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Factoring Large Integers

By R. Sherman Lehman

Abstract. A modification of Fermat's difference of squares method is used for factoring

large integers. This modification permits factoring n in 0(«1'3) elementary operations, where

addition, subtraction, multiplication, division, or the extraction of a square root is con-

sidered as an elementary operation. A principal part is played by the use of a dissection of the

continuum similar to the Farey dissection. This has been programmed for n á 1.05 X 1020

on the CDC 6400.

1. Introduction. Fermat's method for factoring an odd positive integer «

consists of finding « = x2 — y2 where x and y are positive integers. We find in succes-

sion

*= [nW2] + 1,        x= [n1/2] + 2, •••

and determine whether the difference x2 — n is a square or not. If p and q are primes

and « = pq, then Fermat's method is quite efficient if p/q is near 1, but it requires

a large number of trials if p/q is not near 1. Lawrence [2] used a method which is

designed to be efficient if p/q is near a/b where a and b are small relatively prime

integers.

We consider x2 — y2 = 4kn, k = ab with 1 ^ H r. The idea we wish to use is

to divide up the interval [0, 1] into parts. Each part will correspond to a fraction

a/b, and these parts will fill the interval [0, 1]. This means that, for each r, we find

a sequence Sr which includes a/b when O^a^b, b>0 and ab ^ r. This is remi-

niscent of the Farey sequence of order r. We prove in Section 3 that many of the

ideas go over to the new sequence ST. In particular, one obtains a dissection of the

continuum similar to the Farey dissection of [0, 1].

The main theorem is given in Section 2. Its proof is contained in Section 4. Nu-

merical results were obtained by a computation on the CDC 6400 of the Computer

Center of the University of California at Berkeley. An Algol program is also given

in Section 5.

2. The Theorem. We shall use gcd(a, b) for the greatest common divisor of

a and b.

Theorem. Suppose that n is a positive odd integer and r is an integer such that

1 î£ r < n1/2. Ifn = pq where p and q are primes and

(n/ir + 1))1/2 < p g nl/2,
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then there are nonnegative integers x, y and k such that

x2 - y   = 4kn,        1 g k g r,

x m k + 1 (mod 2),

x = k + n (mod 4)    /'/ k is odd,

Olí- i4kny/2 g (l/4(r + l))(«//t)1/2

and

(2.2) /> = min(gcd(x + v, w), gcd(* - y, «)).

7/n is a prime, then there are no integers satisfying (2.1).

Let us see how many elementary operations are required to obtain the primes p

and q when n = pq. First, there are a constant times (n/(r + 1))1/2 divisions involved

to determine whether there is a small prime factor less than («/(/ + 1))1/2. We find

that there are

OUn/rf2) +   Y  Oiil/r)in/k)U2 + 1)
Xtkf

elementary operations, where the extraction of a square root is counted as one

operation. We have

Oiin/rf2) + Oiil/r)nuV/2) + Oir)

operations. Here, if we choose r to be a constant times n1/3, we find 0(nI/3) ele-

mentary operations are required.

3. The Sequence Sr. If r is a positive integer, then we denote by Sr the sequence

of rational numbers a/b where 0|a|e,i»>0 and ab I r with a and b relatively

prime integers. We suppose that the sequence is arranged in order of increasing

size. For example, Si5 is the sequence

0J_J_J_±±J_iIIIII21213231
1 ' 15 ' 14 ' 13 ' 12 ' 11 ' 10 ' 9 ' 8 ' 7 ' 6'   5 ' 4 ' 7 ' 3 ' 5 ' 2 ' 5 ' 3 ' 4 ' l'

Lemma 1.   If a/b and a'/b' are two successive terms ofSr, then

a'b - ab' = 1    and   (a + a')'b + b') > r.

Proof. It is well known that the Farey series of order n, which consists of all

reduced fractions between 0 and 1 whose denominators do not exceed «, can be

generated starting from 0/1, 1/1 by the following process: Between two succes-

sive terms of the sequence generated, say a/b and a'/b', insert their mediant

(a + a')/ib + b'), which is always a reduced fraction, whenever b + b' does not

exceed «. A similar method can be used to generate Sr—we insert the mediant

(a + a')/(b + b') whenever (a + a'Xb + b') g r. It follows that two successive

terms of Sr are successive terms in a Farey series of some order and thus a'b — ab' = 1.

To avoid insertion of the mediant (a + a')/(b + b') between them, we must have

(a + a'Xb + b') > r. This completes the proof.

We now use a dissection of the interval [0, 1] which is analogous to the Farey

dissection of the continuum (see [1, p. 29]). We take the sequence Sr and form the

mediants between each two successive terms. We then cut up the interval [0, 1] into
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pieces using the mediants as division points. Thus, we obtain a subinterval cor-

responding to each term of Sr. It will be convenient to use closed subintervals. Cor-

responding to 0/1, we have the subinterval [0, l/'r + 1)], and, corresponding to

1/1, we have the subinterval [(a* + l)/(b* + 1), 1] where a*/b* is the term preceding

1/1 in Sr. lfa'/b', a/b, and a"/b" are three successive terms of Sr, then, corresponding

to a/b, we have the subinterval

|"«+ a'    a + g"~\

lb+b"b + b"\

By Lemma 1, we have

a. n a+ a' = a _ I a + a"      a      _1_

(i   } b + b'      b      b(b+b')'       b + b"      b^bib+b")

We shall call this dissection with subintervals corresponding to ST the dissection of

order r.

Lemma 2. If a is in the subinterval corresponding to a/b with a > 0 in the dis-

section of order r, then

-b {1 - 5(1 + i52)1/2 + \h2\  g a g -b {1 + 5(1 + \h2y'2 + §52}

where 5 = {abir + 1)}"1/2.

Proof. Let a'/b' be the term preceding and a"/b" the term following a/b in Sr,

and suppose that a is in the subinterval corresponding to a/b with b ^ a ^ 1. Since

the mediant (a + a')/(b + b') is not in S„ we have, by (3.1) and Lemma 1,

r+liia+ a')ib + b') = |i-£ (b + b')2 - f (* + b')2 - ^^ •

Similarly, we have

r+l^lib+b")2 + (^±p.
b b

Using the first of these quadratic inequalities and that b + tV > 0, we obtain

b + b' ^  {1 + (1 + 4abir + l))1/2}/2ej

and

W+Y) - ï'l+il +4abir+ I)?72 = I {~h5* + 5(1 + iS2)W2}-

Hence, by (3.1), we obtain the first inequality of the lemma. Similarly, using the

second of these quadratic inequalities, we obtain

b + b" ^  {-1 + (1 + 4abir + l))1/2}/2a

and

- a (Ix2 _i_  xn j_ is2.'«!g = {¿5¿ + 5(1 + 15Y
bib + b") - b

From this, we obtain the second inequality of the lemma. This completes the proof.
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4. Proof of Theorem. Let « be an odd prime or let « = pq where p and q are

two odd primes with/» g «1/2 g q. Consider the equation

(4.1) ix + y)ix - y) = x2 - y   = 4*«

where x and y are nonnegative integers and k is a positive integer. Then

(4.2) x -\- y = sa'n, x — y = tb'    or    x + y = ieV, x — y = sa'«,

where s, t, a' and tV are positive integers and st = 4, a'b' = k;

(4.3) x -\- y = sa'q, x — y = tb'p    or    x -\- y = tb'p, x — y = sa'q,

where s, t, à' and tb' are positive integers and st = 4, a'b' = k.

To consider (4.2), we add the two equations and we get in either case Ix = sa'n +

tb'. There are three possible cases: s = 4, t = 1; s = 1, t = 4; s = 2, t = 2. These

give

x = 2«'« + §6',        x = i«'fl + 2¿>',        x = a'n + ¿>'.

In the first case, we see b' is even. Setting a = la', b = \b', we get

(4.4) x = an + b    with ab = k.

In the second case, we see that a'n is even, and because « is odd, a' must be even.

Setting a = ^a', 6 = lb', we again get (4.4). In the last case, we obtain (4.4) with

a = a', b = 6'.

We prove that if r is an integer such that 1 | /• < «"2, then

* - (4*«)1/2 > wh, (a"-   ! =k =r-

is correct. This contradicts one of the inequalities in (2.1). Actually, we prove the
stronger inequality

(4.5) x - i4kn)"2 > ^-^ (¡y\        l£k£n-2.

It is equivalent to

an + b > 2kx,2nU2 + X        [£)' ,        I ^ k ^ n - 2, ab = k,

by (4.4). Squaring both sides, we obtain

e22«2 - 2A:« + b2 > n/'k + 1) + «/16(/t + 1)2A:.

We see that it can be reduced to a special case a = 1, b = k when the left side is

«2 - Ikn + k2. For, if a è 2 and 1 g k g n - 2, then

ia2 - 4)n2 + in2 - k2) + b2 + 2«2 ^ 0

or

ej2«2 - 2/t« + b2 è «2 - 2*/i + k2.

Thus, it is sufficient to consider (« — k)2 > n/'k + 1) + «/16(fc + l)2fe where 1 g

fe | « — 2. A stronger inequality is
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in - k)2 - (l + ^) 7~7 è 0   or   Gik, »)«(* + 1)(« - k)2 - (l + j^jn è 0,

where 1 g fc g n — 2, « ^ 3 for all real values of fc and «. Differentiating G'k, n)

with respect to fe, we have

dG'k, n)/dk = (« - A:)2 - 2(/t + 1)(« -*)-(»- /t)(« - 2 - 3k).

For fixed «, we see that dG/dk = 0 at fe = n and fc = (« — 2)/3, and that G(fc, n)
is increasing for 0 g fc < (n — 2)/3 and decreasing for (n — 2)/3 < fc < «. Thus,

it is sufficient to check it on the two rays fc = 1, n ^ 3 and fc = « — 2, n è 3. We

have

Gil

and

Gi

, n) = 2(« - l)2 - (l + ^)« = 2«2 - 4« + 2 - (l + j^jn

è 6« - 4« - (l + ^j« + 2 > 2

« - 2, n) = 4(« - 1) - (l + ^j« ^ 8 - 3(l + ^j > 4.

It follows that it remains positive, and thus (4.5) is proved. We have shown that there

is no solution to (2.1) when « is a prime.

Now, we consider (4.3). Adding the two equations, we get Ix = sa'q + tb'p.

There are three possible cases: s = 4, t = 1; s = 1, t = 4; s = 1, t = 2. These give

x = 2a'q + \b'p,        x = \a'q + 2b'p,        x = a'q + Z»'p.

In the first case, we see that b'p is even and because p is odd, V must be even. Setting

a = 2a', b = \b', we have

(4.6) x = aq + 6/7,        y =  \aq — 6/71,        fc = ab,

with a and ¿7 positive integers. In the second case, we see that a'q is even and because

q is odd, a' must be even. Setting a = \a', b — 2b', we get (4.6). In the last case, we

get (4.6) with a = a',b = b'.

Let d = gcd(e2, ¿7). Then

(4.7) x = aq + bp = diaxq + bxp),        y =  \aq — bp\ = d \axq — bxp\

where ax and bx are positive integers, and

ix/d)2 - iy/d)2 = 4axbxn,        k = d2axbx.

Thus, it can be reduced to the case in which a and b are relatively prime positive

integers.

If a and b are relatively prime, then we can prove that x = k + 1 (mod 2). If

fc = ab is even, then one of the integers aq and bp is even and the other is odd since,

by assumption, p and q are odd while a and b are relatively prime. It follows that

x = aq + bp is odd. On the other hand, if fc is odd, then the integers aq and bp are

odd. It follows that x is even.

We can prove that if fc is odd, then x = fc + n (mod 4). We consider /7 and q
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which are odd and also a and b which are odd. Then p — ais even and q — bis even.

Hence their product is divisible by 4. Hence, (/7 — aXq — b) - pq + ab — aq — bp -

n + fc — x is divisible by 4.
Since ab = fc < n1/2 g ç, we have

p = gcd(2¿>/7, «) = min(gcd(x + y, «), gcd(x — y, «))

where any solution of (4.6) is used.

It remains to prove that

(4.8) Oái- (4fc«)1/2
4(r + 1) W

where

(4.9) /> > («/(r + 1))1/2.

Let «1 = 4fc« = 4a¿7«, and let r = x — m1/2. Because the arithmetic mean is not

less than the geometric mean

x = aq+ bp^ 2iabpqyn =  m'2

and thus r^O which proves the left half of (4.8).
Letting « = rm~1/2, we have

x = (1 + t)mI/2,        y = O + e2)1/2mI/2.

The right half of the inequality (4.8) translates into

(4.10) € g ¿52

where 5 - [abir + 1)}"I/2.

We now show that the point a = p/q lies in the subinterval corresponding to

a/b in the dissection of order r discussed in Section 3. In applying Lemma 2, we

must show that p/q does not lie in the interval [0, !/(/• + 1)]. This follows from

P = -P- m P. >      1
q      n/p       «       r + 1

by (4.9). We obtain

where

kxa/b g p/q g t2a/b

¿, = 1 - 5(1 + *52)1/2 + ht?,

£2 = 1 + 5(1 + i52)I/2 + K

are the two positive roots of the equation

(4.11) (1 - Í)2 = $52.

We consider separately two cases depending on whether p/q g a/b or p/q > a/b.

First, if p/q g a/b then aej ^ bp, and, by (4.6), we have

_ a (l + a - (2. + t2)1/2\      a 2.x/2.2

~ b \l + e + (2c + e2H = ¿ O +«"(* + O    )•
p = q(x - y)

q       bix + y)       ¿> M + £ + (2e + €2)
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Thus,

{, ú (1 + « - (2í + e2)1/2)2    or    ?î/2 + (2* + e2)I/2 S 1 + «.

Squaring both sides, we have 2^1/2(2e + e2)I/2 í I - {,. Using that & is a root

of (4.11), we find

(4.12) 2« + e2 g |52.

Solving this inequality for e, we obtain

« S -1 + O + Í52)1/2 g -1 + (1 + 152) = J52,

which proves (4.10).

Second, if p/a > a/b, then bp > aq and

^^(l+e + O + .T2)2.
q      b

Then & ¿ (1 + « + (2« + «2)'/2)2. From this, we obtain (4.10). This completes

the proof of the theorem.

5. The Program and Results. The program was first written in Algol with-

out use of any recursive procedures. It was planned that after testing the program,

it would be transferred over to Fortran IV which has available double precision

routines. This transfer was feasible because the computation preserves integers.

A dissection of order r is given by a sequence Sr. Therefore, r must be chosen

appropriately. We chose r = [0.1 n1/3] which is nearly the optimal value. Con-

sequently, we are looking for factors which are greater than (n/(r + 1))1/2 äs 101/2n1/3.

We obtained a Fortran routine which is valid for n g 1.05 X 1020 and which requires

at most 1.4 X 10~V/3 seconds on the CDC 6400.

Professor René DeVogelaere furnished me with some integers of from 17 to 21

digits which he wished to factor. In Table I, they are given with the results. We give,

along with the factor, the resulting fc where x2 — y2 = 4fc« and x and y are integers.

The time is given in seconds for the final version.

In our discussion of the program, we give only the Algol procedures. The first

procedure is for finding x = a (mod ¿7) where x is the least nonnegative residue of a

modulo b where a and b are positive integers. The second is for finding the gcd(a, tb)

where a and eb are positive integers. The third is a procedure isqrt(n, u) which gives

as its value the smallest positive integer j such that / ^ « and gives to u the cor-

responding value of f — n. This procedure uses the real procedure sqrt(n) hence

it may be in error. It is designed to correct this error.

We give 'the procedure factor(«, r, /). We enter the procedure by giving n and r

and leave it with / assigned a factor. Also, if no factor has been found, then / is set to

be equal to 1.

In going through the integers fc from 1 to r, there is an advantage in going through

them in a prescribed order. Let i/(fc) be the number of positive divisors of fc. If a/b is

closest to the ratio of the divisors of n, which fc = ab should we try first? As an

example we take from Table I the first example

k = 23220 = 22-33-5-43.
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Table I

Time
in

Number Factor k seconds

1123877887715932507 299155897 23220 = 22-33-5-43 2.6

1129367102454866881 25869889     6750 = 2-33-53 1.3

29742315699406748437 372173423 25982 = 2-11-1181 122.6

35249679931198483 59138501 14554 = 2-19-383 17.8

208127655734009353 430470917 21390 = 2-3-5-23-31 1.9

331432537700013787 114098219 14664 = 23-3-13-47 6.0

3070282504055021789 1436222173 100620 = 22•32•5•13■43 7.2

3757550627260778911 16053127 131229 = 32 • 7•2083 175.5

24928816998094684879 347912923 82380 = 22-3-5-1373 8.3

10188337563435517819 70901851 18240 = 26-3-5-19 3.0

Thus, there are d(k) = 3-4-2-2 = 48 different representations a/b that we look at

simultaneously. Clearly, it is better to first choose fc with d(k) large. For that reason,

we chose to look at multiples of

30 = 2-3-5,    24 = 23-3,    12 = 22-3,    18 = 2-32,    6 = 2-3,2,1.

The program is designed to go through these sequences.

We have set the Boolean array qr so that qr[i] is true if / is a quadratic residue

modulo 729 = 36 and is false otherwise. We have picked 729 so that the proportion

that is true is only 274/729 = 0.38. For this proportion, we must do the additional

work of finding isqrt(M, r)-

integer procedure mod (a, b); value a, b; integer a, b; mod: = a—(a-i-b)Xb;

integer procedure gcd(a, b); value a, b; integer a, b;

begin integer /;

if a < b then begin i : = a; a : = b; b : = i end;

/:    / : = mod(a, b); a : = b; b : = i;

if ¡' j¿ 0 then go to /; gcd : = a

end gcd;

integer procedure isqrt(«, u); value n; integer «, u;

begin integer j,jl,jl;

j  : = if n = 0 then 1 else entier (sqrt(/i))+l;

jl :=jXj - n;

/:   » j\ < 0 then

begin jl := JI+2XJ+1; j:=j+l; go to / end;
/:   jl:= jl-2Xj+l;

iijl^O then

begin jl : = jl; j:= j-l; go to / end;

isqrt : = j;u:= jl

end isqrt;
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procedure factor(n, r, /); value n, r; integer n, r, f;

begin integer i, j, p;

integer array c[l : 8];

Boolean array qr[0 : 728];

procedure large(m, mO); value m, mO; integer m, mO;

begin integer i, il, j, jump, fc, s, t, u, x, y; Boolean odd;

s := 1; fc := mO;
start:

fc : = fc+cfs]; s : = if s=m then 1 else s+l;
if k^r then

begin

x:= isqrt(4XfcXn, «); j : = (isqrt(n-rfc, 0 - l)-r-(4X(/+l));
if mod(x+k, 2) = 0 then

begin il := 1; m := M+2XX+1; x : = x+l end else /l :=0;

odd : =mod(fc, 2) = 1; jump : = if odd then 4 else 2;
if odd then
begin

if mod(fc+n, 4) = mod(x, 4) then

begin il : = il+2; u : = u-\-4X(x-\-1); x : = x+1 end
end;

for i : = il step jump until j+1 do
begin

if qr[mod (u, 729)] then

begin

y : = isqrt(M, r);

if t = 0 then
begin

p := gcd(«, x—y); itp > n+p then/7 := n+p;
go to exit

end;

comment When a factor /7 is found, we leave the

procedure by going to exit;

end;

if odd then begin u : = u-\-%X(x-\-2); x : = x+4 end
else

begin u : = u+4X(x+1); x : = x + 1 end
end;

go to start

end

end large;

for i : = 0 step 1 until 728 do qr[i] : = false;

for / : =0 step 1 until 364 do

begin j : = mod(iXi, 729); qrfj] : = true end;
c[l]: = 30;large(l,0);

c[l]: = 48;c[2]: = c[3]: = c[4]

c[l]: = c[2]: = c[4]: = 24;c[3]

c[l]: = c[2]: = c[4]: = 36;c[3]

= 24;large(4, -24):
= 48;large(4,-12):
= 72;large(4, -18):
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c[l] : = c[4] : = c[6] : = 12; c[l] : = c[8] : = 36;
c[3] : = c[5] : = cYl] : = 24; large(8, -6);

c[l]: = 4;c[2]: = 2;large(2, -2);

c[l]: = 2;large(l,-1);
comment No factor has been found;

/»:- 1;
exit: j := p

end factor;
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