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A Class of A- Stable Advanced Multistep Methods

By Jack Williams and Frank de Hoog

Abstract. A class of ^-stable advanced multistep methods is derived for the numerical

solution of initial value problems in ordinary differential equations. The methods, of all

orders of accuracy up to ten, only require values of y' and are self starting. Results for the

asymptotic behaviour of the discretization error and for estimating local truncation error

are also obtained. The practical implementation of the fourth order method is described

and the method applied to some stiff equations. Numerical comparisons are made with

Gear's method.

1. Introduction. Recently, particular attention has been given to the study of

/1-stable methods for the solution of the m ordinary differential equations

(1.1) Z = fix, y),    y(a) = r,,        xE [a, b].

Let {y„\ denote the solution of some difference method approximation of/ = qy,

XO) = 1, on the mesh \xn) with fixed step size A. Then the difference method is

called .4-stable (in the sense of Dahlquist [3]) if \\yn\U —> 0 as « and xn —* °° for any

fixed A > 0 and any scalar constant q with We(q) < 0. This very strong stability

requirement is particularly useful for the integration of stiff systems, that is, where

the Jacobian matrix (df/dy) has some eigenvalues X, for which Re(X.) are negative

and have greatly differing magnitudes.

Dahlquist [3] shows that within the class of linear multistep methods, ^-stable

methods are necessarily implicit and that the A -stable formula having the smallest

truncation error is the trapezoidal rule (of order p = 2). Examples of more accurate

^-stable methods are given in [7], [1], [2], [12], [18], [19] and [20]. Lapidus and

Seinfeld [14] and Gear [10] also discuss and reference many other /1-stable methods.

In addition, the report of Dahlquist et al. [4] provides a valuable survey of methods

for stiff systems.

Our main concern in this paper is with methods for the solution of stiff systems.

Particularly relevant here are the implicit methods described by Rosser [16], Watts

and Shampine [17], [18], and Watts [19]. From the viewpoint of advanced multistep

methods, we discuss a subclass of the block implicit methods (in the terminology

of Shampine and Watts) in [18] which are ^-stable for all orders up to ten. An im-

portant feature of the methods is that they are used in practice like one-step methods

and thus have a simple step-changing facility. Although essentially discrete variable

methods, we show that they can easily be used to obtain convergent global approxi-

mations of y(x) and its derivatives.

Finally, an algorithm is fully described for the practical implementation of the
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fourth order method applied to stiff systems. Some numerical results are presented

and compared with the results obtained by Gear's method.

2. Advanced Multistep Methods. The Results of Daniel. In general, methods

using values of f(x, y), which are advanced further in x than are the values of the

dependent variable used to approximate y', will be referred to as advanced multistep

methods (AMM). A certain type of AMM has been considered by Daniel [5] (also

see [6]), whose results we now describe.

Let A = (A — a)/M, x{ = a + ih, 0 ^ i ;£ M, where M is a positive integer.

Given starting values yu = t?,,, O^S i- 1, a A:-step AMM consists of finding

a solution to

k n + Un

(2.1) Z)«*-^«-^ = h   T,   &»/(*.> J\)>       k á n ^ M.
7-0 i=n-l„

We may summarize Daniel's main results in

Theorem 2.1 (Daniel). Let the AMM (2.1) satisfy

(a) p(z) = akzk + ak-iZk~l + ■ ■ ■ + ct0

has zeros z„ lg i g k, which satisfy \z,\ ^ 1, \z,\ = 1 => p'(z/) ^ 0 (stability condition).

(b) |ft,,| Ú ß,       0 ^ un ^ u, 0 g /„ ^ /,

||/(x, v) — f(x, w)\\ ;£ L\\v — w\\, with ß, u, I and L all independent ofh.

(c) \\% - y(x>)\\ = o(h°),       Olitát-1,

lEî-o cck.iy(xn^) - hY^tl-u ßj(x„y(xi))\\ = 0(hp+1), k^n^ M (consistency

condition).

Then, for sufficiently small A, (2.1) has a unique solution with

max   \\yi - y(x,)\\ = 0(h")    as h -> 0 where ||-|| =  ||- [|„.
OgiSM

3. A Class of AMM's. Let xn = a + «A, « ^ 0, and consider the subintervals

[xnk, xnk+k], n — 0, 1, 2, ■ • • , TV — 1, where /c Sï 1 and N are given fixed integers

with b — a = Nkh. From (1.1),

y(xnk+r) — y(x„k+r-t) =   / f(x, y(x)) dx,        1 I r | L

We now approximate the components of f(x, y(x)) over [xnk, xnk+k] by an inter-

polating polynomial of degree k, yielding the fc-step AMM

k

(3.1)        ynk+r - yn*+r-, = A E ß,.U+„        I £ r £ k, 0 g n £ N - I,

where /, = /(x,, y,).

The results of Daniel may now be applied where we restrict the class of initial

value problems (1.1) to those with sufficiently smooth solutions y(x). Here, p(z) =

z — 1 and, by construction, (3.1) has order of accuracy p = k + 1. There follows

from Theorem 2.1,
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Theorem 3.1. For starting values of order of accuracy 0(hk+1), the AMM (3.1)

is convergent with rate of convergence at least 0(hk+1).

For a system of m differential equations, define

•Tn+1 Kj/nk + X, >"7i": + 2>    '      '    >  ynk+k)    ,        **n+l    —    t/nt+lj  Jnk+9..   ' ' '    ,  fnk+k)    ■

0 ^ « s¡ N — 1, then, in terms of the appropriately defined mk X mk block matrices

A, B, C and D, the k-step AMM (3.1) may be written

(3.2) DYn+l - AYn = h(BFn+1 + CFn),

OàngN-l, where we define Y0 = (y0T, y0T, ■• , y0T)T and F„ = (/0r, f0T, ■■■ , f0Tf.

Although (3.2) is referred to as a /c-step method, it is computationally a one-step

method with respect to the vector of values Yn+U since only ynk and fnk, the values

from one point, are required for its calculation. Consequently, after computing a

vector of values Yn+U a change in step length can easily be made.

Having applied Daniel's results, (3.2) may be written in a form more suitable

for computation. With G = D~lA, Q = D'lB and R = D'^, (3.2) becomes

(3.3) Yn+1 - GYn = h(QFn+l + RFn),        0 ^ n g  N - 1.

Due to the type of construction, these formulas are the same as those discussed

in [18]. For k = 2, 3, the methods have the following explicit forms.

k = 2.

^2n+l y2n   =    77  (5/271   "T   8/2,1 + 1 /2n + 2)>

^271 + 2 ^2,7    =    7  (]2n   "T   4/2n+l    +   /271+2).

k - 3.

^3n + l ^377   =   77Z (9/371   4"    19/3n+i 5/3n+2   +   /3t7 + 3)>

>'3ti+2 .V3r7   =    T  (/3n   T   4/3„+i    T   /3n + 2)>

^371 + 3 ^3,7    =   ñ   (3/37.   "T   9/3n+i    -f"   9/3n + 2   +    3/3n + 3).

Additional explicit formulas, for 4 ^ /c g 8, can be found in Rosser [16] or Watts [19].

4. ¿-Stability.

Theorem 4.1. The k-step AMM (3.3) is Astable for each 1 ^ k g 8. For 9 ^
/c ^ 20, iAe method is not Astable.

The results in Theorem 4.1 have been proved by Watts and Shampine [18] and

Watts [19]. Also see Wright [20]. In view of this and the fact that our matrix method

of proof is rather long, we shall not include it here. Unfortunately the proof in [18]

and our proof both suffer from the fact that numerical methods are used in the

final stages. In [18], the Routh-Hurwitz theorem is applied numerically to check

the location of polynomial zeros; however, for 1  ^ k fï  10, the authors of [18]
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were able to use exact arithmetic to establish the results of Theorem 4.1 conclu-

sively. Our approach led to the use of the QR algorithm for checking that certain

k X k matrices have eigenvalues with negative real parts. Hence, by using a different

approach, we are able to confirm the results of Watts and Shampine.

5. Asymptotic Behaviour of the Discretization Error. In this section, we con-

sider the asymptotic form of the discretization error for the fc-step AMM (3.3).

We treat the scalar differential equation and make the following assumptions:

(i)  The solution y(x) has sufficiently many continuous derivatives.

(ii) g(x) = (df/dy)(x, y(x)) is continuous and continuously differentiable for

x G [a, A].
(iii) The starting value y0 satisfies 5(A) = y0 — y(a) = 0(hr), r ^ k + 2.

We associate with the AMM (3.3) the difference operator

L[$(x), h] = $(x) - G$(x - kh) - h(Q$'(x) + R$'(x - kh)),

with

$(*) = (<S>(x + h), $(x + 2h), ■■■ ,<S>(x + kh))T,

$'(*) = ($'(* + Ä), V(x + 2/0, • • • , &(x + kh)f,

where $(x) is any sufficiently differentiable function. We find that

(5.1) LWx), h] = A't2$""'Wa + hi+W*+*\x)ß + 0(hk+i),

where a and ß are k component vectors whose elements are constants. In particular,

it can be shown that, for k even, ak = 0.

Now by using Theorem 3.1 and similar techniques presented in Henrici [11],

results for the asymptotic behaviour of the discretization error en = yn — y(x„)

can be obtained. Since, however, similar results are developed in Watts [19], we

shall not present proofs, but, for the sake of completeness and to aid the development

of Sections 6 and 7, state the results as

Theorem 5.1. Under the conditions (i), (ii), (iii) above, the asymptotic behaviour

of the discretization error in the solution of y' = f(x, y), y(d) = -q by AMM (3.3) as

A —> 0, x = a + (kn + j)h, 1 ^j?=,k,0fing,N— I, is given by:

fork odd,    ekn+i = h^^e^x) + 5(A)e3(x) + 0(nk+2),

fork even,    ekn+, = hk+2[e2(x) - /'+2) (*)<*,] + S(h)e3(x) + 0(hk"3).

The functions e¡(x), e2(x) and e3(x) are defined as the solutions of certain initial value

problems involving g(x), yik+2)(x) andy(k+3)(x).

Realistically, 5(A) may be identically zero in practice. For the application of

extrapolation to the limit with k even, we must take account of the fact that the

dominant term does not vary smoothly with j. For a given initial step length A,

one possible method is to proceed with the normal halving of step lengths but to

compute extrapolated values only for x = a + knh, 1 ;£ » g N. This set of x values

is then always associated with the same value of j(j = k) for subsequent step lengths.
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6. Global Convergence Properties.   Consider Y(x) G C\a, A] defined by

(6.1) Y(x) = ynk +   [    Fn(t) dt,        x G [Xnk, xnk+k],
•>x»k

for 0 g « Ú N - 1, where Fn(t) = £î-o ¡,(t)f(xnk+„ ynk+.) the Lagrangian form

of the interpolating polynomial appearing in (3.1). Clearly by the definition of the

quantities ;„ 0 á n í Nk, Y(x) and Y'(x) interpolate the values of yn and /„, re-

spectively. Hence in practice, for x G (xnk, xnk+k), Y(x) = P(x), the polynomial

of degree (k + 1) uniquely determined by P(xnk+r) - ynktr, 0 g /• g fc, P'(xnk) = ¡f,».

We have the following theorem which states that Y(x) and its appropriately

defined k + 1 derivatives provide convergent global approximations to ylr)(x),

O^c^Hl. The theorem is presented for the important case of k even.

Theorem 6.1. Let f(x, y) be sufficiently smooth in DH:= {(x, y): a g x ^ A,

\y — Áx)\ é H\, a neighbourhood of the solution y(x). Then for h sufficiently small

and for finite k, k even, x G [a, A],

(6.2) Y(x) = y(x) + 0(hk+2),

(6.3) YM(x) = y(T)(x) + 0(hk+2-'),        1 g r g k + 1,

and at the mesh points

Y'(xnk+1) = y'(xnk+!) + 0(hk+2),        lS/St,OS(iá»-l.

We define for 2 g r g fc + 1, l^ng/V-1,

(6.4) r(r)(*»*) = i(r+'W) + Irl'W).

rAe wean of the right-hand and left-hand derivatives of Y(x) at x = xnk.

Proof. It has been shown in Theorem 5.1 that, for A sufficiently small and for

0(hk+2) starting values,

(6.5) Y(xn) = y(xn) + 0(hk+2),       0 g n á Aft.

Hence, since k is finite,

i

Fn(t) =  £ lÁt)f(xnk+„ y(xnk+.)) + 0(At+2)
«-0

for 0 g m ̂  W — 1, t G [*„*, *„<:+*]. The error formula for Lagrangian interpolation,

as applied to the function y'(t), now gives

FM = y'U) + 0(hk+l).

Inserting this result and (6.5) into (6.1) implies (6.2). For x G (xnt, xnk+k), 0 g

n £ N — 1, differentiation of (6.1) yields

y(r'(*) = F¿r-%),      lgrlHl.

Now similarly, using the error formula for the differentiated form of the interpolating

polynomial [15, p. 78] gives

YM(x) = yM(x) + 0(hk+2~r).
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Hence with the definition (6.4), there follows (6.3) for 2 ^ r g k + 1 and the

cases r = 1 follow with aid of the interpolating property of Y'(x).

7. Estimation of Local Truncation Error. The results of Section 5 allow the

development of rigorous results for estimating the size of the local truncation error.

For practical computation, we need only consider the case of k even. We now regard

the AMM (3.3) as a corrector formula which is used by iterating to convergence.

By introducing a suitable predictor formula, the local truncation error in (3.3) can

be estimated by a generalization of Milne's method [11, p. 257]. The analysis applies

to the system (1.1).

For the corrector

(7.1) y„+1 - GY„ = h(QFn+1 + RFn),

(5.1) shows that the true solution y(x) satisfies

(7.2) Y(n + 1) - GY(n) = h(QF(n + 1) + RF(n)) + hk+2Tn + 0(hk+3),

(with Y(n + 1) = (y(xkn+l), y(xkn+2), ■ ■■ , y(xkn+k))T) where since ak = 0 (k even),

I (i + 2),        ,. (4 + 2)/        N (t + 2),        >.     c,sT
r„ = (a¡y       (xkn), a2y       (xkn), ■ ■ ■ , ak-¡y       (xkn), 0)  .

We consider the predictor formula

(7.3) F*+1 - GYn = h(Q*Fn + R*F„_l),

where /?*F„_! = (rjlt^1)t, r2f,n_l)k, ■■■ , rkf{„.1)kf, and

(7.4) Y(n + 1) - GY(n) = h(Q*F(n) + R*F(n - 1)) + hk+2an + 0(hk+3)

with <r„ = (dyk+2)(xkn), d2yik+2)(xkn), • • • , dkya+2)(xkn))T. The formula (7.3) yields

the predicted values T„+l* = (y„,t+1*, ynk+2*, ■■■ , ynk+i*)T- Our objective is to

now estimate with respect to the maximum norm, ||r„||. We shall assume that d{ ̂  a,

for 1 ^ / á k - 1.
Theorem 7.1. Let the predictor formula (7.3) satisfy (7.4) and let the conditions

of Theorem 5.1 be satisfied. Then, for k even, the approximation rnfor the local trunca-

tion error in the corrector formula (7.1) satisfies, for xkn = a + knh, 0 ^ n ^ N — 1

as h —» 0,

||r„|| = h~(k+2)K max {\\ynk+i - y*k+,\\/\d, - a,\] + 0(h)
líiúk

where K = maxls,si:|a,|.

Proof. From the results of Theorem 5.1 (extended in a natural way to the system

(1.1)), the corrector formula (7.1) satisfies

Yn -  Y(n) = 0(hk+2).

Hence, in the standard fashion, (7.1) and (7.2) yield

Yn+1 -   Y(n + 1)- G{Yn -   Y(n))

similarly, from (7.3) and (7.4),

Y*+1 -   Y(n + X) - G(Yn -   Y(n))

= -hk+2rn + o(hk+3y,

=  -hk+2cn + 0(hk+3).
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Subtracting these two equations gives

Y„ +1 Y„ + i A*+Î(W,
s       (* + 2),        -,

<xi)y      (xkn), Adk-*k)y{h+2)(xk»))T + 0(hk+3),

from which with ||r„|| = Ä'||y:,:+2)|| the required result follows.

A considerable amount of practical experience with the cases k = 1 and 4 (for

stiff and nonstiff systems) indicates that the above estimate for A*+2||t„|| is accurate

and very reliable. For k = 1, the predictor formula (7.3), (7.4) is defined uniquely by

h
y(x2n+i) -- jr, (23y'(x2n) - l6y'(xiH.,) + 5y'(x2n.2))

+ I AV4,(*2n) + 0(h5),

(7.5)

y(x2n+2) — y(x2n) = - (19y(jc2») — 20y(jc2n_,) -f 7y(*2n_2))

+ I Ay4'(*2„) + 0(h5).

The corresponding estimate for the local truncation error reduces to

(7.6) ^W^W ~ % max{\\y2n+1 — yfn+1\\,l \\y2n+2 - yfn+2\\] = E„.

Two numerical examples which illustrate the effectiveness of this estimate are de-

scribed at the end of Section 8.

8. Practical Implementation of the Fourth Order Method. Numerical Examples.

For the satisfactory practical use of the AMM (3.3) for stiff systems, suitable re-

quirements are as follows.

(i) An iteration scheme for obtaining Yn+1, which (assuming the existence of

a solution) is convergent for those values of A which are (essentially) restricted only

by the requested accuracy in the numerical solution.

(ii) The control of accuracy based on estimates of the size of the local truncation

error and corresponding step-size changing.

The requirement (i) implies the use of a Newton-type scheme for obtaining Yn+1.

The conventional halving and doubling of step size (performed blockwise) with the

use of the estimate in Theorem 7.1 meet the needs of (ii).

For k = 2, the corrector formula follows Eq. (3.3) with corresponding predictor

formula and local truncation error estimate given by (7.5) and (7.6). For the cal-

culation of 0>2n+i» ̂2n+2)r, the application of a NT (Newton-type) scheme requires

an approximation to the matrix

J(n) =

I-^hJ,

-!*/,

12 h

where J, is the Jacobian matrix ((df/dy\x2n+r, y2n+r))- For the numerical treatment

of general stiff systems, the very simple scheme outlined below was used. J(n) is

approximated by
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J(n) Ä!  J(n) =

/-I*/,

-!*/,
12 Jl

I      3 /,

where Ji represents an approximation to J^ J, is obtained by using first order forward

difference approximations to (df/'dy'\x2n+u y2n+i), i, j = 1, 2, • • • , m. The resulting

J(n) is held constant throughout the NT iteration. Only the essential details are

presented on the understanding that the approximate Jacobian J, is reused wherever

possible (or convenient).

Standard Scheme. Here the value of Yn+l = (y2n+l, y2n+2)T, n = 2, with respect

to the step size A is obtained. Let the previously computed block Yn be defined with

respect to the step size hi and let the LU factors of J(n — 1) be preserved.

Stage 1. If A = K then set J(ri) = J(n — 1) and compute the predictor Yn^*;

also set test = 1. Otherwise, set test = —1 and T„+i* = (y2n, y2n)T, then update Jx

and compute the LU factors of the resulting J(n).

Stage 1. Allow g 4 NT iterations and, if convergent, continue at Stage 3. Other-

wise, update Ju then compute the LU factors of the resulting J(«) and allow ^3 NT

iterations. If convergent, continue at Stage 3, otherwise, half A and return to Stage 1.

Stage 3. Yn+l has now been obtained and is accepted if test = —1. Otherwise,

perform appropriate tests for the size of the local truncation error using (7.6) If

a step change is required, return to Stage 1; otherwise, the value of Yn+1 is accepted.

Starting Scheme. Here, by a suitable modification of the above standard scheme,

we compute both Yi and Y2 with respect to a step size A. The size of A is automatically

chosen so that, with the resulting Y2* and Y2, the local truncation error test is satisfied.

An initial value of A is first specified and the predictor Y* = (y0, y0)T is used.

We note that for small enough A the above corrector iteration is convergent.

The allowable number of iterations in Stage 2 are based on a large number of nu-

merical tests. An alternative starting scheme is to use the generalized technique of

step doubling for error estimation and thus test the accuracy of Y¡ directly.

From Stages 1 and 3 it is seen that the effect of a step change (halving or doubling)

is to set test = — 1 ; then Yn+ i is accepted without performing the local truncation

error test. Therefore, there exists the possibility that the accepted Yn+1 would fail

the local error test. As far as practical stiff problems are concerned, it is unlikely

that the above scheme would yield values of Yn+1 which would fail the local error

test over several consecutive steps. At the beginning of the range, Y2 always satisfies

the local error test.

Given a standard LU factorization routine, the above scheme is not difficult

to program.

A large number of stiff problems have been successfully solved using the above

scheme (including the ten test problems in [4]). We compared our results with those

obtained by using Gear's variable order method [8] (up to order 6) with difference

approximations for Jacobians. The Gear program used the double precision Fortran

subroutine DIFSUB [9] and was run on a PDP 10 system whose double precision

is equivalent to approximately sixteen decimal digits. The AMM was implemented

in Algol and run on a CDC 7600 machine with a similar precision of approximately

sixteen decimal digits.
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In the AMM program, the following local error test was used:

En è emaxfl, ||F.tX||.}.

Here, £„ is the estimate (7.6) of the local truncation error with respect to Yn+1 and «

is the requested error tolerance. In DIFSUB, a very similar local error test was used

by updating the YMAX array so that

YMAX(/) = max(l, |/|),    for i = 1,2, m.

We first summarize the results and then describe three illustrative problems.

1. For moderate accuracy, that is with e ranging between 10~3 and 10~6:

(a) the two methods were comparable in terms of the number of derivative

evaluations,

(b) the number oî LU factorizations (of matrices order 2m) in the AMM was

approximately equal to the number of factorizations (of matrices order m) in the

Gear program.

Table 1

Requested

error

maximum absolute

error ND/LU

AMM GEAR AMM GEAR Range

10

1.4.10

Ï.4.10"

•3.4.10"

3.4.10"

3.4.IO"

-3

9.8.10

9.8.IO"

2.3.IO"

2.3.IO"

2.3.IO"

104/6

165/9

314/17

387/21

500/27

94/5

133/8

213/11

266/15

366/24

(0..01)

(0..1)

(0,1)

(0,10)

(0,1000)

10
-1»

1.3.10

I.3.IO"

2.3.IO"

2.3.10

2.3.10

-I4

-Is

3.5.10

7.5.IO"

8.O.I0"

9.O.IO"

l.l.io"

121/5

192/9

335/14

418/18

SUSI It*

111/6

195/10

283/13

367/16

477/24

(0..01)

(0..1)

(0,1)

(0,10)

(0.1000)

10

1.9.10

2.2.I0"

I.6.I0"

I.6.IO"

I.6.I0"

-5

2.2.10

I.4.I0"

I.4.IO"

2.I.IO"

2.1.10
-5

165/5

252/9

416/11

532/15

702/22

145/6

291/12

437/17

537/21

677/28

(0..01)

(0..1)

(0,1)

(0,10)

(0,1000)

10
-6

1.9.10

I.9.IO"
-7

-6
1.7.10

I.7.IO"

I.7.IO"
-6

9.1.10

2.7.10

2.7.10"

2.9.IO"

2.9.IO"

-6

-6

270/6

379/10

660/14

836/19

1062/26

207/7

310/12

465/15

603/20

809/29

(0..01)

(0..1)

(0,1)

(0.10)

(0,1000)
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2. For higher accuracy, up to e = 10~8:

(a) the AMM required up to twice as many derivative evaluations,

(b) the behaviour in 1(b) applied.

3. For some problems with eigenvalues close to the imaginary axis, Gear's

method can be prohibitively inefficient as compared to the /1-stable AMM.

Generally, for moderate accuracy, Gear's method tends to favour the use of the

lower order methods, thus leading to the behaviour in 1 [14, p. 286]. On many machines

with moderately sized m, the difference in the linear algebra would not be significant,

but, in this respect, the AMM cannot be expected to be competitive with Gear's

method for large systems.

The following three problems were solved over ranges up to [0, 1000] and results

are given at the first step to pass 10* for /' = —2, — 1, 0, 1 and 3. Tables 1-3 include

the requested error e, the maximum absolute/relative error to date in the least ac-

Table 2

Maximum relative

error

Requested;

error AMM GEAR

ND7LU

AMM GEAR Range

10
-3

5.8.10

5.8.10"

3.9.10"

3.9.10"

3.9.IO"

-5
4.1.10

4.1.10

5.4.10

5.4.IO"

5.4.IO"

-1*

-3

99/6

162/9

407/19

474/23

594/29

87/5

162/11

406/16

480/20

635/35

(0, .01)

(0, .1)

(0, 1)

(0, 10)

(0, 1000)

10
-1»

9.5.10

9.5.IO"

4.O.IO"

4.O.IO"

4.O.I0"

-6
4.4.10

4.4.10"

4.3.IO"

4.3.IO"

4.3.IO"

111/5

188/9

473/16

563/21

752/29

116/5

167/8

454/14

803/24

943/32

(0, .01)

(0, .1)

(0, 1)

(0, 10)

(0, 1000)

10

1.5.10

1.5.IO"

2,7.10"

2.7.IO"

2.7.10"

4.5.10

4.5.IO"

3.2.IO"

3.3.10"

3.3.IO"

--6
141/5

213/8

611/12

733/17

880/24

148/7

273/14

613/12

812/30

1002/38

(0..01)

(0, .1)

(0, 1)

(0, 10)

(0, 1000)

10
.-6

1.9.10

I.9.IO"

2.8.IO"

2.8.IO"

2.8.IO"

-7

-7

-7

6.4.10

9.3.IO"

5.O.IO"

5.O.I0"

5.O.IO"

-7

D-6
--6

232/6

356/11

998/15

1176/21

1370/28

202/9

307/15

763/22

1026/32

1261/40

(0, .01)

(0, .1)

(0, 1)

(0, 10)

(0, 1000)
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Table 3

Maximum absolute

error

AMM GEAR

ND/LU

AMM GEAR
Range

2.2.10

2.2.10"

2.2.10"

2.2.10"

2.2.IO"

-8

-8

.-8

1.4.10

I.4.I0"

I.4.I0"

I.4.IO"

I.4.IO"

-7

400/8

508/13

638/14

968/17

1276/21

224/6

341/13

421/16

581/23

728/28

(0, .01)

(0, .1)

(0, 1)

(0, 10)

(0, 100)

10

As for

B, - 1

1.4.10

I.4.IO"

I.4.I0"

I.4.IO"

4.4.IO"

-7

-7
As for

82-l

224/6

341/13

421/16

581/23

3111/34

(0, .01)

(0, .1)

(0, 1)

(0, 10)

(0, 100)

100

As for

6, " 1

1.4.10 '

1.4.10"7

I.4.I0"7

7.4.10-7

7.4.10-7

Abandoned

As for

6, - 1

224/6

341/13

421/16

3803/32

5001/32

Abandoned

(0, .01)

(0, .1)

(0, 1)

(0, 10)

(0, 12)

curate component, the number of derivative evaluations (ND) and the number of

LU splits (or matrix inversions in Gear's method). All the problems were run with

an initial step of size equal to T13. For Problem 1, however, with e = 10~4, 10~5

and 10"6, we give Gear's published results [9] for this problem (these results are in

very close agreement with those obtained from our implementation of Gear's method).

Each problem is critically stable in the sense that, if an error in excess of about

10~3 occurs, the solution of the perturbed problem may have an unbounded solution.

Krogh Problem 1 [13].

/ =  -By+  UT(z\,z\,z\,z\)\        y(0)= (-1, -1, -1, -1)T,

where (zu z2, z3, z4)T = z = Uy, B = U diag(/3,, ß2, ß3, ft)t/, U is the unitary martix

with diagonal elements equal to — \ and all other elements equal to \, and ft = 1000,

ß2 = 800, ß3 = -10 and ft = 0.001. The eigenvalues of the Jacobian matrix are

equal to —(ft + 2) at x = 0 and approach — |ft| as x —> °°. The solution is

y =   Uz    withz, = ft/(l - (1 + ft)/'1), i = 1, 2, 3, 4.

The results are given in Table 1.
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Table 4. Problem 1

Requested

error

10

10

10

0.125

0.5625

2

4

6

10

0.1094

0.6094

2

4

6

10

0.1016

0.5078

2.0625

4

5.5

10

Estimate

E

1.50.10

4.28.10

6.36.10"

1.60.10"

2.08.10"

3.34.10"

"5

-5

8.83.10

1.18.10"

3.53.10"

4.28.10"

1.33.10"

2.3I.IO"

3.31.10

8.62.10"

I.88.IO"

2.57.IO"

6.84.10'

7.95.10

■10

•10

Exact

T

1.58.10

3.20.10

4.26.10"

7.OO.IO"

1.39.10

2.15.10

-5

-5

-6

9.43.10

I.07.IO"

2.9I.IO"

3.5I.IO"

I.OO.IO"

1.61.IO"

-7

.-8

-7

3.39.10

8.81.10

I.7I.IO"

2.32.10

6.32.10

7.24.10

-9

-9

-10

-10

Krogh Problem 2 [13].

I r» 1        TTT/\    2 I    2 2        2-.Ï
y   =  -By +  U (iz, - \z2,zyz2,z3,z¿)

where z = Uy, U is defined in Problem 1,

"ft    -ft

B =   U\
ft

0

0

and

y(Q) = (0, -2, -1, -Xf,

U,

ft = -10, ft = 10,        ft = 1000,        ft = 0.001.

The eigenvalues are equal to -(ft + 2) ± /ft, -(ft + 2) and -(ft + 2) at x = 0,

and approach — |ft| ± /ft, — |ft| and — |ft| as x —» °°. The solution is y = Uz with
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where

and

zx = 203^! — ß2w2)/(w\ + w\),

z2 = 2(fi2wx + ftw2)/(H>? + w\),

z, = ft/(l - (1 + ßt)S"),        i = 3,4,

w, =  1 - eß"[(l + ft) cos ft* - ft sin ft*]

m>2 = e "\ß2 cos ß2x + (1 + ft) sin ft*].

The results are given in Table 2.

Problem 3. This is a modified form of Problem 2.

y = -Sj> +  «7(0, 0,z",z")r,        XO) =(-1,-1,0, 0)",

where z = i/y, ¡7 is defined in Problem 1, and B is defined in Problem 2 with ft = 1,

ft = 1000, and ft = 0.001. Two of the eigenvalues are equal to — ft ± /ft for all x;

Table 5. Problem 2

Requested
error

Estimate
E

Exact
T

10
-4

0.125

0.5156

1.125

3

6

10

1.77.10

1.72.10*

5.93.10

2.34.10

2.11.10*

3.36.10

-6

-6

-6

2.59.10

1.19.10*

4.04.10"

1.47.10"

1.39.10

2.15.10

-5

-6

-6

10
- 6

0.1016

0.5039

1.0156

3

6

10

4.85.10

8.26.10*

6.96.10*

1.35.10*

1.33.10*

2.31.10*

-7
5.31.10

7.49.10*

6.11.10

I.05.IO"

I.OO.IO"

1.61.10

-7

-8

-7

10

0.1016

0.5020

1.0078

3

5.75

10

1.94.10

5.34.10*

4.49.10

7.97.10*

5.66.IO'

7.95.10

-9

-9

•10

-10

1.98.10

5.08.10*

4.23.10*

6.97.10

5.24.10

7.25.10

-9

-9

-10

-10
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the remainder are —(ft + 2) when starting and approach — |ft| as * —» <*>, for i — 3

and 4. We consider the effect of eigenvalues close to the imaginary axis by running

this problem with ft = 1, 10 and 100, and with a requested error e = 10~7. In each

case, the solution is y = t/zwithz, = z2 = Oandz, = ft/(l — (1 + ß/)eßiI), i = 3, 4.

The results are given in Table 3 and indicate clearly how the stability regions for

Gear's method can restrict the increase in step size.

Finally, we include two numerical examples which illustrate the effectiveness

of the estimate for the local truncation error (7.6). Test Problems 1 and 2 were solved

using the AMM program with the local error test En ^ e, for the values e = 10" *,

10"6 and 10"8. The results are given in Tables 4 and 5. They include the estimate

E„ and the corresponding exact value of the normed local truncation error

Tn =  || Y(n + 1) - GY(n) - h(QF(n + 1) + RF(n))\U.

The x values are chosen from those which are automatically selected by the program.

It is of interest to note that for these two problems the estimate En has the desirable

property of tending to overestimate the size of Tn. For the respective problems, the

proportion of overestimates was approximately 90% and 70%.

9. Conclusions. A class of /4-stable advanced multistep methods for the nu-

merical solution of initial value problems has been described. The fourth order

method for the solution of stiff equations described in Section 8 is easy to implement,

and the numerical results indicate that in terms of satisfying the user's error tolerance,

it is extremely reliable. For systems which are not large and for moderate accuracy,

the method compares favourably with Gear's method. Also, for some problems with

eigenvalues close to the imaginary axis, the AMM can be considerably more efficient

than Gear's method. This may be of importance in some problem areas, for example,

problems arising in circuit analysis.

10. Acknowledgements. Frank de Hoog wishes to acknowledge a Common-

wealth Postgraduate Research Award from the Australian Department of Education

and Science.

The authors wish to thank the referee for his valuable suggestions concerning

the structure of this paper. Also we wish to thank Mr. D. Sayers and Mr. R. Coleman

for their programming assistance.

Department of Mathematics

The University

Manchester M13 9PL, England

Computer Centre

Australian National University

Canberra 2600, Australia

1. O. Axelsson, "A class of /4-stable methods." Nordisk Tidskr. Informationsbehand-
ling (BIT), v. 9, 1969, pp. 185-199. MR 40 #8266.

2. F.  H. Chipman, "A-stabXe Runge-Kutta processes," Nordisk  Tidskr. Informations-
behandling (BIT), v.   11,  1971, pp.  384-388.

3. G. Dahlquist, "A special stability problem for linear multistep methods," Nordisk
Tidskr. Informationsbehandling, v. 3, 1963, pp. 27-43. MR 30 #715.



A CLASS OF A-STABLE ADVANCED MULTISTEP METHODS 177

4. G. Dahlquist et al., Survey of Stiff Ordinary Differential Equations, The Royal
Institute of Technology, Stockholm, Report NA 70.11, 1970.

5. J. W. Daniel, Non-Linear Equations Arising in Deferred Correction of Initial Value
Problems, MRC Technical Report No. 818, 1967; Also in Acta Ci. Venezolana, v. 19, 1968,
pp. 123-128. (Spanish) MR 40 #8269.

6. J. W. Daniel, V. Pereyra & L. L. Schumaker, Iterated Deferred Corrections for
Initial Value Problems, MRC Technical Report #808, Madison, Wis., 1967; Also in Acta Ci.
Venezolana, v. 19, 1968, pp. 128-135. (Spanish) MR 40 #8270.

7. B. L. Ehle, "High order /4-stable methods for the numerical solution of systems of
D.E.'s," Nordisk Tidskr. Informationsbehandling (BIT), v. 8, 1968, pp. 276-278. MR 39
#1119.

8. C. W. Gear, The Automatic Integration of Stiff Ordinary Differential Equations,
Proc. IFIP Congress, Supplement, Booklet A: 81-85, 1968.

9. C. W. Gear, "DIFSUB for solution of ordinary differential equations," Comm. ACM,
v. 14, 1971, pp. 185-190.

10. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, Englewood Cliffs, N. L, 1971.

11. P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, Wiley,
New York, 1962. MR 24 #B1772.

12. B. L. Hulme, "Discrete Galerkin and related one-step methods for ordinary differ-
ential equations," Math. Comp., v. 26, 1972, pp. 881-891.

13. F. T. Krogh, On Testing a Subroutine for the Numerical Integration of Ordinary
Differential Equations, let Propulsion Laboratory, Pasadena, Calif., Tech. Mem. No. 217,
1970.

14. L. Lapidus & J. H. Seinfeld, Numerical Solution of Ordinary Differential Equations,
Math, in Sei. and Engineering, vol. 74, Academic Press, New York and London, 1971. MR 43
#7073.

15. A. Ralston, A First Course in Numerical Analysis, McGraw-Hill, New York, 1965.
MR 32 #8479.

16. J. B. Rosser, "A Runge-Kutta for all seasons," SIAM Rev., v. 9, 1967, pp. 417-452.
MR 36 #2325.

17. L. F. Shampine & H. A. Watts, "Block implicit one-step methods," Math. Comp.,
v. 23, 1969, pp. 731-740. MR 41 #9445.

18. H. A. Watts & L. F. Shampine, "/I-stable block implicit one-step methods," Nordisk
Tidskr. Informationsbehandling (BIT), v. 12, 1972, pp. 252-266.

19. H. A. Watts, A-Stable Block Implicit One-Step Methods, Sandia Laboratories Re-
port SC-RR-71 0296.

20. K. Wright, "Some relationships between implicit Runge-Kutta, collocation and
Lanczos r methods, and their stability properties," Nordisk Tidskr. Informationsbehandling
(BIT), v. 10, 1970, pp. 217-227. MR 42 #1345.


