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A Note on the Optimal Addition of Abscissas to
Quadrature Formulas of Gauss and Lobatto Type

By Robert Piessens and Maria Branders

Abstract.   An improved method for the optimal addition of abscissas to quadrature for-

mulas of Gauss and Lobatto type is given.

1. Introduction.   We consider the quadrature formula

(1) f    f(x) rf^t akf(xk) + £ &/(&),
J-i *-i t-i

where the xk's are the abscissas of the Appoint Gaussian quadrature formula. We

want to determine the additional abscissas £t and the weights ak and ßk so that the

degree of exactness of (1) is maximal. This problem has already been discussed by

Kronrod [1] and Patterson [2] and it is well known that the abscissas £* must be the

zeros of the polynomial 4>n+i(x) which satisfies

(2) j     PN(x)d>N+i(x)xk dx = 0,       * - 0, 1. • • • , N,

where PN(x) is the Legendre polynomial of degree A'. Thus, <p¿v+1(x) must be an ortho-

gonal polynomial with respect to the weight function Piv(x). Then, the weights ak

and ßk can be determined so that the degree of exactness of (1) is 3N + 1 if N is even

and 3^ + 2 if TV is odd.

Szegö [3] proved that the zeros of <p,v+i(x) and PN(x) are distinct and alternate on

the interval [— 1, +1]. Kronrod [1] gave a simple method for the computation of the

coefficients of <pN+1(x). This method requires the solution of a triangular system of

linear equations, which is, unfortunately, very ill-conditioned. Patterson [2] expanded

<Pn+i(x) in terms of Legendre polynomials. The coefficients of this expansion satisfy

a linear system of equations which is well-conditioned, although its construction

requires a certain amount of computing time.

The present note proposes the expansion of <pN+1(x) in a series of Chebyshev

polynomials. We also give explicit formulas for the weights ak and ßk. Finally, we

consider the optimal addition of abscissas to Lobatto rules. As compared with

Patterson's method, our method has three advantages:

(i) It leads to a considerable saving in computing time since the formulas are

much simpler.

(ii) The loss of significant figures through cancellation and round-off is slightly

reduced, as we verified experimentally. This is in agreement with some theoretical

results given by Gautschi [4].

(iii) It is applicable for every value of N, while Patterson's method fails in the
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Lobatto case for N = 1,9, 17, 22, 27, 35, 36, 37, 40, • • • , since some of the denomi-

nators in his recurrence formulae become zero.

2. Optimal Addition of Abscissas to Gaussian Quadrature Formulas. It is

evident that <pN+1(x) is an odd or even function depending on whether N is even

or odd. Thus, <pN+,(x) can be expressed as

171

(3) <Pjv+i(x) =   2' bkT2k(x),    if N is odd,
*-0

and

m

(4) <f>N*i(x) =  X bkT2k+,(x),    if N is even,
¡fc = 0

where m = [(N + l)/2].

It is clear that the polynomial rpN+1(x) is only defined to within an arbitrary

multiplicative constant. For the sake of convenience, we assume bm = 1.

From (2), we derive the condition

(5) f     PN(x)4>N+1(x)Tk(x) dx = 0,        k = 0, 1, • • • , N.

In order to calculate the coefficients bk, k = 0, 1, • • • , m — 1, (3) or (4) is substituted

in (5). This leads to the system of equations

bm-i = Ti — 1,

(6)

bm-k =  2_, bm-k+iTj + Tk,        k = 2, 3, ■ • ■ , m,
j-i

where

(7) Tk=~f     PN(x)TN+2k(x) dx / j     PN(x)TN(x)dx.

In order to derive a recurrence formula for rk, we consider the integral

(8) / = f    [xPN(x) - PN+1(.x)]T,(x)dx.

Using a well-known property of the Chebyshev polynomials, we obtain

(9)        j=\ /;; [x,, - ,,„] d(^ - ^),

and, by integrating by parts, this integral can be expressed as

N N
(10) J~ 2(1+ 1) In-' + 1 ~ 2(1 - I)7"''-"

where

(11) h,i = j    P^T^dx.
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On the other hand, using a property of the Legendre polynomials, (8) can be trans-

formed into

- J    (1 - *2)7,(*) d(PN(x)),
N +

which can be expressed as

(121 J 2 + /     I +     2~ l     I
(12) 2(TV + 1) V, + 1 + 2(<V + 1) Ini'1-

Since rk = IN,N+2k/ÍN.fí, the recurrence formula

_ [(N + 2k - l)(N + 2k) - (N + 1)7V](7V + 2k + 2)

1    ; T*+1       [(TV + 2/fc + 3)(N + Ik + 2) - (N + l)N](N + 2k) n'

where t, = (TV + 1)/(1N + 3) can be easily derived from (10) and (12).

System (6) is easier to construct than the corresponding system of Patterson [2],

inasmuch as his method requires a set of recursions of variable lengths, while in our

method only one recursion is needed. Moreover, further economy is achieved in

solving the equation <pw+1(x) = 0, since, using a modification of Clenshaw's algorithm

of summation, an odd or even Chebyshev series can be evaluated more efficiently

than an odd or even Legendre series [5, p. 10]. Indeed, the computing time can be

halved.

Explicit formulas for the weights are

C 2
(14) ak = -7     .,'V + T7T-7-^77,77-7 ,        k =  1, 2, • ■ •  , N,

PN(xky4>N+l(xk)       NPN-i(xk)PN(xk),

(15) ß" = és'    kÏp a , ' Ä= 1.2, ••• ,/V+l.

where CN = 22"+ \Nïf/(2N + 1)!.

3. Optimal Addition of Abscissas to Lobatto Quadrature Formulas. We now

consider the quadrature formula

/+1 JV+l tV+1
/(*) dx ~ ¿2 akf(xk) + Yl &/(£*),

■1 Jfc-0 t = l

where the xk's are abscissas of the Lobatto quadrature formula. Consequently,

x0 = —1, Xtf+i = +1 and xu x2, • • • , xN are the zeros of the Jacobi polynomial

Pivll,1)(x). It is our purpose to determine the free abscissas £k and the weights ak

and ßk so that the degree of exactness of (16) is maximal. Then, £* must be a zero

of the polynomial <t>N+¡(x) which satisfies

(17) I    (1 - x2)PNul)(xyf>N,1(x)Tk(x) dx = 0,        k = 0. 1. 2, • • • . TV.

Again, we express <f>N+i(x) in terms of Chebyshev polynomials as in (3) or (4), according

to the parity of TV. The coefficients bk can be found by solving the system (6) where

(18) = -f_    (1 - x2)PNul)T„+2k dx j f    (1 - x2)P(Nul)TN dx.
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Using the relation

J     (1 - x2)Kll)T, dx -- X_

N + 2

where INl is defined by (11), the recurrence formula

.    . [(TV + 2k - 1)(TV + 2k - 2) - (TV + D(TV + 2)](TV + 2k + 2)

1    '    T*+1 [(TV + 2A: + 3)(TV + 2k + 4) - (TV + 1)(TV + 2)](TV + 2k)      T"

can be derived from (13).

The starting value for (19) is

r, = 3(TV + 2)/(2TV + 5).

The expressions for the weights are

Cn , 2
ak    =    ., r,l ,      s 7-,-x   +

(20)

(21)        oto = otN+1

2P'N(xkypN+l(Xk)      (TV + 1)(TV + 2)[PN+i(xk)Y '

for k = 1, 2, •■• , TV,

Cn

(TV+2XTV+1)      2(N + iypN+1(l) '

(22)        A       2(TV + 1) [PN(M - ÜkPN+ÁM]<PNM '        k       l' 2' ' ' '  ' N + U

where CN = 22N+3[(TV + 1)!]2/(2TV + 3)!.

Appendix. Computer program. In this appendix, we describe a FORTRAN

program for the construction of the quadrature formula (1). A listing of this program

is reproduced in the supplement at the end of this issue. A program for the con-

struction of the quadrature formula (11) may be obtained from the authors.

The program consists of three subroutines: the main subroutine KRONRO and

two auxiliary subroutines ABWE1 and ABWE2, which are called by KRONRO.

In KRONRO the coefficients of the polynomial <pN+1(x) are calculated.

In ABWE1 the abscissas xk and weights ak are calculated.

In ABWE2 the abscissas £k and weights ßk are calculated.

The abscissas are calculated using Newton-Raphson's method. Starting values

for this iterative process are provided by [6]

x*

and

i\ 1     .     1 A      (2k - 1/2   \
-\1-W + W)m\-2Ñ+Tr)

^^{l-Û'2 + Ú3) C0S\%Í+T')'2TV +

The program has been tested on the computer IBM 370/155 of the Computing Centre

of the University of Leuven, for TV = 2(1)50(10)200. The computations were carried

out in double precision (approximately 16 significant figures). For TV = 200, the

maximal absolute error of the abscissas is 8.6 X 10~16 and of the weights 3.3 X 10"15.
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For TV = 50, the computing time is 1.7 sec, for TV = 100, 6.4 sec. and for TV = 200,

24.7 sec.
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SUBROUTINE KRONRC ( N , A , hi , W2 , EPS . 1ER )

THIS SUBROUTINE CALCULATES THE ABSCISSAS A ANC HEIGHTS Wl
CF THE (2«N+1)-P0INT CUACRATURE FORMULA WHICH IS OBTAINEC
FRCM THE N-PCINT GAUSSIAN RULE BY OPTICAL ACCITION OF
N + l POINTS. THE OPTIMALLY ACCED POINTS ARE CALLEC KRCNROC
ABSCISSAS. ABSCISSAS ANC WEIGHTS ARE CALCULATEC FCR
INTEGRATICN CN THE INTERVAL 1-1,1). SINCE THIS QUACRATURE
FORMULA IS SYMMETRICAL WITH RESPECT TO THE CRIGINE.CNLY
THE NCNNEGATIVE ABSCISSAS ARE CALCULATEC. WEIGHTS CORRES-
PONDING TC SYMMETRICAL ABSCISSAS ARE ECUAL.
IN ACCITION, THE WEIGHTS W2 CF THE GAUSSIAN RULE ARE
CALCULATEC.

REAL'S A,AK, AN,B,C,TAU,H,W2,XX
CIMENSICN AI2C1) ,B(2011 ,TAU(201) ,W1(201),W2(2C1 )
CCMMCN CINDEKS

INPUTPARAMETERS
N   CRCER CF THE GAUSSIAN CUACRATURE FORMULA TO WHICH

ABSCISSAS MUST BE ACCEC.
EPS RECLESTEC ABSCLLTE ACCURACY CF THE ABSCISSAS. THE

ITERATIVE PROCESS TERMINATES IF THE ABSOLUTE
CIFFERENCE BETWEEN TWO SUCCESSIVE APPROXIMATIONS
IS LESS THAN EPS.

CLTPLTPAPAMETERS
A VECTOR OF CIMENSICN N+l WHICH CONTAINS THE NONNEGA-

TIVE ABSCISSAS. A(l) IS THE LARGEST ABSCISSA.A(2«K)
IS A GAUSSIAN ABSCISSA.A(2«K-1) IS A KRCNRCC ABSCISSA.

Wl  VECTCP CF CIMENSICN N+l WHICH CONTAINS THE WEIGHTS
CORRESPONDING TC THE ABSCISSAS A.

W2  VECTCR OF CIMENSICN N+l, CONTAINING THE GAUSSIAN
WEIGHTS. W2(2*K-1) =C AND W2(2»K) IS THE GAUSSIAN
WEIGHT CCRRESPCNCING TC A(2*K).

1ER ERRCR COCE
IF IER = 0  ALL ABSCISSAS ARE FCUNC TC WITHIN THE
REQUESTED ACCURACY.
IF IER=1 ONE CF THE ABSCISSAS IS NOT FCUNC AFTER
5C ITERATION STEPS ANC THE COMPUTATION IS TERMINATEC.

RECUIREC SUBPROGRAMS
ABWE1  CALCULATES THE KPCNRCD ABSCISSAS ANC CCRRES-

PCNCING WEIGHTS.
ABWE2  CALCULATES THE GAUSSIAN ABSCISSAS ANC THE COR-

RESPONDING WEIGHTS.
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Ç

IC

11
12
13
H
15
16

1ER = C
NP = N+l
M = (N + D/2
INCEKS = 1
IF(2«M.ECN) INDEKS = 0
D = 2.CCC
AN = C.CDC
CC 1 K=1,N
AN = AN +1.DC
C = C»AN/(AN+C.5CC)
CC 2 K=1,NP
W2(K) = C.CD+C

17
lf

19
2C
21
22
23
24

25

26
27
2E
29
3C
31

33
34

3é
37
36

39
4C
41
42
43

44
45
4É

47
4f

49

5C
51
52
; 3
54

N2
Ml

CALCUL
GCNAL

TAU

B(M
IF(
AK
CC
AK
TAU

1  (
ML
B(M
CC
ff

3   8(M
k B(M

CALCUL
SB
X =

S =
C =
CCE
XX

DC
CALCUL
THE CC

CAU
IF(
A(K
Y =

X =
ee
xx
IF(

CALCUU
ANC TH

CAL
IF(
A(K
Y =

X =

eB
5   XX

IF(
A(N

= N + N +

= M-l
ATICN
PCLYNC
(1) =
) = TA
N.LT.3
= AN

3 L = l,
= AK +

(L + l)
AK«((A
= M-L

L) = T
3 LL = 1
= ML + L

L) = B
+ 1) =
ATICN
= SIM

SORTI
2.«BB
SORTI

F = 1.
= CCEF

5 K = l,
ATICN
PRESPO
L ABWE
1ER.ES
) = XX

X

Y«C-B
= Y«S +
= CCEF

K . E C . N
ATICN
E CCRR
L ABWE
IER.EQ
+ 1) =

X

Y«C-8
= Y»S +
= CCEF

INCEKS
♦ 1) -

CF THE CHEBYSHEV COEFFICIENTS CF THE CRTHC-
MIAL.
(AN+2.0C)/(AN+AN+3.CC0)
L(1)-1.CCC
) GCTC 4

Ml
2.0DC

= ( (AK-1.CCC)«AK-AN»(AN + 1.CCC)) *(AK + 2.CCC)« TAU(L)/
K + 3.CDC)«(AK + 2.CCO)-AN»(AN + 1.0CO) )

AUIL+1)
,U
L
(ML)+TAU(LL)«E(MM)
l.ODO
CF APPROXIMATE VALUES FOR THE ABSCISSAS
1.57C7S6/(SNGL(AN+AN)+1.()
l.-EB*BB)
«X

l.-S«S)
-tl.-l./AN)/(e.»AN«AN)
«X

N,2
CF THE K-TH ABSCISSA (=KRCNRCC AESCISSA) ANC
NCING WEIGHT.
1(XX,B,M,EPS,W1(K),N,IER)
.1) RETURN

B«S
EB»C
«X

) XX = C.CCC
CF THE (K + D-TH AESCISSA (»GAUSSIAN ABSCISSA)
ESPCNDING WEIGHTS.
2(XX,B,M,EPS,W1(K+1),W2(K+1),N,IER)
.1) RETURN
XX

E«S
B8«C
«X

•EQ.l) GCTC 6
C.OCC
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5t CALL ABWE1(A(N+1),B,M,EFS,W1iN+l),N,1ER)
57     6   RETURN
5£ ENC

59 SUBROUTINE ABWE1 ( X ,A ,N ,EPS,W ,M , 1ER )
6C REAU«6 A,AI,B0,Bl,e2,CCEF,CO,Cl,C2,CELTA,F,FD,W,X,YY
¿1 CIMENSICN AI2C1)
62 COMMON COEF.INDEKS
63 ITER = C
64 KA = C
65 IF(X.EC.C.CDC) KA = 1
66 1   ITER = ITER+1

C  START ITERATIVE PROCESS FCR THE COMPUTATION CF A KRONRCC
C  ABSCISSA.
C  TEST CN THE NUMBER CF ITERATION STEPS

67 IFIITER.UT.5C) GCTC 2
6E 1ER = 1
69 RETURN
7C     2   Bl = C.CDC
71 B2 = A1N+1)
72 YY = 4.CC»X»X-2.0C0
73 Cl = C.CDC
74 IF(INCEKS.EQ.l) GCTC 3
75 AI = N+N+l
76 C2 = AI»A(N+1)
77 DIF = 2.DC
7e GCTC 4
79     3   AI = N+l
EC C2 = C.CDC
61 CIF = l.CC
62 4   DC 5 K=1,N
63 AI = AI-DIF
£4 I = N-K+l
E5 BC = El
e6 Bl = B2
Í7 CC = Cl
66 Cl = C2
89 B2 = YY«81-BC+A(I)
9C I = I+INDEKS
91 5   D2 = >Y«C1-DC + AI«A( I)
92 IF(INCEKS.EQ.l) GCTC 6
93 F = XM82-B1)
94 FD = C2+D1
95 GCTC 7
96 6   F = C.5COMB2-BO)
97 FC = 4.CC«X»C2
96     7   DELTA = F/FD
99 X = X-CELTA

1CC IF(KA.EC.l) GCTC 8
C  TEST CN CONVERGENCE.

ICI IFIDAES(CELTA).GT.EPS) GCTG 1
1C2 KA = 1
1C3 GCTC 1

C  CCMPLTATICN CF THE WEIGHT.
1C4     6   DC = l.CO
1C5 Cl = X
1C6 AI = C.CC+O
1C7 DC 9 K = 2,M
ICE AI = AI+l.C+O
1C9 C2 - ((A1+AI+1.C+C)«X«C1-AI»CC)/(AI+1.C+C>
11C DO = Cl
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Ill
112
113
114

Cl = C2
W = CCEF/(FD«C2)
RETURN
ENC

115
116
117
116
119
12C
12!

122

123
124
125
126
127
126
129
13C
131
132
133
134
135
136
137
136
139
14C
141

142
143
144
145

146
147
146
149
15C
151
152
153
154
155

156
157
156
159
16C

SUBR
REAL
CIME
CGMM
ITER
KA =
IF(X

C START I
C  ABSCISS

1 ITER
C  TEST CN

IF ( I
1ER
RETL

2 PC =
PI =
PCC
PCI
AI =
CC 3
AI =
P2 =
PC2
PC =
PI =
PCC

3 PCI
CELT
X =

IFIK
C TEST CN

IF(C
KA =
GCTC

4 AN =
C  CCMPLTA

W2 =
PI =
P2 «
YY =
DC 5
I =
PC »
PI =

5 P2 =
IF C I

C COMPUTA
Wl =
GCTC

6 Wl =
7 RETU

ENC

CLTIN
• 6 A,
NSICN
CN CO

= C

C
• EC.C
TERflT
A.

* IT

THE
TER.L
= 1
RN

l.CC
X

= CD
= 1.0

C.CD
K = 2,
AI+1
((AI

= ((A

PI
P2

= PCI
= PC2

A = P
X-DEL
A.EC.

CCNV
AESIC

1
1
M

TICN
2.00
C.CC
A(N +
4.CD
K-l,

N-K + l
PI
F2
YY»P

NCEKS
TICN

CCEF
7
2.CO

RN

E ABWE2IX,A,N,EPS,W1,W2,N1,IER)
AN,CCEF,CELTA,PC,P1,P2,PD0,PC1,PC2,W1,W2,X,YY

AI2C1)
EF.INDEKS

•CDC) KA=1

IVE PROCESS FCR THE COMPUTATION CF A GAUSSIAN

ER + 1
NUMBER CF ITERATION STEPS.
T.5C) GCTC 2

C
C + 0
+ C

M
.DO
♦AI+1.CC)«X«P1-AI*P0)/(AI+1.C0)
I+AI+1.C+C)»(P1+X«PC1)-AI«FD0)/(AI+1.C0)

2/PC2
TA
1) GGTC 4
ERGENCE.
ELTA1.GT.EPS) GCTC 1

CF THE GAUSSIAN WEIGHT.
/(AN«PD2«PC)
C
1)
C«X«X-2.CC
N

1-PO+AII)
•EQ.l) GCTC 6
CF THE OTHER WEIGHT.
/(PC2»X«(F2-P1))+W2

•COEF/(PC2»(P2-P0))+W2
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