A Note on the Optimal Addition of Abscissas to Quadrature Formulas of Gauss and Lobatto Type

By Robert Piessens and Maria Branders

Abstract

An improved method for the optimal addition of abscissas to quadrature formulas of Gauss and Lobatto type is given.

1. Introduction. We consider the quadrature formula

$$
\begin{equation*}
\int_{-1}^{+1} f(x) d x \simeq \sum_{k=1}^{N} \alpha_{k} f\left(x_{k}\right)+\sum_{k=1}^{N+1} \beta_{k} f\left(\xi_{k}\right) \tag{1}
\end{equation*}
$$

where the x_{k} 's are the abscissas of the N-point Gaussian quadrature formula. We want to determine the additional abscissas ξ_{k} and the weights α_{k} and β_{k} so that the degree of exactness of (1) is maximal. This problem has already been discussed by Kronrod [1] and Patterson [2] and it is well known that the abscissas ξ_{k} must be the zeros of the polynomial $\phi_{N+1}(x)$ which satisfies

$$
\begin{equation*}
\int_{-1}^{+1} P_{N}(x) \phi_{N+1}(x) x^{k} d x=0, \quad k=0,1, \cdots, N \tag{2}
\end{equation*}
$$

where $P_{N}(x)$ is the Legendre polynomial of degree N. Thus, $\phi_{N+1}(x)$ must be an orthogonal polynomial with respect to the weight function $P_{N}(x)$. Then, the weights α_{k} and β_{k} can be determined so that the degree of exactness of (1) is $3 N+1$ if N is even and $3 N+2$ if N is odd.

Szegö [3] proved that the zeros of $\phi_{N+1}(x)$ and $P_{N}(x)$ are distinct and alternate on the interval $[-1,+1]$. Kronrod [1] gave a simple method for the computation of the coefficients of $\phi_{N+1}(x)$. This method requires the solution of a triangular system of linear equations, which is, unfortunately, very ill-conditioned. Patterson [2] expanded $\phi_{N+1}(x)$ in terms of Legendre polynomials. The coefficients of this expansion satisfy a linear system of equations which is well-conditioned, although its construction requires a certain amount of computing time.

The present note proposes the expansion of $\phi_{N+1}(x)$ in a series of Chebyshev polynomials. We also give explicit formulas for the weights α_{k} and β_{k}. Finally, we consider the optimal addition of abscissas to Lobatto rules. As compared with Patterson's method, our method has three advantages:
(i) It leads to a considerable saving in computing time since the formulas are much simpler.
(ii) The loss of significant figures through cancellation and round-off is slightly reduced, as we verified experimentally. This is in agreement with some theoretical results given by Gautschi [4].
(iii) It is applicable for every value of N, while Patterson's method fails in the

Lobatto case for $N=7,9,17,22,27,35,36,37,40, \cdots$, since some of the denominators in his recurrence formulae become zero.
2. Optimal Addition of Abscissas to Gaussian Quadrature Formulas. It is evident that $\phi_{N+1}(x)$ is an odd or even function depending on whether N is even or odd. Thus, $\phi_{N+1}(x)$ can be expressed as

$$
\begin{equation*}
\phi_{N+1}(x)=\sum_{k=0}^{m} b_{k} T_{2 k}(x), \quad \text { if } N \text { is odd } \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{N+1}(x)=\sum_{k=0}^{m} b_{k} T_{2 k+1}(x), \quad \text { if } N \text { is even, } \tag{4}
\end{equation*}
$$

where $m=[(N+1) / 2]$.
It is clear that the polynomial $\phi_{N+1}(x)$ is only defined to within an arbitrary multiplicative constant. For the sake of convenience, we assume $b_{m}=1$.

From (2), we derive the condition

$$
\begin{equation*}
\int_{-1}^{+1} P_{N}(x) \phi_{N+1}(x) T_{k}(x) d x=0, \quad k=0,1, \cdots, N \tag{5}
\end{equation*}
$$

In order to calculate the coefficients $b_{k}, k=0,1, \cdots, m-1$, (3) or (4) is substituted in (5). This leads to the system of equations

$$
b_{m-1}=\tau_{1}-1
$$

$$
\begin{equation*}
b_{m-k}=\sum_{i=1}^{k-1} b_{m-k+j} \tau_{i}+\tau_{k}, \quad k=2,3, \cdots, m \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{k}=-\int_{-1}^{+1} P_{N}(x) T_{N+2 k}(x) d x / \int_{-1}^{+1} P_{N}(x) T_{N}(x) d x \tag{7}
\end{equation*}
$$

In order to derive a recurrence formula for τ_{k}, we consider the integral

$$
\begin{equation*}
J=\int_{-1}^{+1}\left[x P_{N}(x)-P_{N+1}(x)\right] T_{l}(x) d x \tag{8}
\end{equation*}
$$

Using a well-known property of the Chebyshev polynomials, we obtain

$$
\begin{equation*}
J=\frac{1}{2} \int_{-1}^{+1}\left[x P_{N}-P_{N+1}\right] d\left(\frac{T_{l+1}}{l+1}-\frac{T_{l-1}}{l-1}\right), \tag{9}
\end{equation*}
$$

and, by integrating by parts, this integral can be expressed as

$$
\begin{equation*}
J=\frac{N}{2(l+1)} I_{N, l+1}-\frac{N}{2(l-1)} I_{N, l-1}, \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{N, l}=\int_{-1}^{+1} P_{N}(x) T_{l}(x) d x \tag{11}
\end{equation*}
$$

On the other hand, using a property of the Legendre polynomials, (8) can be transformed into

$$
J=\frac{1}{N+1} \int_{-1}^{+1}\left(1-x^{2}\right) T_{l}(x) d\left(P_{N}(x)\right)
$$

which can be expressed as

$$
\begin{equation*}
J=\frac{2+l}{2(N+1)} I_{N, l+1}+\frac{2-l}{2(N+1)} I_{N, l-1} \tag{12}
\end{equation*}
$$

Since $\tau_{k}=I_{N, N+2 k} / I_{N, N}$, the recurrence formula

$$
\begin{equation*}
\tau_{k+1}=\frac{[(N+2 k-1)(N+2 k)-(N+1) N](N+2 k+2)}{[(N+2 k+3)(N+2 k+2)-(N+1) N](N+2 k)} \tau_{k} \tag{13}
\end{equation*}
$$

where $\tau_{1}=(N+2) /(2 N+3)$ can be easily derived from (10) and (12).
System (6) is easier to construct than the corresponding system of Patterson [2], inasmuch as his method requires a set of recursions of variable lengths, while in our method only one recursion is needed. Moreover, further economy is achieved in solving the equation $\phi_{N+1}(x)=0$, since, using a modification of Clenshaw's algorithm of summation, an odd or even Chebyshev series can be evaluated more efficiently than an odd or even Legendre series [5, p. 10]. Indeed, the computing time can be halved.

Explicit formulas for the weights are

$$
\begin{array}{ll}
\alpha_{k}=\frac{C_{N}}{P_{N}^{\prime}\left(x_{k}\right) \phi_{N+1}\left(x_{k}\right)}+\frac{2}{N P_{N-1}\left(x_{k}\right) P_{N}^{\prime}\left(x_{k}\right)}, & k=1,2, \cdots, N \\
\beta_{k}=\frac{C_{N}}{\phi_{N+1}^{\prime}\left(\xi_{k}\right) P_{N}\left(\xi_{k}\right)}, & k=1,2, \cdots, N+1 \tag{15}
\end{array}
$$

where $C_{N}=2^{2 N+1}(N!)^{2} /(2 N+1)!$.
3. Optimal Addition of Abscissas to Lobatto Quadrature Formulas. We now consider the quadrature formula

$$
\begin{equation*}
\int_{-1}^{+1} f(x) d x \simeq \sum_{k=0}^{N+1} \alpha_{k} f\left(x_{k}\right)+\sum_{k=1}^{N+1} \beta_{k} f\left(\xi_{k}\right) \tag{16}
\end{equation*}
$$

where the x_{k} 's are abscissas of the Lobatto quadrature formula. Consequently, $x_{0}=-1, x_{N+1}=+1$ and $x_{1}, x_{2}, \cdots, x_{N}$ are the zeros of the Jacobi polynomial $P_{N}{ }^{(1,1)}(x)$. It is our purpose to determine the free abscissas ξ_{k} and the weights α_{k} and β_{k} so that the degree of exactness of (16) is maximal. Then, ξ_{k} must be a zero of the polynomial $\phi_{N+1}(x)$ which satisfies

$$
\begin{equation*}
\int_{-1}^{+1}\left(1-x^{2}\right) P_{N}^{(1,1)}(x) \phi_{N+1}(x) T_{k}(x) d x=0, \quad k=0,1,2, \cdots, N \tag{17}
\end{equation*}
$$

Again, we express $\phi_{N+1}(x)$ in terms of Chebyshev polynomials as in (3) or (4), according to the parity of N. The coefficients b_{k} can be found by solving the system (6) where

$$
\begin{equation*}
\tau_{k}=-\int_{-1}^{+1}\left(1-x^{2}\right) P_{N}^{(1,1)} T_{N+2 k} d x / \int_{-1}^{+1}\left(1-x^{2}\right) P_{N}^{(1,1)} T_{N} d x \tag{18}
\end{equation*}
$$

Using the relation

$$
\int_{-1}^{+1}\left(1-x^{2}\right) P_{N}^{(1,1)} T_{l} d x=\frac{1}{N+2}\left[(l+2) I_{N+1, l+1}-(l-2) I_{N+1, l-1}\right]
$$

where $I_{N . l}$ is defined by (11), the recurrence formula

$$
\begin{equation*}
\tau_{k+1}=\frac{[(N+2 k-1)(N+2 k-2)-(N+1)(N+2)](N+2 k+2)}{[(N+2 k+3)(N+2 k+4)-(N+1)(N+2)](N+2 k)} \tau_{k} \tag{19}
\end{equation*}
$$ can be derived from (13).

The starting value for (19) is

$$
\tau_{1}=3(N+2) /(2 N+5)
$$

The expressions for the weights are

$$
\begin{align*}
\alpha_{k}=\frac{C_{N}}{2 P_{N}^{\prime}\left(x_{k}\right) \phi_{N+1}\left(x_{k}\right)}+\frac{2}{(N+1)(N+2)\left[P_{N+1}\left(x_{k}\right)\right]^{2}} & \tag{20}\\
& \text { for } k=1,2, \cdots, N,
\end{align*}
$$

$$
\begin{equation*}
\alpha_{0}=\alpha_{N+1}=\frac{2}{(N+2)(N+1)}-\frac{C_{N}}{2(N+1) \phi_{N+1}(1)} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{k}=\frac{N+2}{2(N+1)} \frac{C_{N}}{\left[P_{N}\left(\xi_{k}\right)-\xi_{k} P_{N+1}\left(\xi_{k}\right)\right] \phi_{N+1}^{\prime}\left(\xi_{k}\right)}, \quad k=1,2, \cdots, N+1 \tag{22}
\end{equation*}
$$

where $C_{N}=2^{2 N+3}[(N+1)!]^{2} /(2 N+3)!$.
Appendix. Computer program. In this appendix, we describe a FORTRAN program for the construction of the quadrature formula (1). A listing of this program is reproduced in the supplement at the end of this issue. A program for the construction of the quadrature formula (11) may be obtained from the authors.

The program consists of three subroutines: the main subroutine KRONRO and two auxiliary subroutines ABWE1 and ABWE2, which are called by KRONRO.

In KRONRO the coefficients of the polynomial $\phi_{N+1}(x)$ are calculated.
In ABWE1 the abscissas x_{k} and weights α_{k} are calculated.
In ABWE2 the abscissas ξ_{k} and weights β_{k} are calculated.
The abscissas are calculated using Newton-Raphson's method. Starting values for this iterative process are provided by [6]

$$
x_{k} \simeq\left(1-\frac{1}{8 N^{2}}+\frac{1}{8 N^{3}}\right) \cos \left(\frac{2 k-1 / 2}{2 N+1} \pi\right)
$$

and

$$
\xi_{k} \simeq\left(1-\frac{1}{8 N^{2}}+\frac{1}{8 N^{3}}\right) \cos \left(\frac{2 k-3 / 2}{2 N+1} \pi\right)
$$

The program has been tested on the computer IBM 370/155 of the Computing Centre of the University of Leuven, for $N=2(1) 50(10) 200$. The computations were carried out in double precision (approximately 16 significant figures). For $N=200$, the maximal absolute error of the abscissas is 8.6×10^{-16} and of the weights 3.3×10^{-15}.

For $N=50$, the computing time is 1.7 sec ., for $N=100,6.4 \mathrm{sec}$. and for $N=200$, 24.7 sec .

Acknowledgement. This research was supported in part by the Fonds voor Kollektief Fundamenteel Onderzoek under Grant No. 10.174.

Applied Mathematics Division
Katholieke Universiteit Leuven
Heverlee, B-3030, Belgium

1. A. S. Kronrod, Nodes and Weights for Quadrature Formulas, "Nauka", Moscow, 1964; English transl., Consultants Bureau, New York, 1965. MR 32 \#597; \#598.
2. T. N. L. Patterson, "The optimum addition of points to quadrature formulae," Math. Comp., v. 22, 1968, pp. 847-856. MR 39 \#3701.
3. G. SZEGÖ," "Uber gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören," Math. Ann., v. 110, 1935, pp. 501-513.
4. W. GAUTSCHI, "On the construction of Gaussian quadrature rules from modified moments," Math. Comp., v. 24, 1970, pp. 245-260. MR 44 \#2341a.
5. C. W. Clenshaw, Chebyshev Series for Mathematical Functions, National Physical Laboratory Mathematical Tables, vol. 5, Her Majesty's Stationary Office, London, 1962. MR 26 \# 362.
6. F. G. Tricomi, Vorlesungen über Orthogonalreihen, Die Grundlehren der math. Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 76, Springer-Verlag, Berlin, 1955. MR 17, 30.

SUPPLEMENT TO

A Note on the Optimal Addition of Abscissas to Quadrature Formulas of
Gauss and Lobatto Type
by
ROBERT PIESSENS \& MARIA BRANDERS

pp. 135-139, this issue

```
    SLERCLTINE KRONRC(N,A,h1,h2,EPS,IER)
    mis slercline calcllates the abscisSas a anc weightS wl
    C CF THE (2#N+1)-PCINT GLACRATURE FORMULA WHICF IS OBTAINEC
    FRCM THE A-PCINT GALSSIAN RULE BY OPTIMAL ACCITION OF
    A+1 PCIATS. THE CPTIMALLY ACCED POINTS ARE CALLEC KRCNROC
    ABSCISSAS. AESCISSAS ANC hEICHTS ARE CALCULATEC FCR
    INTEGRATICA CN THE INTERVAL (-1,l). SIACE THIS QUACRATURE
    FCRMLLA IS SYNMETRICAL HITF RESPECT TO THE CRIGINE,CNLY
    THE ACANEGATIVE ABSCISSAS ARE CALCULATEC. WEIGHTS CORRES-
    PCNCING TC SYMMETRICAL AESCISSAS ARE EGLAL.
    IN ACCITICN, THE WEIGFTS hz CF THE GAUSSIAA RULE ARE
    calcllatec.
    REAL*E A,AK,AN,B,C,TAL,h1,h2,XX
    IINENSICN A(2C1),E(201),TAU(201),W1(201),h2(2C1)
    CCNMCA [,INDEKS
INPUTPARAMETERS
    A CRCER OF THE GALSSIAN GUACRATURE FCRNULA TO WHICH
        AESCISSAS NUST RE ACLEC.
    EPS REGLESTED ABSCLLTE ACCURACY OF THE AESCISSAS. THE
        ITERATIVE PRCCESS TERNIAATES IF THE AESCLUTE
        CIFFERENCE BEThEEN ThO SUCCESSIVE APPRCXIMATIONS
        IS LESS THAN EPS.
CLTPLTFARANETERS
    A VECTCR OF CIMENSICN A+1 WHICH CCNTAINS THE NONNEGA-
        TIVE ABSCISSAS. A(I) IS THE LARGEST ABSCISSA.A(2*K)
        IS A GAUSSIAA ABSCISSA.A(2*K-1) IS A KRCNRCC ABSCISSA.
    h1 VECTCR CF DIMEASICA N+1 h+ICH CCNTAINS THE WEICPTS
        CCRRESPONDING TC THE ABSCISSAS A.
    h2 VECTCR OF CIMENSICA N+1, CONTAINING THE GAUSSIAN
        hEICHTS. W2(2*K-1) =C AND W2(2*K) IS THE GALUSSIAN
        hEIGHT CCRRESPCACIAG TC A(2*K).
    IER ERRCR COCE
        IF IER=0 ALL AESCISSAS ARE FCUNC TC hITHIN THE
        REQLESTED ACCLRACY.
        IF IER=1 ONE CF THE ABSCISSAS IS NCT FCUNC AFTER
        5C ITERATICN STEPS ANC THE CCMPLTATION IS TERMINATEC.
REGLIREC SLBPROGRANS
    AEhE1 CALCULATES THE KRCNRCD ABSCISSAS ANC CCRRES-
                PONCING hEIGHTS.
    ABLE2 CALCULATES THE GALSSIAN ABSCISSAS ANC THE CCR-
        RESPONDING hEIGHTS.
```

 \(C\)
 C

```
C
    IER = C
    NP=N+1
        N = ( \Lambda + 1 ) / 2
        IACEKS = 1
        IF(2*M.EQ.N) INDEKS=0
        C = 2.CLC
        AN = C.CDC
        CC 1 K=1,N
        AN =AN +1.DC
    1 C = CMAN/(AN+C.5CC)
    CC < K=1, NP
    2 W2(K)=C.CD+C
        N2=N+N+1
        M1 = M-1
C CALClLATICA CF THE CHEEYSHEV CCEFFICIENTS CF THE CRTHC-
C ECNAL PCLYNCMIAL.
        TAL(1)}=(AN+2.DC)/(AN+AN+3.CCO
        B(N)=TAL(1)-1.CCC
        IF(N.LT.3) GCTC 4
        AK = AN
        CC 3 L=1,NI
        \DeltaK = AK +2.ODO
        TAL(L+1) = ((AK-1.CLC)*AK-AN*(AN+1.CCO))*(AK+2.CCO)*TAU(L))
        1 (AK#((AK+3.CDC)=(AK+2.CCO)-AN*(AN+1.OCC)))
            NL=N-L
        B(ML)=TAL(L+1)
        CC 3 LL=1,L
        NN=NL+LL
        B(NL)=E(ML)+TAL(LL)*E(NM)
        B(N+1)=1.000
C CALCLLATICA CF APPRCXINATE VALUES FCR THE AESCISSAS
    BB = SIN(1.57C7SE/(SNCL(AN+AN)+1.))
        X = SGRT(1.-EB*RE)
        S = 2.*EB#X
        C = SGRT(1.-S*S)
        CCEF=1.-(1.-1./AN)/(&.*AN*AN)
        xX=CCEF*X
            DC 5 K=1, A,2
C CALCLLATICA CF THE K-TH AESCISSA (=KRCARCC AESCISSA) ANC
C THE CCRRESPONCING hEIEFT.
    CALL ABhEI(XX,B,N,EPS,Wl(K),N,IER)
    IF(IER.EQ.1) RETLRA
    A(K) = XX
    Y = X
    X=Y*C-RE*S
    EB=Y*S+EB*C
    XX = CCEF*X
    IF(K.EG.N) XX = C.CLO
C CALCLLATICN CF THE (K+1)-TH AESCISSA (=GAUSSIAN ABSCISSA)
C ANC THE CCRRESPCNDING WEIGITS.
    CALL ABhE2(XX,B,N,EPS,h1(K+1),h2(K+1),N,IER)
    IF(IER.EQ.1) RETLRA
    A(K+1)= XX
    Y = X
    X=Y*C-BE*S
    EB = Y*S+EB*C
5 }\quadxx=CCEF*
    IF(INCEKS.EQ.1) GCTC 6
    A(\Lambda+1)=C.OCC
```

```
        CALL ABHEI(A(N+1),B,N,EFS,WI (N+1),N,IER)
    \epsilon RETLRA
        ENC
        SLBRCLTINE ARhEI(X,A,N,EPS,W,NI,IER)
        REAL#& A,AI,BO,B1,E2,CCEF,CO,C1,D2,CELTA,F,FD,W,X,YY
        CINENSICN A(2CI)
        CONMCN COEF,INDEKS
        ITER = C
        KA = C
        IF(X.EG.C.CDC) KA=1
    1 ITER = ITER+1
C START ITERATIVE PRCCESS FCR THE CCMPLTATICA CF A KRONRCD
C \triangleBSCISSA.
C TEST CN THE nlMBER CF ITERATICN STEPS
            IF(ITER.LT.SC) GCTC 2
            IER = 1
            RETLRA
    2 Bl = C.CDC
        B2 = A(N+1)
        YY = 4.CC*X*X-2.0CO
        CL = C.CDC
        IF(INCEKS.EQ.1) GCTC 3
        AI = \Lambda+\Lambda+1
        C2 = AI*A(N+1)
        DIF = 2.DC
        GCTC 4
    3 AT = N+1
        C2 = C.CDC
        CIF = 1.DC
        4 DC 5 K=1,N
        AI = AI-DIF
        I = N-K+1
        BC=E1
        B1 = E2
        CC= C1
        C1 = C2
        B2 = YY*B1-BC+A(I)
        I = I+INDEKS
    5 D2 = YY*CI-DC+AI*A(I)
        IF(INCEKS.EQ.1) GCTC 6
        F= X*(E2-81)
        FD=C2+D1
        GCTC 7
    \epsilon F = C.5[0*(B2-80)
        FC=4.CC*X*C2
    7 DELTA = F/FD
        X = X-CELTA
        IF(KA.EG.1) GCTC &
C IEST CN CCNVERGENCE.
    IF(DAES(CELTA).GT.EPS) GCTC 1
    KA = 1
    GCTC 1
    C CCMPLTATICA CF THE hEIGHT.
    & DC = 1.CO
    C1 = x
        AI = C.CC+O
        DC S K}=2,N
        AI = AI+I.D+O
        C2 = ((AI +AI +1.C+C)*X*CI-AI*CO)/(AI +1.C+C)
        CC= Cl
```

```
111 S C1 = C2
112
113
114
115
11t
1 1 7
118
11s
12C
121
122
123
124
125
12t
127
12\varepsilon
12s
13C
131
132
123
134
135
136
127
13\varepsilon
139
14C
141
142
143
144
145
146
147
14\varepsilon
149
15C
151
152
153
154
155
156
157
157
155
1\inC
```

```
        W=CLEF/(FD*C2)
```

 W=CLEF/(FD*C2)
 RETLRA
 RETLRA
 ENC
 ENC
 SLERCLTINE AEWE2(X,A,N,EPS,W1,W2,N1,IER)
 SLERCLTINE AEWE2(X,A,N,EPS,W1,W2,N1,IER)
 REAL*E A,AN,CCEF,CELTA,PC,P1,P2,PDO,PC1,PC2,W1,W2,X,YY
 REAL*E A,AN,CCEF,CELTA,PC,P1,P2,PDO,PC1,PC2,W1,W2,X,YY
 CIMENSICN A(2Cl)
 CIMENSICN A(2Cl)
 commCA COEF,indekS
 commCA COEF,indekS
 ITER = C
 ITER = C
 KA = C
 KA = C
 JF(X.EG.C.CDC) KA=1
 JF(X.EG.C.CDC) KA=1
 C START ITERATIVE pROCESS fCR the cCmputaticn cF a gaussian
C START ITERATIVE pROCESS fCR the cCmputaticn cF a gaussian
C ABSCISSA.
C ABSCISSA.
1 ITER = ITER+1
1 ITER = ITER+1
C TEST CN THE NCMBER CF ITERATICN STEPS.
C TEST CN THE NCMBER CF ITERATICN STEPS.
IF(ITER.LT.5C) GCTC 2
IF(ITER.LT.5C) GCTC 2
IER = 1
IER = 1
RETURA
RETURA
2 PC = 1.LC
2 PC = 1.LC
Pl = x
Pl = x
PCC = C.DC
PCC = C.DC
PC1 = 1.OC+0
PC1 = 1.OC+0
AI = C.CD+C
AI = C.CD+C
DC 3 K=2,N1
DC 3 K=2,N1
AI=AI+1.DO
AI=AI+1.DO
P2 = ((AI +AI +1.CC)*X*PI-AI*PO)/(AI+1.DO)
P2 = ((AI +AI +1.CC)*X*PI-AI*PO)/(AI+1.DO)
PC2 = ((AI+AI+1.C+C)*(PI+X*PCI)-AI*PCO)/(AI+1.CO)
PC2 = ((AI+AI+1.C+C)*(PI+X*PCI)-AI*PCO)/(AI+1.CO)
PC = Pl
PC = Pl
P1 = P2
P1 = P2
PCC = PCI
PCC = PCI
3 PC1 = PC2
3 PC1 = PC2
DELTA = P2/PC2
DELTA = P2/PC2
x = x-DELTA
x = x-DELTA
IF(KA.EC.1) GCTC 4
IF(KA.EC.1) GCTC 4
C teSt cN CONVERGENCE.
C teSt cN CONVERGENCE.
IF(CAES(CELTA).GT.EPS) CCTC 1
IF(CAES(CELTA).GT.EPS) CCTC 1
KA = 1
KA = 1
GCTC 1
GCTC 1
4 AN = N1
4 AN = N1
C CCMPLTATICA CF the galssian height.
C CCMPLTATICA CF the galssian height.
h2 = 2.00/(AN*PD2*PC)
h2 = 2.00/(AN*PD2*PC)
P1 = C.CDC
P1 = C.CDC
P2 = A (A+1)
P2 = A (A+1)
Yy = 4.CDC*X*X-2.CC
Yy = 4.CDC*X*X-2.CC
DC 5. }k=1,
DC 5. }k=1,
I = N-K+1
I = N-K+1
PC = Pl
PC = Pl
P1 = F2
P1 = F2
5 P2 = YY*P1-PO+A(I)
5 P2 = YY*P1-PO+A(I)
IF(INCEKS.EQ.1) GCTC E
IF(INCEKS.EQ.1) GCTC E
C CCNPLTATICN CF THE CTHER hEIGHT.
C CCNPLTATICN CF THE CTHER hEIGHT.
W1 = CCEF/(PC2*X*(P2-P1))+W2
W1 = CCEF/(PC2*X*(P2-P1))+W2
GCTC 7
GCTC 7
\epsilon h1 = 2.CO*COEF/(PC2*(P2-PO))+h2
\epsilon h1 = 2.CO*COEF/(PC2*(P2-PO))+h2
7 RETLRA
7 RETLRA
ENC

```
        ENC
```

