, the class is strongly S-stable and stiffly accurate which implies

it has stiff order (s, -1) with s £ r - 1. As E(0)Vr = CrY*,

dfvr = bTA'2E(0)Vr = ef/T'CVr?

= eTrVTT*    by    C(r)

= eTT?

= yf-
Hence, by Theorem 3.1, s = r — 1.

Theorem 4.4. The processes of class IIIA are stiffly accurate, have stiff order

(r — 1, — 1), and are not S-stable but are S(a)stable for a G (0, v/2).

Proof. For this class, |a0| = 1 and ax = 0 in the limit Im(X) —> <» (diagonal

Padé approximation [12]), and hence, from Theorem 2.1, this class is not S-stable.

However, for a G (0, ir/2), a¡ ?¿ 0 and hence by Theorem 2.1 this class is S(a)-stable.

Now

b0*T =    Lt bT(A - ziylE(z)

=    Lt vtKiA -ziy1E(z)    by B(r)
I « i —»o

=    Lt T;:(C - z Vry1E(z)
l«l-»0

Tn-l       ...i_       r\ _      l-l

by C(r)

= Yr ÍÍ       where    Í2,¡ = c,   /y        (/, ;' = 1, 2, • • ■ , r).

As y/ = e/fi, it follows that b0* = e„ so that this class is stiffly accurate. As it is

stiffly accurate, by Theorem 3.1, it has stiff order (s, — 1) with s j¡ r — 1.

Let /I* be the principal minor of A and a*r = (a21, • • • , orl), so that

A =
0      0

i a"

and let C* and V* denote the corresponding nonsingular minors of C, and Vr re-

spectively. Since, by C(r), A = C,V~X, it follows that A* = C*V*'\ Now

(A - ziy1
-z~l 0

z~\A* -z/)~V    (A* - ziy1.

and

(A - ziylE{z) + E(l) - E(0) =
0 0

-(A* - z/)_Ia*    (A* - ziylD(c)

where D(c) is a diagonal matrix with elements c, (i = 2, • • • , r). By £•(/), bT = y/Vy1

= e/CrVy1 = e/A, so that

bT - zerT = err(^ - z/)

and

bT(A - ziy1 = err + zer(A - zl)'1 = err + [err_,/i*_1a*, 0, • • • , 0] + 0(z).
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Hence

df =    Lt  bT(A - zl)'1 {(A - zI)'lE{z) + £(1) - £(0)}

= [-err_1/l*"1a*)er,'_174*"ID(c)]

= [1 - ^lA*~lD{c)fi,^_lA*~xD(c)]

since a* = {D(c) - A*}e. Thus, since A*~lD(c)V* = A*~lC*D(i) = V*D(i) where

D(i) is the diagonal matrix with elements 2, • • • , r,

dfvr = [l,err_,F*fl«)] = Yr*r.

Hence, by Theorem 3.1, s = r — 1.

Theorem 4.5. TAe processes of class IIIB are no/ S-stable and have stiff order

(r - 1, 1).

Proof. Let

'a*   ol
/4 =

a*'    0]

where /I* may be shown to be a nonsingular minor of A. Then

(A* - zl)'1 0
M - ziy' =

z-'a*'(A* - zl)'1    -z"'J

Let b* denote the first (r — 1) elements of b, and j   ¡, denote the ith component of

the vector. Then

d0r =    U zbT(A - ziy'Eiz)
I»I-tO

=    Lt   [-z{Ar(z)|l; {Ar(z)D(c)|,, - br]        (j = 2, ■■■  ,r - X),
I 2 1-0

where AT(z) = (zb* + b,a*)T(A* — z/)"1 and D(c) is a diagonal matrix with elements

c, (i = 1, • • • . r — 1), and so

d0r = [0, Ma*r¿*-,D(c)},., -Ar]        (J = 2, ••• ,r- 1).

Since, by B(r), bT j£ 0, d0T ̂  0 so that t = 1. It follows thatb0* is not finite and the

class is not S-stable.

By C(r - 2), AVr-2 = C_2 so that

A* V*-2 = C*_2    and    a*r V*.2 = y,-2,

where

Vr- and    C,
T

Yr-2

Thus, since D(c)Vr-2* = C_2*r\._2*,

dorFr_2 = br[a*TA*-'D(c), -l]Fr_2

= 6r[a*rv4*-1C*_2r*.3 - eT] = br[rf-2T*.2 - er] = 0.

Hence, s = r — 1.
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Theorem 4.6. The processes of class IIIC are strongly S-stable, stiffly accurate

and have stiff order (r — 2, — 1).
Proof. From the derivation of the coefficients of this class, bT = e/A, and so,

by Lemma 4.2, the class is strongly S-stable and stiffly accurate. Since this class is

stiffly accurate, by Theorem 3.1, it has stiff order (s, — 1) with s ^ r — 1. Now

dfFr = bTA~2E(0)Vr = ^A~lCrV*

= t'VfT*    by C(r - 1), where V* = [ Kr_, v],

= [er,t>r]r*

= [Y*-ri. 1]    sinceiv =  1/r (Chipman [12]).

Thus, by Theorem 3.1, we have s = r — 1.

5. Discussion. To conclude this paper, we consider the implications of the

various stability and accuracy concepts that we have defined. At the same time, we

compare the properties of the classes of one-step methods considered in the previous

section, and relate these properties to the performance of the methods on a test

problem of the form (2.4).

It should be borne in mind that, in discussing the behaviour of solutions to a

stiff equation (2.4), we are at the same time discussing the way in which the solutions

to the stiff components of nonlinear systems of differential equations tend to behave.

Table 2

Dependence ofh' on |X| and on |e„|, A' œ j X|' | e„| "*, as Re(—X) —* »

/ m

1 1

r +  1       r + 1

1
0

r

r r

1
0      7TÏ

2 1

r + 1       r +  \

1 1

r -   1        r -   1

Gauss

Radau IA

Radau IIA

Lobatto IIIA

Lobatto IIIB

Lobatto IIIC
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LOG^-hX)

FIG. I - The apparent order p' = U {lOG2| 2°l (h) IJ of various one-step methods when solving

example I. G{2) signifies Gauss 2-stage method, etc.

-3-2-10123

LOGflf-hX)

FIG. 2 - Local truncation errors l0 for various one-step methods that are

not stiffly accurate,when solving example I with h=OI
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In Section 2, an S-stability property for a one-step method is defined which

ensures that a range of positive step-sizes (0, h) exists which gives stable solutions

to Eq. (2.4) with bounded g'(x), for any X with Re(X) ^ -X < 0. Thus, if A' =

A'(X, |en|, g) denotes the upper limit to the range of stability (0, A') for given X, S-

stability guarantees that A' -*> 0 as Re(—X) —» oo; while, with strong S-stability,

h' —> oo as Re(— X) —► °°.

The asymptotic dependence of A' on X and on |en| as Re(—X) —* », which is

of the form A' <x | X|'| €„!"*, is given for various /--stage one-step methods in Table 2.

The negative values of / for the Gauss and the Lobatto class IIIB methods reflects

the lack of S-stability of these classes (Table 1). In order to give stable solutions to

Eq. (5.1), the Lobatto IIIB methods, in particular, would require considerable reduc-

tions in the step-size as the stiffness, Re(— X), in Eq. (5.1) increases. While the inverse

X-dependence of the Gaussian methods is fairly weak, the stability of this class on

very stiff practical problems is not as good as the S(a)-stable Lobatto IIIA class,

even though the ^-stability properties of the two classes are identical. The positive

/-dependence of the Radau IIA and Lobatto IIIC method is a measure of the strong

S-stability of these stiffly accurate classes.

In Section 3, the asymptotic form of the local truncation error, as A Re(— X) —► <»,

is derived as

7 _ 7S + KÍ        («-()

'n    œ    «        U»

The upper limits derived for s, and the s-values obtained for the various classes

indicate that the effective order of one-step methods applied to Eq. (2.4), with Re(—AX)

large, is generally much lower than the order p that can be achieved for nonstiff

problems. Figure 1 shows the apparent order of various methods when solving

Example 1 (Seinfeld et al. [16]).

y' = g'(x) + X{y - g(x)\,       y = g(0)   at^ = 0.

g(x) = 10 - (10 + x)e-x,        X real.

For one-step methods that are not stiffly accurate, the change in the effective

order results in a much lower level of accuracy for A Re(— X) large compared with

that in the nonstiff region (Figure 2). In contrast, the errors given by the stiffly ac-

curate methods (Figure 3) tend to zero as Re(— X) —> <», so that the reduction in

order in the stiff region is offset, to a varying extent, by the inverse dependence on

| X|. Clearly, the stiff accuracy property of one-step methods increases in significance

with the degree of stiffness in Eq. (2.4).

If we use a one-step method of stiff order (s, t) to solve Eq. (2.4) with g(x) a

polynomial of degree (s — t), the error equation (2.8) is independent of x and the

dependence of the global error e„ on A and | X| as Re(— X) —> œ may be determined

(Table 3). For strongly ^-stable methods, the global errors tend to the local truncation

errors, while for a0 = — 1, successive errors show a cancellation effect. For a0 = 1,

however, e„ increases linearly with n.

Comparing the properties of the various classes of one-step methods, the Lobatto

IIIA methods would seem to be the most accurate of the S- or S(a)-stable stiffly

accurate classes, taking into account that the r-stage IIIA process is equivalent, in

terms of computational effort, to an (r — l)-stage process. In particular, IIIA methods
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FIG.3- Local truncation errors l0 for various stiffly accurate one-step

methods,when solving example I with h=OI

-3-2-10 I 2 3

L0Gl0(-hX)

FIG.4-Local truncation error L0 for some single-stage one-step

methods, when solving example I with h=0-l
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Table 3

Asymptotic dependence of e„ as Re(— X) —> œ

r even r odd

Gauss «Ar+Ig<r+U Ar+1g(r+1> (n odd);

nAr|xr'g(r+1) («even)
Radau IA Arg(r) Arg(r)

Radau IIA *r|xrV+I) Ar|xryr+U

Lobatto IIIA Ar|\rVr+l>(«odd); nA,|xrV+,>
«Ar-l|xr2g(r+1) («even)

Lobatto IIIB Ar|X|g(r_1) («odd); nA'lXlg"-1'
nh'-y-u («even)

Lobatto IIIC A-I|xr1g(r) A'-'lxrV"

with an even number of stages should have a small error propagation effect and,

further, for the IIIA methods there is no practical difference between S(a)- and

S-stability on real problems. Note that for r = 2 we have the trapezoidal rule.

Strongly S-stable methods have advantages in that the local truncation errors

are very quickly damped out for A Re(— X) large, and the methods are likely to remain

stable when applied to equations of the form (1.8) having variable \(x). Gourlay [17]

has shown that for Eq. (1.8) with g(x) = 0 and Re(— \(x)) large but decreasing, the

trapezoidal rule is only stable for a restricted range of step-sizes A. Similar restrictions

must apply to all one-step methods, involving more than one abscissae, for which

|«o|  =  1-

The suggested replacement of the trapezoidal rule by the implicit midpoint rule

(the single-stage Gaussian process G(l)) [17] overcomes the stability problem as-

sociated with X(x), but since the G(l) method is not stiffly accurate (or S-stable),

there can be a considerable loss of accuracy on stiff problems (Figure 4). We would

recommend replacing the Lobatto IIIA methods by other classes of methods that

are stiffly accurate and either strongly S-stable or S-stable with |a0| < 1.

Of the methods that are stiffly accurate and strongly S-stable, the Radau IIA

methods should be more accurate than the Lobatto IIIC processes (Figure 3). Note

that, for r = 1, the IIA process is the backward Euler method. However the IIA

processes are significantly less accurate than the IIIA processes, and a compromise

between accuracy and strong S-stability, giving a class of stiffly accurate methods

with 0 < |a0| < 1, is worth considering.

One such family of intermediate methods may be defined by

bT = (1 - y, y),

cT = (0, 1),

with 0.5 < y < 1. This first-order method is effectively single-stage, with a0 =

—(1 — tVt- It may be easily shown to be S-stable and stiffly accurate, with generally

smaller truncation error than the IIA(l) method, as shown in Figure 4 using y =

(5.1)
0       0

1 — y    y
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0.55. The authors have in fact used this method extensively (with y = 0.55) to obtain

stable solutions of reasonable accuracy to large nonlinear systems of stiff equations

arising in the field of chemical kinetics [14].
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