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Finite Element Methods for Parabolic Equations

By Mitos Zlámal

Abstract. The initial-boundary value problem for a linear parabolic equation with the

Dirichlet boundary condition is solved approximately by applying the finite element discreti-

zation in the space dimension and three types of finite-difference discretizations in time:

the backward, the Crank-Nicolson and the Calahan discretization. New error bounds are

derived.

1. Introduction. A number of years ago, engineers applied the finite element

method to the solution of the heat conduction problem. We mention the papers by

Visser [7] and by Wilson and Nickell [8]. Their idea is that in the space dimension

a finite element discretization is used whereas in time a finite-difference method is

applied. Recently, there appeared papers in mathematical journals where these

methods were analyzed as well as new methods proposed, some of them of higher

order of accuracy, and where error bounds of a different kind were derived. We

mention the papers by Douglas and Dupont [3], Hlavácek [5] and Bramble and

Thomée [1], [2].

The problem we are considering is the initial-boundary value problem

du/dt = Lu for (x, 06ÜX (0, T),

(1.1) u = 0 on T X (0, T),

u'x, 0) = g'x) in Q.

Here

(1.2) l« = £Ma>>{x)t) - a^u

and x =. (x,, • • • , xN) is a point of a bounded domain Í2 in Euclidean jV-space RN

with a smooth boundary r.

At this point, let us introduce some notation. The norm 11 • 11L, of the space Z,2(il)

and the scalar product are denoted by || • ||0 and (• , -)0, respectively. Hm = W2im)iQ),

m = 0, 1, • • • , denotes the Sobolev space defined by

IMU- - ( E \\D'u\\l)i/2.

Instead of ||-||h», we write ||-||m. H0X is the closure of 20(0), the set of infinitely

differentiable functions with compact support in Q, in the || ■ ||,-norm.

The finite element discretization is considered in spaces Vk   which are finite-

Received March 15, 1973.

AMS (MOS) subject classifications (1970). Primary 65N30.

Copyright ©   1974, American Mathematical Society

393



394 MILOS ZLÁMAL

dimensional subspaces of H^ and which have the following property: For any

h G Hp+1 r\ Ha\ there exists a function û E Vkv such that

(1.3) ||« - d||, g ca"+1-'||h||,+1,     y =0,1,

C being a constant independent of the small parameter A and of the function u.

Such spaces are well known for domains of a special form (see, e.g., the references

in [9]). They were constructed in [11] (for p odd) and in the Appendix of [12] for

arbitrary two-dimensional domains.

To introduce the first two approximations, we set u" = u/(x, nk), n = 0, 1, • • • ,

n g T/k. Here k > 0 is the time increment. Further, we denote by a(w, v) the energy

functional of the operator Lu:

(1.4) a'u, v) =   f
Ja

22   au(x) — — + aix)uv    dx.
L<7í-i dx¡ dx¡ J

In the case of backward discretization, the approximate values IT of the exact solution

u" are the functions from Vkv, determined, aside from an initial condition, by

(1.5) (i/B+1 -  U", <p\ + kaiUn+1, <p) = 0    V <pE  VI.

The Crank-Nicolson discretization gives

(1.6) (i/n+1 -  U\ tp\ + \kaiUn+1 + U\tp)= 0    V tp E  VI.

Although the reader can find the derivation of the defining equations (1.5) and

(1.6), e.g. in [3], we briefly describe the method to derive (1.5) and (1.6), respectively.

The variational formulation of problem (1.1) is to find, for t > 0, the function u E Hq1

such that, besides the initial condition, it satisfies

(1.7) («, <p\ + aiu, V)=0    V tp E Hi

We approximate w(x, r) by a function Uix, t) E Vk:

(1.8) iÛ, <p)o + aiU, tp) = 0    V tp E  VI

If U(x, t) = E.-i «¿(0"i(*)> where the v{(x) form the basis of Vk, then (1.8) repre-

sents a linear system of ordinary differential equations for the unknown coefficients

«.(r). We get (1.5) when we solve this system by the simplest implicit one-step method,

whereas (1.6) follows by using the trapezoidal method.

For backward discretization, the estimate of the error will be

II"" -  U"\\x Si Cihv + k),       0 g n S T/k.

For the Crank-Nicolson discretization, we shall prove that

II"" -  i/"||i ^ C(AP + k2),        0 g n S T/k.

Here C is a constant which does not depend on A, k or n. We want to stress that no

restriction is imposed on h or k.

The estimates of Douglas and Dupont [3], which were derived for a nonlinear

equation, are in a different norm whereas the order, both in A and k, is the same.

Bramble and Thomée [2] consider Galerkin methods with parameters h and k tied

together by the relation kh~2 = const. Their Theorem 2, when applied to the Crank-
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Nicolson discretization, gives error bounds of the same order in k, again in a different

norm.

In the last section, we propose a new procedure which we obtain when we solve

system (1.8) by the Calahan Astable third order method (see, e.g., [4]). The defining

equations for the approximate values U" will be

V?G VI,
irT+1, ¿)o + bkairV"*1, tp) = -kaiUn, tp),

(1 9) (Z"+1' ^)o + bkaiZ"+1> ^ = -**(f"i f) + ßkaiWn+l, tp),

rjn+l   =     [/„+   1(3 ^n+1   +   p+iy

b - i(l + h/3),       ß - fV3.

We shall be able to prove that

||n" -  £/"|| g C(A* + k3),       0 S n S T/k.

Here

(l.io) ||«||2 = ||«||S + *||«||J.

Hence, it also holds

II"" -  í/n||o Ú Cihv + k3),       0g«^ T/k.

At this time, we have to assume k = cA, c = const > 0. This assumption is no real

restriction from the computational point of view because our effort must be to choose

k of the same magnitude as A. We shall also show that the new procedure compares

favorably with the Crank-Nicolson discretization from the computational point

of view.

2. Backward and Crank-Nicolson Discretization. For simplicity, we assume in

the following that

(2.1) ati(x), aix), gix) G C"(fl),        TEC".

Further, we assume that

N N

(2.2) a„ = «,,, X)  ««(xMi ^S,!,       « = const > 0, aix) = 0.
7,1-1 7-1

We state some facts about the solution u(x, i) of (1.1). It is of the form u(x, t) =

]Cr-i^~Xi'f.-^<W where \¡ and ^,(x) are (positive) eigenvalues and (orthonormal)

eigenfunctions, respectively, of the problem

(2.3) -Lxp = Xi/-,        *|r - 0

and gi are the Fourier coefficients of the function g(x). Ladyzenskaja proved (see

[6, Section 17]) that if g E Hm and

(2.4) g\T = Lg\T =  •••  = Lf(-1,/21g|r = 0

then u(x, t) E Hm for / = 0. Subsequently, we will need estimates for ||u"+1 — Mn||,,+i

and ||wn+1||J)+1. We obtain them easily by means of two inequalities by Ladyzenskaja

(see [6, Section 17]). The first one holds for any series ^""-lgi^A*)'-
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(2.5) ¿ grft'x)      ú c£ (Xr + Di?.*
7-1 I 771 7-1

The other one holds for any g EFT satisfying (2.4):

(2.6) ¿xr*?¿ C\\g\\l
i-l

(this is a consequence of (17.6) from [6]).

To find the estimate for the difference u> = wn+' — u (under assumption (2.4)),

we calculate the Fourier coefficients w,. They are equal to e~knX'(e~kXi — l)g¡. As

\e" - 1| ^ t for t = 0, it follows that |«,| ^ fcX,|g,-|. By means of (2.5) and (2.6),

we get

IMIiU ^ ck2Z\7gi S ck2\\g\\2m.
7=1

Hence

(2.7) ||«"+1 - «*|U_, Ú Ck\\g\\m.

In the same way, we find that

(2.8) ||«"+1||m Ú C\\g\\m.

We now introduce two theorems. Only the second one will be proved because

the proof of the first one is analogous. In both cases the initial approximation is

chosen as follows:

(2.9) [/° = g(x),

where g(x) E Vk satisfies (1.3), i.e.,

(2.10) \\g- ¿H,. ̂  CA'^-'IWU,.        j -0.1.

Theorem 1. Let g(x) satisfy (2.4) with m = ma\(p + 3, 4). Then, for the ap-

proximations Un determined uniquely by (2.9) and il.5), it follows that

(2.11) ||«n -  i/"||„. è Cihv + k) ||g|U-,        0 ^ n S T/k.

Theorem 2. Let gix) satisfy (2.4) with m = max(p + 3, 6). Then, for the ap-

proximations LT determined uniquely by (2.9) and (1.6), it follows that

(2.12) ||«" -   Un\\Ht S Cihv + k2)\\g\\H»,        0 = n =  T/k.

Proof of Theorem 2. Let us consider the function a = un*' — un — %kL(un+' + un).

a belongs to Hm~2. We need to estimate ||o-||0. The Fourier coefficients of <r are

r   -(n+l)k\i -nk\i      i      1 ,-,    /   -(n + l)fcXi      i        -niXi.,1
a i = [e — e + ikX^e + e       )]g,

a     I     In   \      -*X( 1 2^X,       -„Ui

By expanding in the Taylor series, we find that for r sufficiently small

* In the sequel, C is a generic constant, not necessarily the same in any two places, which does

not depend on h, k, n and g.
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c + i4" - trñ) < Ct3.

As the left-hand side is bounded by C(l + \t) for r = 0, this inequality holds for all

t = 0 (with possibly greater constant C). Therefore, |o-,| g Ck3\3\g¡\ and ||<r||02 g

C/í6 Er.i a. V- % (2-6)> it follows that

(2.13) |^110 ̂  CA'IIíIU.

Now, for c/> G K»", we have

(<7, tp)0   =    (tt" + 1   —   U, tp)o   —   ïA(L(m" + 1   +   «"), (p)o

= (""+1 — "", <p)o + iÄa(«"+1 + «", <p).

Denoting en = un — IT and subtracting (1.6) from the last equation, we get

(2.14) (e"+1 - e", <p)0 + hka(en+1 + e\ tp) = (o-, tp\        V<p E  Vl

We choose tp = en+l — e" — \p, \p = w — w, w = u"+1 — m". Certainly, ^ belongs

to Fip because it is equal to -(ÍT+1 - IT) + w. From (2.7) and (1.3), it follows that

(2.15) ||*||, i% CA'+W|:MU» = Ckh"+1-''\\g\\m,       j = 0, 1.

Substituting the above value of tp in (2.14), we obtain

nn+l n i |2     i     i,     / n+1     i       n      n+1 it.
e      — e | |o + 2«a(e      + e , e      — e )

= ien+l — e", y¡/)0 + \kaie"*1 + <?", \p) + (e"+1 — e", <t)0 — (<r, *)„.

Denoting a(w, u) by |w|2, apply the inequality \ab\ ^ ^ea2 + ¿>2/2« (with different

values of e), the inequality |a(«, v)\ ^ |«UDli and the estimates (2.13), (2.15) re-

peatedly and obtain the result

\\en+1 - e"\\l + ±kl\en+i\2 - |e"|î]

^ ilk"+l - «"US + CA-2A2<*+1)||g|£ + \k2W\2x + \e"\2] + Ckaha'\[g\\Z

+ ilk"+1 - e"\\l + Ck'WgWi + Ck°\\g\\2m + CiVAa('+,)||i||-.

Hence

h\\en+1 - e"||2 + tkil - k) \en+1\2x S |*(1 + k) \en\2x + Ck2A

where A = (A2p + fc4) ||g||L so that it certainly follows that

|en + ,|?   s   1±|   |e.|;   +   ckA

Setting q = (1 + A:)/(l — fc) and n = 0, 1, • ■ • in the last inequality, we find

(2.16) \e% ú q"\e°\2 + Ck£-^Y A.

As q > 1, it follows that ç" g (1 + k)Tk~l/(I - k)Tk" for n á T/fc. Now (1 + k)Tk"

-> er and (1 - k)n" ->e-Tfork-> 0. Therefore q" is bounded for n ^ r/fc cf Ú C.

Furthermore, we have 0 < l/(q — 1) < l/2fc. From (2.16), it follows that

|e"|ï ^ C|e°|? + CA
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and with respect to (2.10) (notice that |<?°|, = |g — g|, ^ C||g — g\\x):

|e"|îa C(A2p + *4)||g||L        0£n£T/k.

Taking the square root and realizing that ||t7||x ̂  C\v\x for v E H0\ we get the final

estimate (2.12).

3. The Calahan Discretization. Let us compare, first, the amount of arithmetic

operations which are necessary to carry out the procedures (1.6) and (1.9). As before,

v¡(x), i = I, ■■ ■ ,1, denote the basis functions of the space Vk. Let M be the so-called

mass matrix, M = {(v¿, d,)0},.,-i and K the stiffness matrix, K = {a(p,, p,)}Í,,-i.

If v = (vx, ■ ■ ■ , Vi)T (the superscript T denotes transposition) and U" = (a")rv

where a" = (a.", ■■• , atn)T, then (1.6) leads to the solution of the system

(M + ¿fcÄ>"+1 = (M - %kK)an. It can be written in this way:

(3.1) (M + ¿fc/QO" =  Ma",        a"+1 = 20" - a".

Hence the main arithmetic operations necessary to carry out the Crank-Nicolson

discretization consist of two parts: (1) We have to compute the matrices M and K

and to carry out the forward elimination for the matrix M + %kK. (2) At every time

step we have to multiply the matrix M by a vector and to carry out the back sub-

stitution.

The procedure (1.9) leads to the solution of two systems with the same matrix.

If we set Wn+1 = (\}n+1)Tv, Zn+1 = (Yn+1)rv, then these systems are

(3 2) (M + MAOS""1 =  -kKa",

(M + bkfOy+l =  -fcÄV + ßkKlf+1.

We see that the first part of the main arithmetic operations necessary to carry out

the Calahan discretization is the same whereas the second part is only twice as large

as in the case of the Crank-Nicolson discretization. This is certainly a favorable

result and, as the use of cubic polynomials (p = 3) in two-dimensional elliptic prob-

lems gives very good numerical results and has other advantages (see [10]), we can

expect that the procedure (1.9) will prove itself useful in applications.

We now formulate and prove

Theorem 3. Let g(x) satisfy (2.4) with m = max.(p +1,8) and let k = cA, c =

const > 0. Then, for the approximations U" determined uniquely by (2.9) and (1.9),

(3.3) ||«" -  IT\\ Ú Cih* + k3)\\g\\m,        0 g n g  T/k.

(The norm || • || is defined by (1.10).) Hence

(3.4) ||«" -   \T\\L, è Cihp + k3)\\g\\m,        0 S n S T/k.

Proof. Multiplying the first and the second equation in (1.9) by f and J, re-

spectively, adding and putting LT+1 - U" for \(3W"+l + Z"+1), we get

(3 5)        (Vn+1,tp)0 + bkaiUn+1,tp)

= (t/n, tp)0 - il - b)kaiUn, <p) + \ßkaiW+\ tp)    Vtp G   Vl.

Let wn+1 G H0l be the solution of
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(3.6) (w"+1, tp)o + bkaiwn+1 , tp) =  — kaiu", tp)    Vtp G #¿-

Consider the function

a - «n+1 - bkLun+i - h" - (1 - b)kLu   + -£- [wn+1 - kLu'l
4b

As before, we must estimate ||<r||0. To this end, we compute the Fourier coefficients

Hi of a. After elementary computations, we get

By expanding in the Taylor series, we find that, for r sufficiently small,

(1 + 4-._[,__í__e(TÍ_)']}|ÍCr..

By the same argument which we used in the proof of Theorem 2, this inequality is

true for all t ^ 0. Therefore \a¡\ ^ C/c4X,4 and

(3.7) IkHo g Ck'MU.

With respect to (3.6), we have that, for tp E Vk,

(<r, <p)o = (""+1, <p)o + bkaiun+i, tp) - 'u, tp)0 + (1 — b)kaiu, tp)

(3.8)

+ fb[iwn+\tp)0+kaiu: tp)]

= (wn+1, tp)0 + bka(un+1, tp) — («", tp)0 + (1 — b)ka'u, tp)

ß
— -kaiw"   , tp).

We denote »j"+1 = wn+l - Wn+1, subtract (3.5) from (3.8) and the first equation

(1.9) from (3.6). We get

(3 9) ^n+1' ^° ~*~ bka(e"+' *}

= ien, tp\ - (1 - b)kaie\ tp) + |/3Mr)B+\ tp) + (a, v>)o    V? G   .*?.

(3.10) (V+1. p)„ + bka'i,**1, tp) =  -M«", <P)    V*> E  K.

First we choose tp = e"+1 — j/, \p = w — ¿>, u = wn+1. From (2.8) and (1.3), it follows

that

(3.11) 11*11, á ca'+1-'||*||„,      y =0,1.

Substituting the above value of tp in (3.9), we obtain

||e"+,||2 + bk\e"+1\2x = (e",e"+1)„ - (1 - b)kaien,en+l) + \ßkair,n+\ e"+1)

+ (<r,Oo + l>"+\ *)„ + ¿>fca(/+1, *) - («', *)„

+ (1 - 6)ftfl(e", *) - i/3MV+\ «A) - (<r. *)0.

Making use of the inequality |a6| ^ J5a2 + A2/25 with various values of 5, the
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inequality \a(u, v)\ ^ |«|i |p|i and the estimates (3.7) and (3.11), we get

||e"+1||2 + bk\en+l\2x g h\\e"\\l + i||e"+1||2 +L^k\e"\2 + X-=^ k\en+1\\

+ i^[|¿|I?"+1lí + ¿k"+1lí]

+ ifc||e"+1||? + Cfc7||g||^

+ \ch\\en+l\\l + CA2p+1||g||^ + efe|e"+,|2 + r1CtA2E|k||^

+ JcA|l*"ll2 + Ch2v+1\\g\\2m + e*|«"|î + ¿-lCkh"\\g\\i

+ ek\Vn+1\2x + e-'CfeA^lklli + Cfc8||g||^, + CA2(l>+1) ||g||L

where the positive number e will be chosen later. The preceding inequality can be

simplified (by using the assumption k H\ ch) in the following way:

|(1 - k)\\e"+1\\l + kÇ±f+ - | - e)k-+1|?

(3.12) S |(1 + A)||e-||2 + {^~ + )k\e% + k(f + É)h"+'|î

+ (1 + r1)C*[Aî' + *,]||f||i.

To derive the final inequality, we must estimate the term |r?n+1|2. At this time,

we choose tp = ?jn+1 — \f/, \p = « — cî>, « = w"+1. The Fourier coefficients w, of the

function w are w, = -k\/'l + bk^e'^'g,. Hence |w<| ^ |g,|/Z> and, by (2.5)

and (2.6), ||w||„+i ^ C||g||m; therefore

11*11, á arl-'\\g\\m,    ; = o,i.

Setting tp - 7/n+1 in (3.10), we have

||.7"+1||¿ + *|»"+1|î =  -ka(en, v"+1) + 0T\ -¿)0 + bkaivn+1, *) + Me", *)

= **h,+Ilï + ¿*k,|í + èlh"+1llo + c*"-" Nil II

+ <\k\rf+i\2x + e-lCkh2*\\g\\2m +¿*k*|J

+ «-'CAA^Uïlli;

hence

}¿o - eW+1iî ^ ¿Ad + o k*|ï + (i + r1)dfe**||f||i;

and finally

(3.13) h"+1|? ^ ¿T2 ±-±J |e«|* + (1 + rl)CA2p||g||L

From (3.12) and (3.13), it follows that

(3.14) *(1 -fc)lle"+1Ho + Ci(e)/c|e"+1|ï

g |(1 + *)||e-||S + C2(a)Ä|e"|2 + (1 + <Tl)Ckih2* + ke)\\g\\2
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where

Ci(É) = -T- - - - e, C2(t) = ^- + e+^T + ejA     —•

Since

Cx(0) = ^-^ - ¿ > 0.43,        C2(0) = ^=-¿ + ¿ < 0.29,

we can choose e = e0 > 0 such that Cx(tQ) = C2(e0). We set C,(e0) = Jy and obtain,

from (3.14),

(1 - ÂOHOIS + yk\en+1\2x S¡ (1 + *)||c-||; + yk\e'\l + C*(A2" + k*)\\g\\2m

and further

(1 - k)[\\e"+1\\l +7A:|e"+1|i] á (1 + A:)[||6"||2 +7A:|enm + CA:(A2» -f A.6)||g|£.

For the moment, let ||-||2 be defined not by (1.10) but by ||-||2 = ||-||2 + yk\-\*.

Then the last inequality can be written in the following way:

lk"+1||2;= q\\en\\2 + Ckih2* + ka)\\g\\2m,

where again q = (1 + k)/(l — k). Repeating the argument used at the end of the

proof of Theorem 2, we get

||e"||2= C(A2" + A:6)||g||L        0| n g  T/k.

Therefore

lk*||S Ú C(A2" + *6)||g||L        |e"|2 g C(A2» + k°)\\g\\2m

and (3.3) follows immediately.

Concluding Remark. The discretizations in time introduced here are derived

from ^-stable methods for solving ordinary differential equations. The approximation

of the function e~T used in the first two procedures is that of Padé approximation.

This is not the case in the third procedure.

We know that the ç-stage implicit Runge-Kutta method of order Iq is Astable

(see, e.g., [4]). The approximation of the function e~T used in this method is Padé

diagonal approximation. One can apply this class of methods to solving Eq. (1.8).

For q — 1 (see [4, p. 39]), one gets the following scheme:

(W**\ ¿)o + ßlxka'W*+\ tp) + ßX2kaiZn+1, tp) =  -ka'V, tp),
v<P G  Vk,

ß2XkaiW"+1, tp) + (Z"+1, tp)0 + ß22ka'Zn+1, tp) = —kaiU", tp),

£/"+1 =   [/"+ A(fT+1 + Z"+1),

It is questionable whether this procedure, even with its fourth order accuracy, will

prove to be useful in applications because of the much greater number of arithmetic

operations necessary for carrying it out.
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4. Appendix. 1. Elsewhere, we shall derive error bounds for the procedures

introduced here which are uniform for 0 g n < œ. E.g., for the Crank-Nicolson

discretization, it holds without any restriction on the increments k and A that

(4.1) max ||«" -  i/"||o g C[AÏ+1 + k2] lg | \\g\\m
0ST7<0° X

if g satisfies (2.4) with m = max(p + 1, 4). Such estimates indicate that good results

in long time calculations can be expected. Nevertheless, there is one difference between

the Calahan** and backward discretization on the one hand and the Crank-Nicolson

discretization on the other hand which speaks for preferring the former methods.

The exact solution of problem (1.1) has the property that

(4.2) ||«(*. Olio ̂ <rx,,||g||0,        í = o,

for any g G L2(ü). Here, \x is the smallest (positive) eigenvalue of the operator

—Lu. We want to point out that the Calahan and backward schemes preserve this

asymptotic behavior characteristic of (1.1), i.e., for any U0 E L2(ti) and for any k

not too large, say k ^ 1, it holds that

(4.3) ||l/"||0 g <rao"*||t/°||o,        «= 1,2, ••• ,  a0 = const > 0.

The Crank-Nicolson scheme has the same property if k tends to zero fast enough

with respect to A, namely, if k = h" with a = 1. On the other hand, if k = A", a < 1,

then (4.3) is not true. More exactly, for any sufficiently small positive k, there exists

an U° such that, for n — 1, 2, • • • , it holds that

(4.4) || l/"||o à e-e(t,"'|| i/°||„,        0 ti ®(k) S Ck2"'"-" -» 0.

2. We assume the following additional properties of the basis {vx, v2, ■ ■ ■ , vt}

of the space Vh":

(a) IMIÎ á CA-2|M|o2    VtpE  VI,

(b) Ikllî/lkllo = c0A"2,        c„ = const > 0.

The finite element subspaces used in applications possess these properties.

Let us consider the Calahan discretization and let £/" = (a")rv as before.

To get an+1, we have to compute [T+1 and T"+1 from (3.2); then a"+1 = a" +

|(3 [T+ ' + y"+ ')• There is a recurrence relation between a"+1 and a". However, in this

relation, the matrix A = M' 1K appears which is not symmetric. Therefore, we set

„77 Iil/2     »
a   =   M    a   .

By elementary, though not short computations, we get a"+ ' = RikS)an and

(4.5) a" = [RikS)]"i\

where

<»>     «^-'-Tf^-Krt»;)''   »■"*"*"
** In the linear homogeneous case, the Calahan discretization is identical with the Makinson

scheme of the third order of accuracy (see J. G. Makinson, "Stable high order implicit methods

for the numerical solution of systems of differential equations," Comput. J., v. 11,1968, pp. 305-310).
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(b and ß are defined in (1.9)). With respect to the meaning of the matrix M, we easily

see that

(4.7) ||i/"||„= ||a"||.

From (4.5), we have

(4.8) ||t/"||o ^  ||R(A:5)|n|i/0||„,        n = 1,2, •••  .

Now, Sis a symmetric positive definite matrix (Mand AT are positive definite matrices);

hence

(4.9) l|Ä(*S)|| = max |Ä(*A)|
A

where the maximum is taken over all eigenvalues A of the matrix S. Let us find bounds

for A.

If Sa = Aa and tp = (M"1/2a)rv, then A = a(tp, <p)/\\<p\\l. As a(tp, tp) =■ XJI^HJ
V tp E Ha1, it certainly holds that X, i%\ A. On the other hand, from property (a),

it follows that A = CA-2. Therefore,

(4.10) X!* átAá caá"'.

The function R(r) is decreasing in the interval (0, »), R(l) = 1 and R(°°) =

—[V3 — 1] > — 1. With respect to (4.10), we have

max \R(kA)\ Ú    max   |«(t)| g max^i/cX,)!, a/3 - 1].
A kh,Sr<a>

First, let Xi á 1. Then k\x ^ 1. As R(t) is decreasing and R'(0) = — 1, there exists

a /30 > 0 such that \R(r)\ á e~ß" forO ^ r i%\ 1. Furthermore, V3 - 1 = e'ßl ^ e'"'"

for k ^ 1, ßx = -lgW3 - 1]. If we set ß2 = max(X,/30, ßi) > 0, we have

maxA|fl(/cA)| ^ e~ß'k and, from (4.8) and (4.9), (4.3) follows with a0 = ß2. If \x > 1,

we have maxA|.R(/cA)|  ^ maxtsr<„|Ä(r)| and we get (4.3) with a0 = max(/?0, ßx).

The backward scheme leads to (4.5) where R(t) = 1/(1 + r). The same arguments

apply as before.

3. The Crank-Nicolson scheme can also be expressed in the form (4.5) where

R(t) = (1 — |r)/(l + Jt). This function is also a Padé rational approximation of

the function e~T and, again, R(t) decreases in (0, °°) and \R(t)\ < 1 for t > 0. If

k = A", a = 1, then khT2 does not increase too fast, kh~2 ^ k'1. Now,

||jR(AS)|| = max |Ä(AA)| ^       max      |ä(t)| g     max     |ä(t)|.
A kXtSTSCkh-» tX,SrS*-1

Because, near r = <», R(t) behaves in a similar way as near t = 0, it is easy to prove

(4.3) again.

The situation is different if k = A", a < 1. The reason is that the approximation

R(r) = (1 — ir)/(l + \t) does not possess the property

(4.11) |Ä(»)| < I.

Let us examine this case. The maximum eigenvalue Amai is bounded from below by

c0A~2 which follows from assumption (b) and the fact that

a Stx a Ka a(tp,tp)
AmiI = max tt-ttî = max —— =  max 2-

l|a|| a  Ma        »en>   IMIo
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Therefore,

AAmax ̂  c0kh~2 = c0A_1~\        8 = 2(l/a — 1),        c0 = const > 0.

As R(t) is decreasing in (0, co),wehave \\R(kS)\\ = maxj|tf(fcAmin)|, |tf(fcAmax)|}.

Further, for t small, it holds that

0 < R(t) g 1 - |t,        |ä(1/t)| ^ 1 - 4/t.

Hence, for k small, we get

0 g  |K(AAmin)| g Ä(*X.) ^  iRÍCoA:"1^)! á  |*(Â:AmaJ|

and

(4.12)        \\R(kS)\\ =  |Ä(MmaJ| =  \R(cJc-l-')\ =  1 - 4c0A:1 + í = e~*wk

where

©(*) =  -7 «1 - 4c0/<1 + 5) = 4co*S + 0(A:1+2Í).

Let a0 be an eigenvector of the matrix R'kS) belonging to the eigenvalue R(k\mBI)

and U° = (AT1/2a°)rv. Then, by (4.5),

a" = [R(kS)Ta° = [/?iMm„)]"a°

and, by (4.7), (4.12),

||i/"||. = |/?(AAmai)|" ||t/°||„ = e"9'*1"4 ||t/°||„.
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