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A Note on the Optimal Addition of Abscissas to
Quadrature Formulas of Gauss and Lobatto Type

By Robert Piessens and Maria Branders

Abstract. An improved method for the optimal addition of abscissas to quadrature for-
mulas of Gauss and Lobatto type is given.

1. Introduction. We consider the quadrature formula

+ N+1

1 N
) 10 dr > 2 anf(n) + 30 Buf(E),
where the x,’s are the abscissas of the N-point Gaussian quadrature formula. We
want to determine the additional abscissas £, and the weights «;, and B, so that the
degree of exactness of (1) is maximal. This problem has already been discussed by
Kronrod [1] and Patterson [2] and it is well known that the abscissas &, must be the
zeros of the polynomial ¢y.,(x) which satisfies

+1
) f Pry(x)pn 1 (x)x* dx = 0, k=0,1,---, N,
-1

where Py(x) is the Legendre polynomial of degree N. Thus, ¢x.,(x) must be an ortho-
gonal polynomial with respect to the weight function Py(x). Then, the weights a,
and B, can be determined so that the degree of exactness of (1) is 3N + 1 if N is even
and 3N + 2 if N is odd.

Szego [3] proved that the zeros of ¢y.,(x) and Py(x) are distinct and alternate on
the interval [—1, 4-1]. Kronrod [1] gave a simple method for the computation of the
coefficients of ¢y.,(x). This method requires the solution of a triangular system of
linear equations, which is, unfortunately, very ill-conditioned. Patterson [2] expanded
¢~+1(x) in terms of Legendre polynomials. The coefficients of this expansion satisfy
a linear system of equations which is well-conditioned, although its construction
requires a certain amount of computing time.

The present note proposes the expansion of ¢y.,(x) in a series of Chebyshev
polynomials. We also give explicit formulas for the weights «, and g,. Finally, we
consider the optimal addition of abscissas to Lobatto rules. As compared with
Patterson’s method, our method has three advantages:

(i) It leads to a considerable saving in computing time since the formulas are
much simpler.

(ii) The loss of significant figures through cancellation and round-off is slightly
reduced, as we verified experimentally. This is in agreement with some theoretical
results given by Gautschi [4].

(iii) It is applicable for every value of N, while Patterson’s method fails in the
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Lobatto case for N = 7,9, 17, 22, 27, 35, 36, 37, 40, - - - , since some of the denomi-
nators in his recurrence formulae become zero.

2. Optimal Addition of Abscissas to Gaussian Quadrature Formulas. It is
evident that ¢y.,(x) is an odd or even function depending on whether N is even
or odd. Thus, ¢x.,(x) can be expressed as

3) dya(x) = 2./ bTu(x), if N is odd,
k=0

and

(4) byar(x) = 3 bToraa(x), if N is even,
k=0

where m = [(N + 1)/2].

It is clear that the polynomial ¢y.,(x) is only defined to within an arbitrary
multiplicative constant. For the sake of convenience, we assume b,, = 1.

From (2), we derive the condition

+1
®) [ Pva@nmar =0, k=01, N.
-1
In order to calculate the coefficients b,, k = 0, 1, - - - , m — 1, (3) or (4) is substituted
in (5). This leads to the system of equations
bm—l =T — 1’
(6) k-1
bm-k = Z bm«—k+i7i + Tks k = 29 37 crr o, m,
i=1
where
+1 +1
(@] Te = — Prn(X)Tys2:(x) dx/f Prn(x)Tn(x) dx.
-1 -1
In order to derive a recurrence formula for 7., we consider the integral
+1
® 7= [ P — PeITi d.
-1
Using a well-known property of the Chebyshev polynomials, we obtain
_1r (Tm T)
(9) —2 » [xPy PN+1]dI+1 I -1/’
and, by integrating by parts, this integral can be expressed as
N N
(10) J = 2(1 + l) IN.l+l - 2(1 _ 1) IN,z—n
where

(1) o= [ | Pa(ITx) d.
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On the other hand, using a property of the Legendre polynomials, (8) can be trans-
formed into

1 +1 .
1= 51 [ a = aee,
which can be expressed as
241 2 —1
(12) J= AN F D Iy + 2N F 1) Iv,i-x.

Since 7, = Iy, y+2t/In, n, the recurrence formula

(N + 2k — 1)(N + 2k) — (N + DNIN + 2 + 2)
(N + 2k + 3)(N + 2k + 2) — (N + DNIN + 2k) ™

where 7, = (N 4+ 2)/(2N + 3) can be easily derived from (10) and (12).

System (6) is easier to construct than the corresponding system of Patterson [2],
inasmuch as his method requires a set of recursions of variable lengths, while in our
method only one recursion is needed. Moreover, further economy is achieved in
solving the equation ¢y.,(x) = 0, since, using a modification of Clenshaw’s algorithm
of summation, an odd or even Chebyshev series can be evaluated more efficiently
than an odd or even Legendre series [5, p. 10]. Indeed, the computing time can be
halved.

Explicit formulas for the weights are

13) 7=

B Cy 2 .
(14) e = PI/V(xk)¢N+l(xk) + NPN—I(xk)PI/V(xk)” k 1,2, » N
I & _
5 B = e PG k=12, N+1,

where Cy = 2V /(N1)*/(2N + D

3. Optimal Addition of Abscissas to Lobatto Quadrature Formulas. We now
consider the quadrature formula

+1 N+1 N+1
16) [ 16 x>~ T et + 3 160,

where the x,’s are abscissas of the Lobatto quadrature formula. Consequently,
Xo = —1, xy.1 = +1 and x;, x,, - -+, xy are the zeros of the Jacobi polynomial
Py (x). Tt is our purpose to determine the free abscissas &, and the weights o
and B, so that the degree of exactness of (16) is maximal. Then, £, must be a zero
of the polynomial ¢y.,(x) which satisfies

+1

amn (1 — )Py P xWys 1 () Te(x) dx = 0, k=0,1,2,---, N.

-1

Again, we express ¢y.1(x) in terms of Chebyshev polynomials as in (3) or (4), according
to the parity of N. The coefficients b, can be found by solving the system (6) where

+1 +1
a18) T = —f A = HPY ' Ty dx/f a1 — PYV Ty dx.
-1 -1
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Using the relation

+1
fl (1 — ¥)PYOT, dx = [+ Dlyori — (= Dyirioa],

1
N+ 2
where Iy , is defined by (11), the recurrence formula

(19) 7., = LN+ 2 = DN + 2k = 2) — (N + (N + N + 2% + 2)
ke (N + 2k + 3)(N + 2k + 4) — (N + 1)(N 4+ 2)I(N + 2k) Tk

can be derived from (13).
The starting value for (19) is

= 3(N + 2)/2N +5).

The expressions for the weights are

o Cw " 2
20 2PM@Xvalw) T (N + DN + 2Pyl
fork=1,2,---, N,
on B B 2 _ Cwn
TERTNF DN F D 2N + D))
@) B =-Nt2 Cn k=1,2,-++,N+1,

T 2N F 1) [PyE) — EPyorE)lonaE)
where Cy = 2”’*3[(N + 1)!]2/(2N + 3).

Appendix. Computer program. In this appendix, we describe a FORTRAN
program for the construction of the quadrature formula (1). A listing of this program
is reproduced in the supplement at the end of this issue. A program for the con-
struction of the quadrature formula (11) may be obtained from the authors.

The program consists of three subroutines: the main subroutine KRONRO and
two auxiliary subroutines ABWEI and ABWE2, which are called by KRONRO.

In KRONRO the coefficients of the polynomial ¢x.,(x) are calculated.

In ABWEI the abscissas x, and weights «, are calculated.

In ABWE? the abscissas £, and weights 8, are calculated.

The abscissas are calculated using Newton-Raphson’s method. Starting values
for this iterative process are provided by [6]

oy 1,1 2k—1/2)
T = (1 sv? T 8N3) °°S( 2N+1 7

and

~fp L L z_k_;_s_/_Z)
b = (1 s’ T 8N3) °°s( 2N+ 17

The program has been tested on the computer IBM 370,/155 of the Computing Centre
of the University of Leuven, for N = 2(1)50(10)200. The computations were carried
out in double precision (approximately 16 significant figures). For N = 200, the
maximal absolute error of the abscissas is 8.6 X 107 '® and of the weights 3.3 X 107*°,
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For N = 50, the computing time is 1.7 sec., for N = 100, 6.4 sec. and for N = 200,
24.7 sec.
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1 SUBRCLTINE KRONRC(NsAyhloh2,EPS,IER)

THIS SLBRCLTINE CALCLLATES THE ABSCISSAS A ANC WEIGHTS W1
CF THE (2#N+1)-PCINT CUACRATURE FORMULA WHICF IS OBTAINEC
FRCM THE N-PCINT GALSSIAMN RULE BY OPTINMAL ACCITION OF

N+¢1 PCINTS. THE CPTIMALLY ACCEC POINTS ARE CALLEC KRCNROC
ABSCISSAS. ABSCISSAS ANC WEIGHTS ARE CALCULATEC FCR
INTEGRATICN CN THE INTERVAL (-1,1). SINCE THIS QUACRATURE
FCRMLLA IS SYMMETRICAL wWITH RESPECT TO THE CRIGINE,CNLY
THE NCANEGATIVE ABSCISSAS ARE CALCULATEL. WEIGHTS CORRES-
PCNCING TC SYMMETRICAL ABSCISSAS ARE ECUAL.

IN ACCITICN, THE WEICKFTS WZ CF THE GAUSSIAM RULE ARE
CALCULATEC.

OOOOOOOOOOOO0

REAL2E A'AK.AN,B.C.IAL.H.bZ,XX
CIMENSICN A(2C1),8(201),TAU(201),W1(201),0W2(2C1)
CCMMCN Cy INDEKS

SHwn

INPUTPARAMETERS

N CRCER CF THE GAUSSIAN CUACRATURE FCRMULA TO WHICF
ABSCISSAS MUST BE ACCEC.

EPS RECLESTED ABSCLUTE ACCURACY COF THE ABSCISSAS. THE
ITERATIVE PRCCESS TERMINATES IF THE ABSCLUTE
CIFFERENCE BETWEEN ThO SUCCESSIVE APPRCXIMATIONS
IS LESS THAN EPS.

CLTPLTFARANETERS

A VECTCR OF CIMENSICN N+l WHICH CCNTAINS THE NONNEGA-
TIVE ABSCISSAS. A(1) IS THE LARGEST ABSCISSA.A(2#K)
IS A GAUSSIAN ABSCISSA.A(2#K-1) IS A KRCNRCLC ABSCISSA.

Wl VECTCR CF DIMENSICN N+41 WHICH CCNTAINS THE WEICHTS
CCRRESPONDING TC THE ABSCISSAS A.

W2 VECTCR OF CIMENSICN N+41, CONTAINING THE GAUSSIAN
WEICHTS. W2(2#K-1) =C AND W2(2#K) IS THE GAUSSIAN
WEICHT CCRRESPCACING TC A(2#K).

IER ERRCR COCE
IF TER=0 ALL ABSCISSAS ARE FCUNC TC WITHIN THE
REQUESTED ACCLRACY.

IF IER=1 ONE CF THE ABSCISSAS IS NCT FCUNC AFTER
SC ITERATICN STEPS ANC THE CCMPLTATION IS TERMINATEC.

RECLIREC SLBPROGRANS
ABWE1l CALCULATES THE KRCNRCL ABSCISSAS ANC CCRRES-
PONCING WEIGHTS.
ABWE2 CALCULATES THE GALSSIAN ABSCISSAS ANC THE CCR-
RESPONDING WEIGHTS.

aNaXsNasNaEsNeNsNeNeNaNelslaNeloNaNoleiasNaNaleeNaNaoNeNaNal




g IER = C
€ NP = N+1
1 M = (N+#1)/2
€ INCEKS = 1
S IF(2#NM.EQ.N) INDEKS=0
1c C = 2.CCC
11 AN = C.CDC
1¢ CC 1 K=1,yN
12 AN = AN +1.DC
14 1 C = CeAN/(AN+C.5CC)
18 CC 2 K=1,NP
16 2 W2(K) = C.GCD+C
17 N2 = N4N+l
1€ M1 = v-1
C CALCULATICN CF THE CHEBYSHEV CCEFFICIENTS CF THE CRTHC-
C CGCNAL PCLYNCNMIAL.
19 TAL(1) = (AN+2.DC)/(AN+AN+3.CCO)
2C B(¥) = TAL(1)-1l.CCC
21 IF(N.LT<3) GCTC 4
r ¥ AK = AN
23 CC 3 L=1,M1
24 AK = AK +2.0DC
3 TAL(L+1) = ((AK-1.CCC)#AK-AN®(AN+1.CCC))#(AK+2.CCC)aTAU(L)/
1 (AK®((AK+3.CDC)# (AK+2.CCO)-AN=(AN+1.0CC)))
2¢ ML = N=L
27 B(ML) = TAL(L+1)
rid CC 2 LL=1,L
26 MM = ML4LL
3C 3 B(NML) = B(MLI+TAL(LL)#B(MV)
21 4 B(M+1) = 1.0D0
C CALCULLATICN CF APPRCXIMATE VALUES FCR THE ABSCISSAS
3z BB = SIN(1.57C7S6/(SANCL(AN+AN)+1.))
23 X = SCRT(1.-BB=BEB)
24 S = 2.#BBsX
2¢ C = SCRT(1.-S5%S)
3¢ CCEF = le-=(1le=14/AN)/(B.xAN®AN)
37 XX = CCEFaX
3¢ DC ¢ K=l.h'2
C CALCULLATICN CF THE K-TH ABSCISSA (=KRCNRCC ABSCISSA) ANC
C THE CCRRESPONCING WEICKT.
35 CALL ABWEL(XXyByMyEPSyW1(K)yN,IER)
4C IF(IER.EQ.1) RETLRN
41 A(K) = XX
4z Y = X
43 X = Y#C-BE#S
44 BB = YxS+BEB#C
45 XX = CCEF#X
4¢€ IF(K<EC.N) XX = C.CCO
C CALCULATICN CF THE (K+41)-T+ ABSCISSA (=CAUSSIAN ABSCISSA)
C AND THE CCRRESPCNDING WEIGFTS.
47 CALL ABWE2(XXyByMoEPSyh1 (K+1) yW2(K+1),N,IER)
4E IF(IER.EQ.1) RETLRAN
49 A(K+1) = XX
5C Y = X
€1 X = Ya(-BR#S
€2 BB = Y#S+BB«(C
£3 H XX = CCEF=X
£4 IF(INCEKS.EQ.1) GCTC 6
(X3

A(N+1) = C.OCC




S¢ CALL ABWELUA(N+1)4Bs¥,EFSoWltN+1),N,[ER)

£7 € RETLRA
SE ENC
cs SULBRCUTINE ABWEL(X,A4N,EPS,WyNL,IER)
€C REAL#E AyAT14B0yBL1yB2+CCEFsCO9sC19C24CELTAsF9FOoWoXaYY
€1 CINMENSICN A(2C1)
€2 CCVMMCN COEF, INDEKS
€2 ITER = C
€4 KA = (
] IF(X.EC.C.CDC) KA=1
€€ 1 ITER = ITER+1

C START ITERATIVE PRCCESS FCR ThE CCMPULTATICN CF A KRONRCD
C ABsCISsSa,
C TEST CN THE NUMBER CF ITERATICN STEPS

[ IF(ITER.LT.5C) GCTC 2
(3] IER = 1
€S RETLRA
7C 2 81 = C.CDC
71 82 = A(N+1)
72 YY = 4.CCxX#X-2.0C0
12 Cl = C.CCC
14 IF(INCEKS.EQ.1) CCTC 3
E Al = NeN+l
1¢ 02 = AI#A(N+1)
117 CIF = 2.DC
78 GCTC 4
¢ 2 AT = N+1
€C C2 = C.CCC
€1 CIF = 1.CC
€2 4 DC 5 K=1,4N
€2 Al = AI-DIF
€4 I = N-K+1
[ BC = E1l1
13 Bl = B2
€7 CC = C1
€e Cl = C2
es B2 = YY#B1-BC+A(I)
SC I = I+INDEKS
S1 € L2 = YY«C1-DC+AI=A(])
52 IF(INCEKS.EQ.1) GCTC ¢
s3 F = x#(B2-81)
S4 FD = C2+D1
St GCT1C 7
S¢ 3 F = C.5C0#(B2-80)
s1 FC = 4.,CCex=C2
Se 1 CELTA = F/FD
SS X = X-CELTA
1¢C IF(KA.EC.1) GCTC 8
C TEST CN CCNVERGENCE.
ic1 IF(CABS(CELTA).GT.EPS) GCTC 1
1c2 KA = 1
1C2 GCTC 1
C CCMPLTATICN CF THE WEICKT.
1C4 e bC = 1.CO
1CS Cl = X
1C¢ Al = C.CC+0
1c7 DC 6 K=2,N1
1CE Al = AI+1.0+0
1Cs C2 = ((AT+4AT1+1.C+4C)axsC1-AIsCO)/(AI+1.C+C)

11C ce

C1




i11 S Cl = C2

112 W = CCEF/(FD#C2)

112 RETLRA

114 ENC

115 SUBRCLTINE ABWE2(X, AN, EPS,WLlyW2,N1,IER)

11¢ REAL#E AyANoCCEF,CELTA,PCyPL4P2,PDOyPCLyPC2,WLl ) W24X,YY
117 CINENSICN A(2C1)

11¢ CCFNCN COEF, INDEKS

119 ITER = C

12C KA = C

12} JF(X.EC.C.CDC) KA=1

C START ITERATIVE PROCESS FCR THE CCMPUTATICAN CF A GAUSSIAN
C ABSCISSA.

122 1 ITER = ITER+1
C TEST CN THE ANUMBER CF ITERATICN STEPS.
123 IF(ITER.LTL5C) GCTC 2
124 IER = 1
12¢ RETURN
12¢ 2 PC = 1.CC
127 P1 = X
12¢ PCC = C.DC
126¢ PC1 = 1.0C+0
13¢C AT = C.CD+C
131 CC 3 K=2,AN1
122 Al = AI+1.D0
122 P2 = ((AT+AI+1.0C)aX#P1l-AI#P0)/(AI+1.C0)
134 PC2 = ((AT+AI+1.C+C)=(P1+X#PC1l)-AI«FCO)/(AI+1.C0)
13¢% PC = P1
13¢ P1 = P2
127 PCC = PC1
13¢ 3 PC1 = PC2
139 CELTA = P2/PC2
14C X = X=-DELTA
141 IF(KA.EC.1) GCTC 4
C TEST CN CCNVERGENCE.
142 IF(CAES(CELTA).GT.EPS) CCTC 1
142 KA =1
144 GCTC 1
145 4 AN = N1
C CCMPLTATICMN CF THE CGALSSIAN WEIGHT.
14¢ W2 = 2.00/(AN=PD2#PC)
147 Pl = C.COC
14¢€ P2 = A(N+])
149 YY = 4.,CDC#XeX-2,.CC
15¢C DC 5 K=1,4N
181 I = N-K+l
152 PC = Pl
152 Pl = F2
154 £ P2 = YY#P1-PO+A(])
155 IF(INCEKS.EQ.1) GCTC ¢
C CCMPUTATICN CF THE CTRER WEIGHT.
15¢ W1 = CCEF/(PC2#X#(P2-P1))+W2
157 GCTC 7
158 3 hl = 2.CO®COEF/(PC2#(P2-P0))+h2
156 7 RETLRA

1€C ENC




